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Abstract
Data mining algorithms should exploit new hardware technologies to accelerate computations. Such goal is difficult to achieve in da-
tabase management system (DBMS) due to its complex internal subsystems and because data mining numeric computations of large 
data sets are difficult to optimize. This paper explores taking advantage of existing multithreaded capabilities of multicore CPUs as well 
as caching in RAM memory to efficiently compute summaries of a large data set, a fundamental data mining problem. We introduce 
parallel algorithms working on multiple threads, which overcome the row aggregation processing bottleneck of accessing secondary 
storage, while maintaining linear time complexity with respect to data set size. Our proposal is based on a combination of table scans 
and parallel multithreaded processing among multiple cores in the CPU. We introduce several database-style and hardware-level op-
timizations: caching row blocks of the input table, managing available RAM memory, interleaving I/O and CPU processing, as well 
as tuning the number of working threads. We experimentally benchmark our algorithms with large data sets on a DBMS running on 
a computer with a multicore CPU. We show that our algorithms outperform existing DBMS mechanisms in computing aggregations 
of multidimensional data summaries, especially as dimensionality grows. Furthermore, we show that local memory allocation (RAM 
block size) does not have a significant impact when the thread management algorithm distributes the workload among a fixed number 
of threads. Our proposal is unique in the sense that we do not modify or require access to the DBMS source code, but instead, we extend 
the DBMS with analytic functionality by developing User-Defined Functions.
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I. INTRODUCTION

Computer hardware is constantly evolving with faster CPUs 
and larger disks ev ery year. Currently, the number of cores per 
CPU is expected to double every two years. Thus, database man-
agement systems (DBMSs) face new challenges in exploiting 
existing cores, available for parallel multithreaded processing 
[1, 2]. However, developing multithreaded algorithms is a com-
plex problem due to the difficulty of managing and balancing 
the workload among a large number of threads, as well as syn-
chronizing them.

Parallel multithreaded processing is especially valuable for 
data mining and sta tistical computations due to the fact that most 

data processing is translated into a large number of mathemati-
cal CPU operations that generally can be pro cessed in parallel 
[3-6]. Moreover, data mining algorithms require efficient I/O 
mechanisms when processing large data sets, in which it is pref-
erable to in terleave mathematical processing with a full table 
scan [7, 8]. Unfortunately, most hardware improvements do not 
acceler ate access to secondary storage (hard disk technology) 
and therefore I/O processing remains a performance bottleneck. 
This is particularly important when aggregate operations are 
performed on large input tables. As a result, for practical purpos-
es, aggregations become a bottleneck for data mining algorithms 
[7-9]. Therefore, improving the I/O mechanisms for aggregates 
in DBMSs rep resent an important research issue.
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DBMS extensibility allows taking advantage of program-
ming mechanisms that can extend its analytic functionality. 
However, most of the time, such approach is generally ignored 
by researchers in database systems, data mining and statistics. 
Despite the fact that a DBMS can indeed be extended with data 
mining processing [4, 7, 8], the majority of data mining pro-
cessing is done outside the DBMS by exporting data samples 
to small flat files that are analyzed by efficient programs in lan-
guages such as C++ or Java [4], statistical tools such as Mat-lab, 
SAS, or R [5, 8], or more recently MapReduce [4, 6]. User-de-
fined functions (UDFs) are a powerful extensibility mechanism 
[5, 10, 11]. Furthermore, some UDF implementations include 
application programming interfaces (APIs) [12] that enable the 
control of multithreaded pro cessing. Aggregate user-defined 
functions (also called user-defined aggregates) are developed 
by implementing a well-defined sequence of processing steps; 
such steps provide enough information to manage the work-
ing threads in charge of processing database aggregations [13]. 
However, the user is often oblivious to parallel execution, and 
does not have control over optimizations that can be applied at 
the hardware level. With such issues in mind, our con tributions 
are mostly focused on accelerating data mining processing in 
a DBMS exploiting UDFs. However, our ideas can be applied 
on any database algorithm that requires efficient processing on 
large data sets. In this paper, we work on ex tending the DBMS 
to compute sufficient statistics that are fundamental for many 
data mining models: principal component analysis (PCA), linear 
regression, clustering, variable selection, among others [8, 14]. 
In addition, we study caching, efficient memory management 
and multithreaded processing in order to exploit multiple cores 
and large RAM memory. It is important to emphasize that our 
re search studies efficiently interleave data set processing with 
a full table scan on a modern DBMS. This research is applied, 
for instance, in one-pass data mining algorithms, such as Naïve 
Bayes [6], or dimensionality reduction with PCA [5, 14], that 
can take advantage of sufficient statistics to compute the model, 
instead of reading the data set multiple times. These models 
can now be obtained more efficiently with a middleware layer 
(UDFs in our case) that maximizes the utilization of all cores in 
the CPU.

