
Copyright © 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Parallel Multithreaded Processing for Data Set Summarization
on Multicore CPUs
Carlos Ordonez*, Mario Navas, and Carlos Garcia-Alvarado
Department of Computer Science, University of Houston, Houston, TX, USA
ordonez@cs.uh.edu, marionv@cs.uh.edu, cgarcia@cs.uh.edu

Abstract
Data mining algorithms should exploit new hardware technologies to accelerate computations. Such goal is difficult to achieve in da-
tabase management system (DBMS) due to its complex internal subsystems and because data mining numeric computations of large
data sets are difficult to optimize. This paper explores taking advantage of existing multithreaded capabilities of multicore CPUs as well
as caching in RAM memory to efficiently compute summaries of a large data set, a fundamental data mining problem. We introduce
parallel algorithms working on multiple threads, which overcome the row aggregation processing bottleneck of accessing secondary
storage, while maintaining linear time complexity with respect to data set size. Our proposal is based on a combination of table scans
and parallel multithreaded processing among multiple cores in the CPU. We introduce several database-style and hardware-level op-
timizations: caching row blocks of the input table, managing available RAM memory, interleaving I/O and CPU processing, as well
as tuning the number of working threads. We experimentally benchmark our algorithms with large data sets on a DBMS running on
a computer with a multicore CPU. We show that our algorithms outperform existing DBMS mechanisms in computing aggregations
of multidimensional data summaries, especially as dimensionality grows. Furthermore, we show that local memory allocation (RAM
block size) does not have a significant impact when the thread management algorithm distributes the workload among a fixed number
of threads. Our proposal is unique in the sense that we do not modify or require access to the DBMS source code, but instead, we extend
the DBMS with analytic functionality by developing User-Defined Functions.

Category: Embedded computing

Keywords: Algorithms; Data mining; Multicore CPU; Table scan; Thread; DBMS

I. INTRODUCTION

Computer hardware is constantly evolving with faster CPUs
and larger disks ev ery year. Currently, the number of cores per
CPU is expected to double every two years. Thus, database man-
agement systems (DBMSs) face new challenges in exploiting
existing cores, available for parallel multithreaded processing
[1, 2]. However, developing multithreaded algorithms is a com-
plex problem due to the difficulty of managing and balancing
the workload among a large number of threads, as well as syn-
chronizing them.

Parallel multithreaded processing is especially valuable for
data mining and sta tistical computations due to the fact that most

data processing is translated into a large number of mathemati-
cal CPU operations that generally can be pro cessed in parallel
[3-6]. Moreover, data mining algorithms require efficient I/O
mechanisms when processing large data sets, in which it is pref-
erable to in terleave mathematical processing with a full table
scan [7, 8]. Unfortunately, most hardware improvements do not
acceler ate access to secondary storage (hard disk technology)
and therefore I/O processing remains a performance bottleneck.
This is particularly important when aggregate operations are
performed on large input tables. As a result, for practical purpos-
es, aggregations become a bottleneck for data mining algorithms
[7-9]. Therefore, improving the I/O mechanisms for aggregates
in DBMSs rep resent an important research issue.

*Corresponding Author

10.5626/JCSE.2011.5.2.111Open Access

Regular Paper

Received 26 October 2010, Revised 06 December 2011, Accepted 16 March 2011

http://jcse.kiise.org

Journal of Computing Science and Engineering,
Vol. 5, No. 2, June 2011, pp. 111-120

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 111-120

DOI: 10.5626/JCSE.2011.5.2.111 112 Carlos Ordonez et al.

DBMS extensibility allows taking advantage of program-
ming mechanisms that can extend its analytic functionality.
However, most of the time, such approach is generally ignored
by researchers in database systems, data mining and statistics.
Despite the fact that a DBMS can indeed be extended with data
mining processing [4, 7, 8], the majority of data mining pro-
cessing is done outside the DBMS by exporting data samples
to small flat files that are analyzed by efficient programs in lan-
guages such as C++ or Java [4], statistical tools such as Mat-lab,
SAS, or R [5, 8], or more recently MapReduce [4, 6]. User-de-
fined functions (UDFs) are a powerful extensibility mechanism
[5, 10, 11]. Furthermore, some UDF implementations include
application programming interfaces (APIs) [12] that enable the
control of multithreaded pro cessing. Aggregate user-defined
functions (also called user-defined aggregates) are developed
by implementing a well-defined sequence of processing steps;
such steps provide enough information to manage the work-
ing threads in charge of processing database aggregations [13].
However, the user is often oblivious to parallel execution, and
does not have control over optimizations that can be applied at
the hardware level. With such issues in mind, our con tributions
are mostly focused on accelerating data mining processing in
a DBMS exploiting UDFs. However, our ideas can be applied
on any database algorithm that requires efficient processing on
large data sets. In this paper, we work on ex tending the DBMS
to compute sufficient statistics that are fundamental for many
data mining models: principal component analysis (PCA), linear
regression, clustering, variable selection, among others [8, 14].
In addition, we study caching, efficient memory management
and multithreaded processing in order to exploit multiple cores
and large RAM memory. It is important to emphasize that our
re search studies efficiently interleave data set processing with
a full table scan on a modern DBMS. This research is applied,
for instance, in one-pass data mining algorithms, such as Naïve
Bayes [6], or dimensionality reduction with PCA [5, 14], that
can take advantage of sufficient statistics to compute the model,
instead of reading the data set multiple times. These models
can now be obtained more efficiently with a middleware layer
(UDFs in our case) that maximizes the utilization of all cores in
the CPU.