This paper is organized as follows. Section II compares our 
research with previous works. Section III introduces definitions, 
presents an overview of sufficient statistics and explains how 
they can be computed with UDFs. Section IV presents our main 
contributions. This section introduces algorithms and optimiza-
tions to compute aggregations exploiting multithreaded process-
ing. Section V contains an experimental evaluation on a com-
puter with a multicore CPU, comparing performance of different 
aggregation algorithms, integrated in a DBMS. Finally, Section 
VI presents the conclusions and directions of our future work.

II. RELATED WORK

There is a wide range of related works regarding efficiently 
using memory and paral lel processing for database operations 
and data mining. Previous research has been done on the hard-
ware level to exploit operations in main memory for fast data-
base processing [1, 15]. Adibi et al. [1] evaluate the link discov-

ery algorithms in a processing-in-memory (PIM) architec ture. 
In this research, experiments on multithreading and in-memory 
processing are presented. Unlike our work, the latter algorithms 
were specifi cally coded and tested for their hardware archi-
tecture and cannot be extended to any configuration of hard-
ware. Manegold et al. [15] propose data structure par titioning 
algorithms for query joins that optimize cache performance by 
memory access. As in our research, the authors seek to speed 
up the execution of a critical database operator by optimizing 
memory management. However, their mod ifications are in the 
database core modules that will require modifying the DBMS 
engine. In our work, we decided to extend the DBMS capabili-
ties by exploiting the existing framework for multithreading and 
memory access, which can be incorporated to any current data-
base system. 

In a similar manner, aggregate operations have been previ-
ously approached with the use of multicore technology. Ciesle-
wicz and Ross [9] analyze several factors of multithreading and 
caching. In this work, an adaptive aggrega tion algorithm is pro-
posed to optimize access to L1 and L2 cache memory in order to 
minimize cache misses. The latter algorithm is successful, even 
with skewed data. Unfortunately, despite the fact that the latter 
algorithm can be extended to work on dif ferent CPU architec-
tures, it requires a complete rewrite of low-level algorithms for 
managing multithreaded processing and aggregation operations. 
In contrast, our algorithm can be extended to perform more 
complex processing than just sufficient statistics. Cache perfor-
mance of in-memory and block oriented aggregate operations is 
studied by Cieslewicz et al. [16]. The main difference between 
our proposal and previous research is that joins and aggrega-
tions are evaluated together  to avoid cache misses by modifying 
the size of the buffer. Notice that we avoid join operations in our 
aggregation process. This is an important assumption because 
any required join operations for obtaining sufficient statistics 
is assumed to be performed in a pre-processing step. We also 
evaluate the performance of our algorithm by modifying the 
block size. Using a separate context per thread for data min-
ing algorithms is proposed by Ghoting et al. [2]. Although there 
has been considerable work on exploiting the current hard ware 
technology for optimizing database performance, our work goes 
further by optimizing the aggregation bottleneck.

Integrating data mining and statistical techniques into a 
DBMS has received little attention by the research community. 
However, aggregate functions have been used not only in proba-
bilistic databases [17], but also to construct patterns in multi-
relational data mining and online analytical processing (OLAP) 
[18, 19]. Aggregate UDFs are shown to be useful when imple-
menting database algorithms [8, 20]. The main functionality 
needed to define an aggregate UDF for multithreading is identi-
fied in [21]. Furthermore, it has been pointed out that traditional 
cost-based optimizations cannot be applied when working with 
UDFs because they represent non-traditional database systems 
processing [22]. As a conse quence, memory and core usage 
have to be managed by the user. Recently, there has been re-
search on optimizing the computation of sufficient statistics by 
exploiting caching in RAM and sampling [23]. This work takes 
a step further by proposing specific changes to the DBMS ag-
gregation algorithms and accelerating performance with asym-
metric multithreaded processing.
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III. DEFINITIONS AND PROCESSING IN A DBMS

A. Data Set Summary 

Assume we have an input data set X, with d dimensions and  
n data points X = {x1,..., xn}. Table 1 gives an example. There 
are three data summaries that are essential for several statisti-
cal linear models [5, 8]: n, L and Q, given in Equation 1 and 
Equation 2. L is the linear sum of the d dimensions in X and is 
stored on a vector with d values. Since matrix Q is the quadratic 
sum of dimension cross-products of each point, it is d × d and 
it is symmetric (i.e., it suffices to compute its lower triangular 
submatrix).

The data set X is stored in a table inside the DBMS, which 
has a column for each dimension X1, and one row for every data 
point. Therefore, the table to store X has schema X(i, X1,..., Xd), 
where i represents its primary key. Previous research has shown 
that only one table scan over the input data is needed to obtain 
the data summarization with sufficient statistics for several mod-
els [8]. More importantly, from a performance standpoint, suf-
ficient statistics n, L and Q, are distributive [7]. Thus, they can 
be computed in parallel over different partitions of the data set, 
where the global sufficient statistics are given by the addition of 
sufficient statistics on each partition. 
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B. SQL Queries and User-Defined Functions

The computation of n, L and Q can be expressed in terms of 
the SUM aggregation. A single SQL statement is used to cal-
culate all values of the summary matrices. Furthermore, notice 
that Q is a symmetric matrix, so it is enough to compute only 
the upper or lower triangular elements. An efficient SQL query 
for obtaining sufficient statistics, requiring a single table scan, is 
shown on Fig. 1. Notice this SQL query computes only one half 
of Q because Q is symmetric. Further details on how to compute 

Table 1. Example of an input data set X with d = 3; n = 10

i X1 X2 X3

1 18.58 20.39 13.70

2 31.69 91.18 21.51

3 45.00 18.81 49.83

4 47.93 88.34 93.59

5 40.36 12.82 9.33

6 37.14 14.85 87.20

7 30.94 61.83 37.66

8 36.03 9.04 46.66

9 88.57 83.79 80.27

10 66.99 10.49 46.90

n, L and Q for horizontal and vertical layouts of the data set can 
be found in [8].

Aggregate user-defined functions (aggregate UDFs) give us-
ers the capability to extend the functionality of DBMS. The set 
of steps (see Fig. 2) that must be implemented by the user to 
program the aggregation are [5]: 

1) Initialize: Data structures and variables for the aggregation 
are initialized.

2) Accumulate: This step is the most important. In this step, 
each row of the data set is processed, one at a time. An 
accumulation in a local variable is performed by every 
thread. Notice that while the table scan is being processed, 
the threads are fed the rows to accumulate.

3) Merge: This step merges the accumulated values of in-
dependent threads into the main result. This thread is re-
sponsible for merging both local variables and local data 
structures into a global aggregation result. 

4) Terminate: In this final step, after all threads partial results 
have been merged, the function return value is computed. 
Once this last step is final ized, the final aggregation result 
is returned to the user. 

It is important to point out that due to the fact that user-defined 
functions are compiled fragments of C code, the input argu-
ments for aggregate functions must be fixed in order to allocate 
the memory space and allow argument value passing to each 
thread [8]. Therefore, to allow a dynamic d dimensional vector 
as argument, the values of the d attributes of a data point have 
to be packed as a single object: either a string or a binary object. 
Hence, to implement data sum marization, two basic UDFs are 

Fig. 1. Efficient SQL query for data set summarization.

Fig. 2. Aggregate User-Defined Function (UDF) steps.
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developed: (1) a parsing function (STR-UDF); (2) a serializ-
able function for reading and writing binary objects (BIN-UDF) 
(under the .NET programming environment [12]). The parsing 
function receives one string value, where all dimension values 
of the input vector are con catenated. Individual dimension val-
ues are parsed and assigned to local variables at run-time. On 
the other hand, the aggregate UDF for summarization receives 
all values for the d dimensions of a data point packed as a binary 
object, and returns all the elements in n, L, and Q also packed as 
a user-defined type (see Fig. 3b). 