This paper is organized as follows. Section II compares our
research with previous works. Section III introduces definitions,
presents an overview of sufficient statistics and explains how
they can be computed with UDFs. Section IV presents our main
contributions. This section introduces algorithms and optimiza-
tions to compute aggregations exploiting multithreaded process-
ing. Section V contains an experimental evaluation on a com-
puter with a multicore CPU, comparing performance of different
aggregation algorithms, integrated in a DBMS. Finally, Section
VI presents the conclusions and directions of our future work.

II. RELATED WORK

There is a wide range of related works regarding efficiently
using memory and paral lel processing for database operations
and data mining. Previous research has been done on the hard-
ware level to exploit operations in main memory for fast data-
base processing [1, 15]. Adibi et al. [1] evaluate the link discov-

ery algorithms in a processing-in-memory (PIM) architec ture.
In this research, experiments on multithreading and in-memory
processing are presented. Unlike our work, the latter algorithms
were specifi cally coded and tested for their hardware archi-
tecture and cannot be extended to any configuration of hard-
ware. Manegold et al. [15] propose data structure par titioning
algorithms for query joins that optimize cache performance by
memory access. As in our research, the authors seek to speed
up the execution of a critical database operator by optimizing
memory management. However, their mod ifications are in the
database core modules that will require modifying the DBMS
engine. In our work, we decided to extend the DBMS capabili-
ties by exploiting the existing framework for multithreading and
memory access, which can be incorporated to any current data-
base system.

In a similar manner, aggregate operations have been previ-
ously approached with the use of multicore technology. Ciesle-
wicz and Ross [9] analyze several factors of multithreading and
caching. In this work, an adaptive aggrega tion algorithm is pro-
posed to optimize access to L1 and L2 cache memory in order to
minimize cache misses. The latter algorithm is successful, even
with skewed data. Unfortunately, despite the fact that the latter
algorithm can be extended to work on dif ferent CPU architec-
tures, it requires a complete rewrite of low-level algorithms for
managing multithreaded processing and aggregation operations.
In contrast, our algorithm can be extended to perform more
complex processing than just sufficient statistics. Cache perfor-
mance of in-memory and block oriented aggregate operations is
studied by Cieslewicz et al. [16]. The main difference between
our proposal and previous research is that joins and aggrega-
tions are evaluated together to avoid cache misses by modifying
the size of the buffer. Notice that we avoid join operations in our
aggregation process. This is an important assumption because
any required join operations for obtaining sufficient statistics
is assumed to be performed in a pre-processing step. We also
evaluate the performance of our algorithm by modifying the
block size. Using a separate context per thread for data min-
ing algorithms is proposed by Ghoting et al. [2]. Although there
has been considerable work on exploiting the current hard ware
technology for optimizing database performance, our work goes
further by optimizing the aggregation bottleneck.

Integrating data mining and statistical techniques into a
DBMS has received little attention by the research community.
However, aggregate functions have been used not only in proba-
bilistic databases [17], but also to construct patterns in multi-
relational data mining and online analytical processing (OLAP)
[18, 19]. Aggregate UDFs are shown to be useful when imple-
menting database algorithms [8, 20]. The main functionality
needed to define an aggregate UDF for multithreading is identi-
fied in [21]. Furthermore, it has been pointed out that traditional
cost-based optimizations cannot be applied when working with
UDFs because they represent non-traditional database systems
processing [22]. As a conse quence, memory and core usage
have to be managed by the user. Recently, there has been re-
search on optimizing the computation of sufficient statistics by
exploiting caching in RAM and sampling [23]. This work takes
a step further by proposing specific changes to the DBMS ag-
gregation algorithms and accelerating performance with asym-
metric multithreaded processing.

Parallel Multithreaded Processing for Data Set Summarization on Multicore CPUs

113 http://jcse.kiise.orgCarlos Ordonez et al.