Execution performance of the aggregate UDF can be im-
proved by materializing a table with a single column storing the 
packed dimensions with the user-defined type. Even though the 
aggregation can be efficiently computed when data is already 
in binary format, creating such a table is a pre-step that can be 
time-consuming, especially for large input tables.

Table-valued functions (TVFs) are a type of user-defined func-
tion that, unlike aggregate UDFs, is able to return a table as 
the final result of the function. TVFs read an input data set as 
a single data stream and do not implicitly manage paral lelism. 
Despite the lack of “out-of-the-box” parallelism, it is common 
that database systems allow the user to implement routines that 
support parallelism. Without loss of generality, in this work, a 
TVF will be used to compute multidimensional aggregations, 
with internal thread management algorithms returning a result 
table with just one row. 

IV. PARALLEL MULTITHREADED COMPUTATION

We now present our main contributions. We start with an 
overview on how we optimize the processing of UDFs. We 
then go into more technical detail, explaining how to manage 
memory and how to guarantee correct results under concurrent 
processing by multiple threads. We introduce three alternatives 
to manage work load among threads. Such workload involves 
disk I/O and CPU operations. We conclude with a brief time 
complexity and I/O cost analysis. 

Our basic UDF-based algorithm exploits parallel processing 
to distribute the workload among all threads, while ensuring the 
hard disk access is accessed with full table scans, to achieve 
maximum performance. More importantly, processing with con-
current threads needs to guarantee correct results without race 
conditions, deadlocks or process starvation. 

A. Processing Aggregate UDFs

In developing aggregate functions for data summarization, we 
incorporated several changes that increase the speed of multi-

core CPU computers where computing the aggregations is faster 
than reading records from secondary storage. To obtain sequen-
tial reading, one thread is the only process in charge of reading 
records from the input table, caching blocks of records in main 
memory, and calling a monitor to dispatch the job to another 
thread that actually performs the calculations. All threads share 
memory to update the global aggregate computation. Moreover, 
we define techniques to control the number of threads executing 
simultaneously, and the amount of memory used by the aggrega-
tion process. 

Even though algorithms for aggregation are explained in a 
general manner, we target the specific problem of comput-
ing sufficient statistics. Some key aspects have been modified 
from the UDF API. For example, the accumulate step receives a 
com plete row from the input table without the need to pack its 
values as a user-defined type. Also, the initialization includes 
multithreaded execution parameterization, which would be spe-
cific for the hardware configuration. Since the computing of suf-
ficient statistics requires a set of matrices and vectors, results 
are returned as tables using the common connectivity features 
of database programmability. Finally, our algorithms integrate 
into the modern DBMS without modifying any of the primitives 
for access data. 

B. Memory Management for Caching and Con-
current Processing

The purpose of caching part of the input table in main memory 
is to have quick access to its data records. We address the prob-
lem of obtaining a sequential reading by introducing a thread 
to cache the data blocks of the input data set in main memory. 
Since each worker thread is assigned the task of computing 
the aggregation of one block, portions of the data are cached 
throughout the execution time. Once the computation of a thread 
is concluded, the memory space occupied by the block is sent to 
the garbage collector. The reading process is oblivious to mul-
tithreaded execution since its only task is to allocate memory 
space to fit a fixed number of rows and fill the current block with 
records from the input table. As soon as a block is full or there 
are no more records to retrieve, a pointer to the block is sent to 
the monitor process, and a new block is started once the monitor 
is done. The characteristic difference between such processing 
approach and a standard parallel aggregation is the way threads 
access the input table. Instead of having the threads request data 
blocks, threads are assigned a block as workload by the “moni-
tor” process. Both reading and monitoring are done by the main 
thread. Thus, in addition to the cost of sequentially reading the 
input and allocating blocks in main memory, we must consider 
the overhead of dispatching the worker threads. There is little 
overhead caused by the monitor calls, due to the difference in 
speed between reading the rows from disk and computing the 
flops by CPU.