III. DEFINITIONS AND PROCESSING IN A DBMS

A. Data Set Summary

Assume we have an input data set X, with d dimensions and
n data points X = {x1,..., xn}. Table 1 gives an example. There
are three data summaries that are essential for several statisti-
cal linear models [5, 8]: n, L and Q, given in Equation 1 and
Equation 2. L is the linear sum of the d dimensions in X and is
stored on a vector with d values. Since matrix Q is the quadratic
sum of dimension cross-products of each point, it is d × d and
it is symmetric (i.e., it suffices to compute its lower triangular
submatrix).

The data set X is stored in a table inside the DBMS, which
has a column for each dimension X1, and one row for every data
point. Therefore, the table to store X has schema X(i, X1,..., Xd),
where i represents its primary key. Previous research has shown
that only one table scan over the input data is needed to obtain
the data summarization with sufficient statistics for several mod-
els [8]. More importantly, from a performance standpoint, suf-
ficient statistics n, L and Q, are distributive [7]. Thus, they can
be computed in parallel over different partitions of the data set,
where the global sufficient statistics are given by the addition of
sufficient statistics on each partition.

(1)L xi
i

n

=
=
∑

1

(2)Q XX x xT
i i

T

i

n

= = ⋅
=
∑

1

B. SQL Queries and User-Defined Functions

The computation of n, L and Q can be expressed in terms of
the SUM aggregation. A single SQL statement is used to cal-
culate all values of the summary matrices. Furthermore, notice
that Q is a symmetric matrix, so it is enough to compute only
the upper or lower triangular elements. An efficient SQL query
for obtaining sufficient statistics, requiring a single table scan, is
shown on Fig. 1. Notice this SQL query computes only one half
of Q because Q is symmetric. Further details on how to compute

Table 1. Example of an input data set X with d = 3; n = 10

i X1 X2 X3

1 18.58 20.39 13.70

2 31.69 91.18 21.51

3 45.00 18.81 49.83

4 47.93 88.34 93.59

5 40.36 12.82 9.33

6 37.14 14.85 87.20

7 30.94 61.83 37.66

8 36.03 9.04 46.66

9 88.57 83.79 80.27

10 66.99 10.49 46.90

n, L and Q for horizontal and vertical layouts of the data set can
be found in [8].

Aggregate user-defined functions (aggregate UDFs) give us-
ers the capability to extend the functionality of DBMS. The set
of steps (see Fig. 2) that must be implemented by the user to
program the aggregation are [5]:

1) Initialize: Data structures and variables for the aggregation
are initialized.

2) Accumulate: This step is the most important. In this step,
each row of the data set is processed, one at a time. An
accumulation in a local variable is performed by every
thread. Notice that while the table scan is being processed,
the threads are fed the rows to accumulate.

3) Merge: This step merges the accumulated values of in-
dependent threads into the main result. This thread is re-
sponsible for merging both local variables and local data
structures into a global aggregation result.

4) Terminate: In this final step, after all threads partial results
have been merged, the function return value is computed.
Once this last step is final ized, the final aggregation result
is returned to the user.

It is important to point out that due to the fact that user-defined
functions are compiled fragments of C code, the input argu-
ments for aggregate functions must be fixed in order to allocate
the memory space and allow argument value passing to each
thread [8]. Therefore, to allow a dynamic d dimensional vector
as argument, the values of the d attributes of a data point have
to be packed as a single object: either a string or a binary object.
Hence, to implement data sum marization, two basic UDFs are

Fig. 1. Efficient SQL query for data set summarization.

Fig. 2. Aggregate User-Defined Function (UDF) steps.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 111-120

DOI: 10.5626/JCSE.2011.5.2.111 114 Carlos Ordonez et al.

developed: (1) a parsing function (STR-UDF); (2) a serializ-
able function for reading and writing binary objects (BIN-UDF)
(under the .NET programming environment [12]). The parsing
function receives one string value, where all dimension values
of the input vector are con catenated. Individual dimension val-
ues are parsed and assigned to local variables at run-time. On
the other hand, the aggregate UDF for summarization receives
all values for the d dimensions of a data point packed as a binary
object, and returns all the elements in n, L, and Q also packed as
a user-defined type (see Fig. 3b).

Execution performance of the aggregate UDF can be im-
proved by materializing a table with a single column storing the
packed dimensions with the user-defined type. Even though the
aggregation can be efficiently computed when data is already
in binary format, creating such a table is a pre-step that can be
time-consuming, especially for large input tables.

Table-valued functions (TVFs) are a type of user-defined func-
tion that, unlike aggregate UDFs, is able to return a table as
the final result of the function. TVFs read an input data set as
a single data stream and do not implicitly manage paral lelism.
Despite the lack of “out-of-the-box” parallelism, it is common
that database systems allow the user to implement routines that
support parallelism. Without loss of generality, in this work, a
TVF will be used to compute multidimensional aggregations,
with internal thread management algorithms returning a result
table with just one row.

IV. PARALLEL MULTITHREADED COMPUTATION

We now present our main contributions. We start with an
overview on how we optimize the processing of UDFs. We
then go into more technical detail, explaining how to manage
memory and how to guarantee correct results under concurrent
processing by multiple threads. We introduce three alternatives
to manage work load among threads. Such workload involves
disk I/O and CPU operations. We conclude with a brief time
complexity and I/O cost analysis.

Our basic UDF-based algorithm exploits parallel processing
to distribute the workload among all threads, while ensuring the
hard disk access is accessed with full table scans, to achieve
maximum performance. More importantly, processing with con-
current threads needs to guarantee correct results without race
conditions, deadlocks or process starvation.

A. Processing Aggregate UDFs

In developing aggregate functions for data summarization, we
incorporated several changes that increase the speed of multi-

core CPU computers where computing the aggregations is faster
than reading records from secondary storage. To obtain sequen-
tial reading, one thread is the only process in charge of reading
records from the input table, caching blocks of records in main
memory, and calling a monitor to dispatch the job to another
thread that actually performs the calculations. All threads share
memory to update the global aggregate computation. Moreover,
we define techniques to control the number of threads executing
simultaneously, and the amount of memory used by the aggrega-
tion process.

Even though algorithms for aggregation are explained in a
general manner, we target the specific problem of comput-
ing sufficient statistics. Some key aspects have been modified
from the UDF API. For example, the accumulate step receives a
com plete row from the input table without the need to pack its
values as a user-defined type. Also, the initialization includes
multithreaded execution parameterization, which would be spe-
cific for the hardware configuration. Since the computing of suf-
ficient statistics requires a set of matrices and vectors, results
are returned as tables using the common connectivity features
of database programmability. Finally, our algorithms integrate
into the modern DBMS without modifying any of the primitives
for access data.

B. Memory Management for Caching and Con-
current Processing

The purpose of caching part of the input table in main memory
is to have quick access to its data records. We address the prob-
lem of obtaining a sequential reading by introducing a thread
to cache the data blocks of the input data set in main memory.
Since each worker thread is assigned the task of computing
the aggregation of one block, portions of the data are cached
throughout the execution time. Once the computation of a thread
is concluded, the memory space occupied by the block is sent to
the garbage collector. The reading process is oblivious to mul-
tithreaded execution since its only task is to allocate memory
space to fit a fixed number of rows and fill the current block with
records from the input table. As soon as a block is full or there
are no more records to retrieve, a pointer to the block is sent to
the monitor process, and a new block is started once the monitor
is done. The characteristic difference between such processing
approach and a standard parallel aggregation is the way threads
access the input table. Instead of having the threads request data
blocks, threads are assigned a block as workload by the “moni-
tor” process. Both reading and monitoring are done by the main
thread. Thus, in addition to the cost of sequentially reading the
input and allocating blocks in main memory, we must consider
the overhead of dispatching the worker threads. There is little
overhead caused by the monitor calls, due to the difference in
speed between reading the rows from disk and computing the
flops by CPU.

Correct concurrent processing is solved by defining different
types of memory access for working threads. Since each block
will be accessed only by one thread after its creation, it will be
immutable, and the memory space can then be disposed once
the thread is done. Each working thread has a private memory
space to compute the local aggregation of its data block and
public access to update the global aggregation computed by all

Fig. 3. User-defined functions (UDFs) calls.

Parallel Multithreaded Processing for Data Set Summarization on Multicore CPUs

115 http://jcse.kiise.orgCarlos Ordonez et al.

reading process allocates blocks in RAM memory regardless of
whether or not the process ing power is sufficient for completing
the tasks prior to causing stack or memory overflow. Moreover,
the scheduling policy of the operating system assigns CPU time
slices to the threads. A higher priority is not necessarily given
to tasks closer to being finished and incomplete tasks will retain
memory space until completed.

We now discuss the FT-TVF approach. The maximum
amount of memory used for caching can be controlled by the
monitor process. Even though this approach does have a circular
list to keep a fixed number of working threads, the need for a
queue is eliminated since there can be at most one task waiting
to be executed. Whenever a new task is created by the monitor,
it initially locates the first available slot on the list. A slot is con-
sidered available either when its thread is done or when there is
no thread assigned to it. Although the circular list decreases the
amount of RAM memory used for caching, the reading process
has to be stopped every time the list becomes full. Finally, stop-
ping a sequential read for a long period of time can severely
impact the algorithm performance.