Correct concurrent processing is solved by defining different 
types of memory access for working threads. Since each block 
will be accessed only by one thread after its creation, it will be 
immutable, and the memory space can then be disposed once 
the thread is done. Each working thread has a private memory 
space to compute the local aggregation of its data block and 
public access to update the global aggregation computed by all 

Fig. 3. User-defined functions (UDFs) calls.
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reading process allocates blocks in RAM memory regardless of 
whether or not the process ing power is sufficient for completing 
the tasks prior to causing stack or memory overflow. Moreover, 
the scheduling policy of the operating system assigns CPU time 
slices to the threads. A higher priority is not necessarily given 
to tasks closer to being finished and incomplete tasks will retain 
memory space until completed.

We now discuss the FT-TVF approach. The maximum 
amount of memory used for caching can be controlled by the 
monitor process. Even though this approach does have a circular 
list to keep a fixed number of working threads, the need for a 
queue is eliminated since there can be at most one task waiting 
to be executed. Whenever a new task is created by the monitor, 
it initially locates the first available slot on the list. A slot is con-
sidered available either when its thread is done or when there is 
no thread assigned to it. Although the circular list decreases the 
amount of RAM memory used for caching, the reading process 
has to be stopped every time the list becomes full. Finally, stop-
ping a sequential read for a long period of time can severely 
impact the algorithm performance.

We now explain the third monitor approach (TP-TVF). To 
control the number of threads executed in the system and to have 
a first-in-first-out (FIFO) policy for the upcoming workload, we 
include a thread pool managed by the monitor process. With 
such configuration, all tasks created by the monitor are added 
to the thread pool. When the thread pool is initialized, it creates 
a fixed number of threads and a FIFO list. As such, whenever 
a thread finishes its current task, it is assigned the next task in 
the queue. Even though completed tasks free up memory space, 
each task in the thread pool queue has a data block associated 
with it. Moreover, if the waiting queue grows large enough, then 
it could cause memory overflow.

D. Time Complexity and I/O Analysis 

Time complexity and the number of I/O operations for each 

threads. Since the results of global aggregation must be the same 
regardless of how individual operations are interleaved, access 
to the memory space storing the global aggregation is granted 
only after the thread acquires a lock on the shared resource. In 
other words, only one thread is allowed to update the global 
aggregation at some point in time. In a multithreaded process-
ing environment, there will be several threads working on the 
private memory space of their current task. Since each thread 
computes the aggregation on a private memory space and each 
data block is accessed only by one thread, working threads do 
not interfere with each other during the aggregation processing. 
We redefine the merging step of aggregate UDFs to update the 
global result every time a thread completes a task. All private 
memory space (cached data and local aggregation) is sent to the 
garbage collector, so that it can be released by the DBMS once 
a task is finished. It is important to notice that there are no dead-
locks because there is only one lock granting access to all values 
in the global com putation. In order to minimize concurrency 
control overhead, the data block size should be large enough 
to have a small number of threads simultaneously attempting 
to update the global aggregation data structure, thereby reducing 
contention.

C. Monitoring Multithreaded Processing 

In order to manage multiple worker threads, it is necessary to 
create a mon itor process, similar to those processes used by the 
operating system (OS). Such monitor process executes as part 
of the main thread; it is in charge of dispatching the workload 
and terminating execution when all worker threads have finished 
their individual computations. We propose three monitor alter-
natives (Fig. 4):

1) Creating a new thread (i.e., there are multiple threads) for 
every upcoming task (MT-UDF). 

2) Using a fixed number of threads (FT-TVF). 
3) Exploiting a pool of threads; also called thread pool (TP-

TVF).

The first, simplest approach of the monitor is to create a new 
thread for every request to dispatch a workload (MT-UDF) and 
to then add the thread to a list. When the reading process is fin-
ished and the monitor requests to join the threads, the monitor 
uses the list to wait until all threads complete their execu tion. At 
this point, the aggregation is complete. In this configuration, the 

Fig. 4. Thread monitor policies.