We now explain the third monitor approach (TP-TVF). To
control the number of threads executed in the system and to have
a first-in-first-out (FIFO) policy for the upcoming workload, we
include a thread pool managed by the monitor process. With
such configuration, all tasks created by the monitor are added
to the thread pool. When the thread pool is initialized, it creates
a fixed number of threads and a FIFO list. As such, whenever
a thread finishes its current task, it is assigned the next task in
the queue. Even though completed tasks free up memory space,
each task in the thread pool queue has a data block associated
with it. Moreover, if the waiting queue grows large enough, then
it could cause memory overflow.

D. Time Complexity and I/O Analysis

Time complexity and the number of I/O operations for each

threads. Since the results of global aggregation must be the same
regardless of how individual operations are interleaved, access
to the memory space storing the global aggregation is granted
only after the thread acquires a lock on the shared resource. In
other words, only one thread is allowed to update the global
aggregation at some point in time. In a multithreaded process-
ing environment, there will be several threads working on the
private memory space of their current task. Since each thread
computes the aggregation on a private memory space and each
data block is accessed only by one thread, working threads do
not interfere with each other during the aggregation processing.
We redefine the merging step of aggregate UDFs to update the
global result every time a thread completes a task. All private
memory space (cached data and local aggregation) is sent to the
garbage collector, so that it can be released by the DBMS once
a task is finished. It is important to notice that there are no dead-
locks because there is only one lock granting access to all values
in the global com putation. In order to minimize concurrency
control overhead, the data block size should be large enough
to have a small number of threads simultaneously attempting
to update the global aggregation data structure, thereby reducing
contention.

C. Monitoring Multithreaded Processing

In order to manage multiple worker threads, it is necessary to
create a mon itor process, similar to those processes used by the
operating system (OS). Such monitor process executes as part
of the main thread; it is in charge of dispatching the workload
and terminating execution when all worker threads have finished
their individual computations. We propose three monitor alter-
natives (Fig. 4):

1) Creating a new thread (i.e., there are multiple threads) for
every upcoming task (MT-UDF).

2) Using a fixed number of threads (FT-TVF).
3) Exploiting a pool of threads; also called thread pool (TP-

TVF).

The first, simplest approach of the monitor is to create a new
thread for every request to dispatch a workload (MT-UDF) and
to then add the thread to a list. When the reading process is fin-
ished and the monitor requests to join the threads, the monitor
uses the list to wait until all threads complete their execu tion. At
this point, the aggregation is complete. In this configuration, the

Fig. 4. Thread monitor policies.

Table 2. Time complexity of n, L and Q

n L Q

Elements 1 d ((d + 1) × d) /2
Flops per accumulate step 1 d (d + 1) × d
Flops per merging 1 d ((d + 1) × d) /2
Overall time complexity O (n) O (nd) O (nd2)

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 111-120

DOI: 10.5626/JCSE.2011.5.2.111 116 Carlos Ordonez et al.

of the data summa rization matrices are given in Table 2. Since
the expected input consists of large data sets (d « n), one thread
is dedicated to the task of performing a sequential read. Little
or no overhead is expected from the working threads in charge
of the aggregation (only when creating and destroying threads).
Even though the overall time complexity of the summarization
process is O (nd2), with efficient multithread ing, processing time
is dominated by the table scan, in time O (nd). On the other hand,
the space complexity of the aggregation process has the global
aggregation invariant, and it fluctuates depending on the number
of threads working in the system at any time. Thus, the amount
of memory used is given by:

Mem = ((t + u)((bd) + e) + e)f (3)

where t is the number of threads executed in the system, u is the
number of tasks created and waiting for a thread, b is the block-
ing factor (number of records per block), d is the number of
dimensions, e is the number of elements in the aggregation and
f is the number of bytes used to store a floating point number.

V. EXPERIMENTAL EVALUATION

We conducted our experiments on a DBMS installed on a
server with an Intel Core 2 Quad CPU with four cores at 2.83
GHz each, and 3.2 GB of RAM. The hard disk had 320 GB of
capacity, with a SATA interface running at 3 GB/s, and 7,200
RPM. The operating system was Windows XP and the DBMS
was Microsoft SQL Server. UDFs were programmed in C#.

In the following sections, we evaluate different alternatives to
compute sufficient statistics. The code was compiled and added
to the DBMS server using aggre gate UDFs and TVFs. The main
experimental parameters were the chosen aggregate UDF agg,
the blocking factor b (number of records per block) and the
number of threads t. All data sets had multivariate normal dis-
tributions. Values were stored as double precision floating point
numbers. Finally, all experiments were repeated five times and
their result was averaged.

A. Concurrency Control

In this section, we analyze the performance impact of all dif-
ferent alternatives to manage threads in multithreaded processing:

1) Creating a thread for every task or block to aggregate (MT-
UDF).

2) Using a maximum fixed number of threads with at most
one task waiting to start; no queue (FT-TVF).

3) Exploiting a pool of threads with a fixed number of threads
and a queue of waiting tasks (TP-TVF).

All control alternatives are compared against the execution
time of performing a full table scan. No aggregation is per-
formed during the full table scan: this query is used as a bench-
mark baseline. The full table scan is performed with a sequential
data access given by the UDF API of the DBMS.

The results in Fig. 5 show time performance of the three al-
ternatives to compute Q at different d values, where n = 1 M. We
can see that the monitoring process of multithreading adds little
or marginal overhead to the table scan. For the cases when d =

32, the impact of performing the aggregation while reading the
table is minimal. On the other hand, the trend becomes evident
when d = 64; there is a difference in performance given by the
monitoring policy used for the working threads. Nevertheless,
the time impact of any of the policies is not enough to consider
a higher complexity than a table scan. The biggest overhead
between the policies is caused when the OS is left to manage
all threads. Such results were expected, because there is no
memory control, and the policy to assign workload is subopti-
mal for aggregations. The scheduler will attempt to assign equal
time slices to the existing threads in the system, adding context
switching (thus increasing overhead), and letting the DBMS
saturate with an unfinished workload. The best performance is
acquired by TP-TVF because there is little saturation of the OS
components by the number of threads managed. As for FT-TVF,
controlling the maximum memory used by the aggregation does
not significantly affect execution time, and the performance is
comparable to a table scan while being faster than MT-TVF.

B. RAM Memory Management and CPU Usage

Caching data blocks of the input table, regardless of the
amount of memory used for this matter, could cause memory
overflow. While being aware of this potential problem, we have
proposed methods to limit memory usage, and implemented

Table 3. UDF processing time varying the number of threads t (time in
seconds and n = 10 M)

d Threads FT-TVF TP-TVF

64 1 173 155
64 2 173 155
64 3 173 155
64 4 173 156

128 1 386 324
128 2 381 324
128 3 379 326
128 4 380 330

UFD: user-defined function, FT-TVF: fixed threads table-valued function,
TP-TVF: thread pool table-valued function.

Fig. 5. Concurrency control comparison (task = Q, n = 1 M, d = 64, t =
4). MT-UDF: multiple thread user-defined function, FT-TVF: fixed threads
table-valued function, TP-TVF: thread pool table-valued function.

Parallel Multithreaded Processing for Data Set Summarization on Multicore CPUs

117 http://jcse.kiise.orgCarlos Ordonez et al.

them in FT-TVF. Since our experimental study focuses on d «
n, such limitation is never reached by varying the values of d =
128. Furthermore, we found that in all our experimental cases,
a reduced number of threads is enough to efficiently compute
sufficient statistics.

Table 3 displays the performance of our monitor policies,
when varying the number of working threads. For d = 64, execu-
tion time is made almost invariant by increasing the number of
threads assigned to the accumulated part of the aggregation.

Such behavior is caused because the time to read a record
of size d from the input table is greater than the time it takes
the process to calculate the O (d2) flops in the accumulate step.
Nevertheless, when d increases, we need more threads to catch
up with the reading speed. This is the case for d = 128; the per-
formance of FT-TVF reaches a peak when t = 3. When t < 3, the
sequential read has to be stopped every time the limit for the
number of working threads (t) is reached. In contrast, TP-TVF
does not stop whenever all working threads are busy; instead, it
places all waiting workload in a queue. Finally, the cases when
d = 128 and t > 3 for FT-TVF, and t > 1 for TP-TVF show the
tradeoff caused by using more threads than those required by
the aggregation.

The blocking factor is directly related to two aspects of the
execution: the amount of memory used for caching and conten-
tion for concurrently updating the global aggregation.

The performance of different policies computing Q of a data

set of n = 1 M and d = 64, while varying the block size, is pre-
sented in Fig. 6. When the blocking factor is relatively large (b =
1000), there is less concurrency for updating the global aggrega-
tion, and the tradeoff is the amount of memory used for caching.
In contrast, the performance of MT-TVF is severely affected by
the unmonitored number of threads when b = 100. Nevertheless,
the multithreading policies of FT-UDF and TP-TVF have a max-
imum of t = 4 threads attempting to acquire the lock simultane-
ously, so the effect of the block size is less evident. In data sum-
marization, flops of the accumulate function are always greater
or equal to the flops in the merge step. Therefore, the complexity
of the algorithm centers on acquiring the lock, waiting for the
lock, and the overhead of managing the lock.