Table 2. Time complexity of n, L and Q

n  L Q

Elements 1 d ((d + 1) × d) /2
Flops per accumulate step 1 d (d + 1) × d 
Flops per merging 1 d ((d + 1) × d) /2
Overall time complexity O (n) O (nd) O (nd2)



Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 111-120

DOI: 10.5626/JCSE.2011.5.2.111 116 Carlos Ordonez et al. 

of the data summa rization matrices are given in Table 2. Since 
the expected input consists of large data sets (d « n), one thread 
is dedicated to the task of performing a sequential read. Little 
or no overhead is expected from the working threads in charge 
of the aggregation (only when creating and destroying threads). 
Even though the overall time complexity of the summarization 
process is O (nd2), with efficient multithread ing, processing time 
is dominated by the table scan, in time O (nd). On the other hand, 
the space complexity of the aggregation process has the global 
aggregation invariant, and it fluctuates depending on the number 
of threads working in the system at any time. Thus, the amount 
of memory used is given by: 

Mem = ((t + u)((bd) + e) + e)f                      (3)

where t is the number of threads executed in the system, u is the 
number of tasks created and waiting for a thread, b is the block-
ing factor (number of records per block), d is the number of 
dimensions, e is the number of elements in the aggregation and 
f is the number of bytes used to store a floating point number.

V. EXPERIMENTAL EVALUATION

We conducted our experiments on a DBMS installed on a 
server with an Intel Core 2 Quad CPU with four cores at 2.83 
GHz each, and 3.2 GB of RAM. The hard disk had 320 GB of 
capacity, with a SATA interface running at 3 GB/s, and 7,200 
RPM. The operating system was Windows XP and the DBMS 
was Microsoft SQL Server. UDFs were programmed in C#. 

In the following sections, we evaluate different alternatives to 
compute sufficient statistics. The code was compiled and added 
to the DBMS server using aggre gate UDFs and TVFs. The main 
experimental parameters were the chosen aggregate UDF agg, 
the blocking factor b (number of records per block) and the 
number of threads t. All data sets had multivariate normal dis-
tributions. Values were stored as double precision floating point 
numbers. Finally, all experiments were repeated five times and 
their result was averaged.

A. Concurrency Control 

In this section, we analyze the performance impact of all dif-
ferent alternatives to manage threads in multithreaded processing:

1) Creating a thread for every task or block to aggregate (MT-
UDF).

2) Using a maximum fixed number of threads with at most 
one task waiting to start; no queue (FT-TVF). 

3) Exploiting a pool of threads with a fixed number of threads 
and a queue of waiting tasks (TP-TVF).

All control alternatives are compared against the execution 
time of performing a full table scan. No aggregation is per-
formed during the full table scan: this query is used as a bench-
mark baseline. The full table scan is performed with a sequential 
data access given by the UDF API of the DBMS. 

The results in Fig. 5 show time performance of the three al-
ternatives to compute Q at different d values, where n = 1 M. We 
can see that the monitoring process of multithreading adds little 
or marginal overhead to the table scan. For the cases when d = 

32, the impact of performing the aggregation while reading the 
table is minimal. On the other hand, the trend becomes evident 
when d = 64; there is a difference in performance given by the 
monitoring policy used for the working threads. Nevertheless, 
the time impact of any of the policies is not enough to consider 
a higher complexity than a table scan. The biggest overhead 
between the policies is caused when the OS is left to manage 
all threads. Such results were expected, because there is no 
memory control, and the policy to assign workload is subopti-
mal for aggregations. The scheduler will attempt to assign equal 
time slices to the existing threads in the system, adding context 
switching (thus increasing overhead), and letting the DBMS 
saturate with an unfinished workload. The best performance is 
acquired by TP-TVF because there is little saturation of the OS 
components by the number of threads managed. As for FT-TVF, 
controlling the maximum memory used by the aggregation does 
not significantly affect execution time, and the performance is 
comparable to a table scan while being faster than MT-TVF.

B. RAM Memory Management and CPU Usage 

Caching data blocks of the input table, regardless of the 
amount of memory used for this matter, could cause memory 
overflow. While being aware of this potential problem, we have 
proposed methods to limit memory usage, and implemented 

Table 3. UDF processing time varying the number of threads t (time in 
seconds and n = 10 M)

d Threads FT-TVF TP-TVF

64 1 173 155
64 2 173 155
64 3 173 155
64 4 173 156

128 1 386 324
128 2 381 324
128 3 379 326
128 4 380 330

UFD: user-defined function, FT-TVF: fixed threads table-valued function, 
TP-TVF: thread pool table-valued function.

Fig. 5. Concurrency control comparison (task = Q, n = 1 M, d = 64, t = 
4). MT-UDF: multiple thread user-defined function, FT-TVF: fixed threads 
table-valued function, TP-TVF: thread pool table-valued function.
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them in FT-TVF. Since our experimental study focuses on d « 
n, such limitation is never reached by varying the values of d = 
128. Furthermore, we found that in all our experimental cases, 
a reduced number of threads is enough to efficiently compute 
sufficient statistics. 

Table 3 displays the performance of our monitor policies, 
when varying the number of working threads. For d = 64, execu-
tion time is made almost invariant by increasing the number of 
threads assigned to the accumulated part of the aggregation.

Such behavior is caused because the time to read a record 
of size d from the input table is greater than the time it takes 
the process to calculate the O (d2) flops in the accumulate step. 
Nevertheless, when d increases, we need more threads to catch 
up with the reading speed. This is the case for d = 128; the per-
formance of FT-TVF reaches a peak when t = 3. When t < 3, the 
sequential read has to be stopped every time the limit for the 
number of working threads (t) is reached. In contrast, TP-TVF 
does not stop whenever all working threads are busy; instead, it 
places all waiting workload in a queue. Finally, the cases when 
d = 128 and t > 3 for FT-TVF, and t > 1 for TP-TVF show the 
tradeoff caused by using more threads than those required by 
the aggregation. 

The blocking factor is directly related to two aspects of the 
execution: the amount of memory used for caching and conten-
tion for concurrently updating the global aggregation.

The performance of different policies computing Q of a data 

set of n = 1 M and d = 64, while varying the block size, is pre-
sented in Fig. 6. When the blocking factor is relatively large (b = 
1000), there is less concurrency for updating the global aggrega-
tion, and the tradeoff is the amount of memory used for caching. 
In contrast, the performance of MT-TVF is severely affected by 
the unmonitored number of threads when b = 100. Nevertheless, 
the multithreading policies of FT-UDF and TP-TVF have a max-
imum of t = 4 threads attempting to acquire the lock simultane-
ously, so the effect of the block size is less evident. In data sum-
marization, flops of the accumulate function are always greater 
or equal to the flops in the merge step. Therefore, the complexity 
of the algorithm centers on acquiring the lock, waiting for the 
lock, and the overhead of managing the lock.

C. Comparison with SQL Queries 

For comparison purposes, we also tested plain SQL aggrega-
tions (Plain SQL) and aggregate user-defined functions: binary 
object input parameter (BIN-UDF) and string input parameter 
(STR-UDF). We include a comparison with a TVF that does not 
use multithreading to distribute workload (Regular TVF). Table 
4 shows the execution performance when solving the Q aggre-
gation for n = 1 M. FT-TVF, and TP-TVF have the same number 
of threads, t = 4. The three TVFs with multithreading also have a 
blocking factor b = 1000. 

The execution performance of Regular TVF is severely affected 
by d; only for the cases when d = 8 is the execution time compa-
rable with the multithreaded TVFs. The impact of multithread-
ing is shown for d = 128 where the time is reduced by less than 
half. On the other hand, BIN-UDF aggregates rows packed in bi-
nary structures that follow the user-defined type definition. It has 
more efficient performance than the multithreaded TVFs for d  =  
32. However, BIN-UDF is faster only if we do not consider the 
pre-step of physically materializing the table inside the DBMS.

Nevertheless, the BIN-UDF step alone remains as a good 
comparison example for multithreading. The second implemen-
tation of aggregate UDFs (STR-UDF) moves the CAST func-
tion, for packing rows into a user-defined type object, into the 
SQL statement of the aggregation. Yet, STR-UDF still has a 
higher execution time than any of our algorithms because of the 
overhead of the parsing function in the user-defined.

It can be seen in Fig. 7 that tendencies hold when increasing 
the size of n. Although SQL is the fastest way to compute the 
aggregates in all cases when d = 16, for d = 32 the performance 
decreases slightly. Unfortunately, limitations of the number of 

Table 4. Comparison with aggregate UDFs, with/without multithreaded processing (time in seconds and agg = Q; n = 1 M; t = 4; b = 1000) 

d Plain SQL REG-TVF BIN-UDF pre-step BIN-UDF STR-UDF MT-TVF FT-TVF TP-TVF

2 0.81 3.10 18.14 6.00 8.01 3.68 3.29 3.19

4 0.74 3.42 21.29 6.01 8.57 3.88 3.68 3.67

8 1.36 4.51 28.07 6.11 10.55 4.76 4.83 4.48

16 4.87 7.00 41.07 6.41 14.21 6.38 6.31 6.29

32 86.30 13.55 68.45 7.45 21.23 9.78 9.60 9.44

64 * 31.80 126.73 10.66 38.09 17.42 17.55 16.09

128 * 89.71 244.90 22.89 78.28 38.00 37.89 33.13

UDF: user-defined function, TVF: table-valued functions, REG: regular, BIN: binary, STR: string, MT: multiple thread, FT: fixed threads, TP: thread pool.