C. Comparison with SQL Queries

For comparison purposes, we also tested plain SQL aggrega-
tions (Plain SQL) and aggregate user-defined functions: binary
object input parameter (BIN-UDF) and string input parameter
(STR-UDF). We include a comparison with a TVF that does not
use multithreading to distribute workload (Regular TVF). Table
4 shows the execution performance when solving the Q aggre-
gation for n = 1 M. FT-TVF, and TP-TVF have the same number
of threads, t = 4. The three TVFs with multithreading also have a
blocking factor b = 1000.

The execution performance of Regular TVF is severely affected
by d; only for the cases when d = 8 is the execution time compa-
rable with the multithreaded TVFs. The impact of multithread-
ing is shown for d = 128 where the time is reduced by less than
half. On the other hand, BIN-UDF aggregates rows packed in bi-
nary structures that follow the user-defined type definition. It has
more efficient performance than the multithreaded TVFs for d =
32. However, BIN-UDF is faster only if we do not consider the
pre-step of physically materializing the table inside the DBMS.

Nevertheless, the BIN-UDF step alone remains as a good
comparison example for multithreading. The second implemen-
tation of aggregate UDFs (STR-UDF) moves the CAST func-
tion, for packing rows into a user-defined type object, into the
SQL statement of the aggregation. Yet, STR-UDF still has a
higher execution time than any of our algorithms because of the
overhead of the parsing function in the user-defined.

It can be seen in Fig. 7 that tendencies hold when increasing
the size of n. Although SQL is the fastest way to compute the
aggregates in all cases when d = 16, for d = 32 the performance
decreases slightly. Unfortunately, limitations of the number of

Table 4. Comparison with aggregate UDFs, with/without multithreaded processing (time in seconds and agg = Q; n = 1 M; t = 4; b = 1000)

d Plain SQL REG-TVF BIN-UDF pre-step BIN-UDF STR-UDF MT-TVF FT-TVF TP-TVF

2 0.81 3.10 18.14 6.00 8.01 3.68 3.29 3.19

4 0.74 3.42 21.29 6.01 8.57 3.88 3.68 3.67

8 1.36 4.51 28.07 6.11 10.55 4.76 4.83 4.48

16 4.87 7.00 41.07 6.41 14.21 6.38 6.31 6.29

32 86.30 13.55 68.45 7.45 21.23 9.78 9.60 9.44

64 * 31.80 126.73 10.66 38.09 17.42 17.55 16.09

128 * 89.71 244.90 22.89 78.28 38.00 37.89 33.13

UDF: user-defined function, TVF: table-valued functions, REG: regular, BIN: binary, STR: string, MT: multiple thread, FT: fixed threads, TP: thread pool.

Fig. 6. Impact of the block size (agg = Q; n = 1 M; d = 64; t = 4). MT-UDF:
multiple thread user-defined function, FT-TVF: fixed threads table-valued
functions, TP: thread pool table-valued functions.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 111-120

DOI: 10.5626/JCSE.2011.5.2.111 118 Carlos Ordonez et al.

rows in a query prevent experimenting with d = 64. Since the
complexity of Regular TVF is O (nd2), the performance of TP-
TVF demonstrates its efficiency to exploit primitives for access-
ing data in the DBMS. Consequently, the time difference with
REG-TVF increases with d, while TP-TVF remains comparable
with the aggregate step of BIN-UDF. The final set of experi-
ments verifies the linear complexity with respect to the size of n.
The execution results for Q, with a number of dimensions d = 16,
are presented in Fig. 8. Our multithreaded monitoring algorithm
with a tread pool (TP-TVF) is parameterized with threads t =
4, and a block size of b = 1000. The three methods (SQL, BIN-
UDF, and TP-TVF) show linear scalability with respect to data
size n. Finally, the experimental results have provided evidence
that our algorithms for multithreading scale linearly in both n
and d. Such achievement is obtained by efficiently taking ad-
vantage of DBMS primitives, and integrating them with multi-
threaded aggregates.

VI. CONCLUSIONS

This paper studied the efficient computation of data set sum-

maries on a large data set, exploiting parallel processing with
multiple threads. We especially focused on UDFs as the pro-
gramming mechanism to extend a DBMS with data mining ca-
pabilities. More specifically, we proposed algorithms that can
be embedded into a DBMS as UDFs (Table UDFs) to interleave
table scans and CPU processing. We presented three “monitor”
algorithms to manage threads and to evenly distribute the work-
load. Such algorithms are particularly useful in cases of mul-
tiple core CPUs. The first algorithm (MT-UDF) has a master
thread that reads the table and dynamically assigns data blocks
to new threads. The second algorithm (FT-TVF) has a master
thread that dynamically allocates a workload to new threads
until a maximum num ber of threads has been reached; threads
are destroyed once they finish processing the aggregation. The
third algorithm (TP-TVF) has a pool of threads that reuses idle
threads. Hardware optimization is achieved by controlling the
CPU usage and managing RAM memory for data caching. We
performed a careful experimental evaluation on a DBMS work-
ing on a multicore CPU computer. Our algorithms per formance
was compared against plain SQL queries and aggregate UDFs.
We show our algorithms generally outperform the aggregate
UDFs provided by the DBMS. Our algorithms showed better
performance at high dimensionality (d > 32) but are slower than
SQL queries for small dimensionality. Even though for most
cases an efficient summarization can be done using few threads,
there is a significant difference between this and the summariza-
tion performance without multithread ing. Our algorithms exhib-
it linear scalability on both the number of points in the data set
n and number of dimensions d. Our experiments found that the
block size plays an important role in avoiding a large number of
concurrent updates. The MT-UDF algorithm is more sensitive to
the block size than FT-TVF and TP-TVF algorithms.