Fig. 6. Impact of the block size (agg = Q; n = 1 M; d = 64; t = 4). MT-UDF: 
multiple thread user-defined function, FT-TVF: fixed threads table-valued 
functions, TP: thread pool table-valued functions.
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rows in a query prevent experimenting with d = 64. Since the 
complexity of Regular TVF is O (nd2), the performance of TP-
TVF demonstrates its efficiency to exploit primitives for access-
ing data in the DBMS. Consequently, the time difference with 
REG-TVF increases with d, while TP-TVF remains comparable 
with the aggregate step of BIN-UDF. The final set of experi-
ments verifies the linear complexity with respect to the size of n. 
The execution results for Q, with a number of dimensions d = 16, 
are presented in Fig. 8. Our multithreaded monitoring algorithm 
with a tread pool (TP-TVF) is parameterized with threads t = 
4, and a block size of b = 1000. The three methods (SQL, BIN-
UDF, and TP-TVF) show linear scalability with respect to data 
size n. Finally, the experimental results have provided evidence 
that our algorithms for multithreading scale linearly in both n 
and d. Such achievement is obtained by efficiently taking ad-
vantage of DBMS primitives, and integrating them with multi-
threaded aggregates.

VI. CONCLUSIONS

This paper studied the efficient computation of data set sum-

maries on a large data set, exploiting parallel processing with 
multiple threads. We especially focused on UDFs as the pro-
gramming mechanism to extend a DBMS with data mining ca-
pabilities. More specifically, we proposed algorithms that can 
be embedded into a DBMS as UDFs (Table UDFs) to interleave 
table scans and CPU processing. We presented three “monitor” 
algorithms to manage threads and to evenly distribute the work-
load. Such algorithms are particularly useful in cases of mul-
tiple core CPUs. The first algorithm (MT-UDF) has a master 
thread that reads the table and dynamically assigns data blocks 
to new threads. The second algorithm (FT-TVF) has a master 
thread that dynamically allocates a workload to new threads 
until a maximum num ber of threads has been reached; threads 
are destroyed once they finish processing the aggregation. The 
third algorithm (TP-TVF) has a pool of threads that reuses idle 
threads. Hardware optimization is achieved by controlling the 
CPU usage and managing RAM memory for data caching. We 
performed a careful experimental evaluation on a DBMS work-
ing on a multicore CPU computer. Our algorithms per formance 
was compared against plain SQL queries and aggregate UDFs. 
We show our algorithms generally outperform the aggregate 
UDFs provided by the DBMS. Our algorithms showed better 
performance at high dimensionality (d > 32) but are slower than 
SQL queries for small dimensionality. Even though for most 
cases an efficient summarization can be done using few threads, 
there is a significant difference between this and the summariza-
tion performance without multithread ing. Our algorithms exhib-
it linear scalability on both the number of points in the data set 
n and number of dimensions d. Our experiments found that the 
block size plays an important role in avoiding a large number of 
concurrent updates. The MT-UDF algorithm is more sensitive to 
the block size than FT-TVF and TP-TVF algorithms.

Although our optimizations are specific to computing data 
summarization for linear Gaussian models, we believe that fu-
ture research on UDFs should also consider thread management 
for fast parallel processing. Research issues include synchro-
nization policies for threads with complex data structures and 
memory allocation to avoid table misses and data overflow. 
In addition, user-defined functions can be extended to allow a 
low-level of data access in order to speed up the execution of 
critical parallel processes (e.g., a thread retrieving a data page 
directly from disk). Finally, more research is needed on exploit-
ing DBMS extensibility mechanisms like UDFs to perform data 
mining, instead of processing large data sets on flat files. 
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