Although our optimizations are specific to computing data
summarization for linear Gaussian models, we believe that fu-
ture research on UDFs should also consider thread management
for fast parallel processing. Research issues include synchro-
nization policies for threads with complex data structures and
memory allocation to avoid table misses and data overflow.
In addition, user-defined functions can be extended to allow a
low-level of data access in order to speed up the execution of
critical parallel processes (e.g., a thread retrieving a data page
directly from disk). Finally, more research is needed on exploit-
ing DBMS extensibility mechanisms like UDFs to perform data
mining, instead of processing large data sets on flat files.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation
grants CCF 0937562 and IIS 0914861. We would like to thank
the help from Zhibo Chen to understand the basics of multi-
threaded processing with UDFs and TVFs.

REFERENCES

1. J. Adibi, T. Barrett, S. Bhatt, H. Chalupsky, J. Chame, and M. Hall,
“Processing-in-memory technology for knowledge discovery algo-
rithms,” 2nd International Workshop on Data Management on New

Fig. 7. Aggregate comparison when varying d (agg = Q; n = 10 M; t =
4; b = 1000). BIN-UDF: binary user-defined function, TP-TVF: thread pool
table-valued functions, REG-TVF: regular table-valued functions.

Fig. 8. Aggregate comparison when varying n (agg = Q; d = 16; t = 4; b
= 1000). BIN-UDF: binary user-defined function, TP-TVF: thread pool table-
valued functions.

Parallel Multithreaded Processing for Data Set Summarization on Multicore CPUs

119 http://jcse.kiise.orgCarlos Ordonez et al.

Hardware (DaMon 2006), Chicago, IL, 2006.
2. A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y.-

K. Chen, and P. Dubey, “A characterization of data mining algo-
rithms on a modern processor,” Proceedings of the 1th Internation-
al Workshop on Data Management on New Hardware, Baltimore,
MD, 2005.

3. S. Chaudhuri, U. Fayyad, and J. Bernhardt, “Scalable classification
over SQL databases,” Proceedings of the 15th International Con-
ference on Data Engineering, NSW, Australia, 1999, pp. 470-479.

4. C. Ordonez and J. García-García, “Database systems research on
data mining,” SIGMOD ‘10 Proceedings of the 2010 International
International Conference on Management of Data, Indianapolis,
IN, 2010, pp. 1253-1254.

5. C. Ordonez, “Building statistical models and scoring with UDFs,”
ACM SIGMOD International Conference on Management of Data,
Beijing, China, 2007, pp. 1005-1016.

6. S. K. Pitchaimalai, C. Ordonez, and C. Garcia-Alvarado, “Compar-
ing SQL and MapReduce to compute Naive Bayes in a single table
scan,” Proceedings of the Second International Workshop on Cloud
Data Management (CloudDB), Toronto, ON, 2010, pp. 9-16.

7. C. Ordonez and S. K. Pitchaimalai, “Bayesian classifiers pro-
grammed in SQL,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 1, pp. 139-144, Jan. 2010.

8. C. Ordonez, “Statistical model computation with UDFs,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 12,
pp. 1752-1765, Dec. 2010.

9. J. Cieslewicz and K. A. Ross, “Adaptive aggregation on chip mul-
tiprocessors,” Proceedings of the 33rd International Conference on
Very Large Data Bases, Vienna, Austria, 2009, pp. 339-350.

10. S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating association
rule mining with relational database systems: alternatives and im-
plications,” Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, Seattle, WA, 1998, pp. 343-
354.

11. S. Cohen, “User-defined aggregate functions: bridging theory and
practice,” ACM SIGMOD International Conference on Manage-
ment of Data, Chicago, IL, 2006, pp. 49-60.

12. J. A. Blakeley, M. Henaire, C. Kleinerman, I. Kunen, A. Prout, and
V. Rao, “.NET database programmability and extensibility in mi-
crosoft SQL server,” ACM SIGMOD International Conference on
Management of Data, Vancouver, BC, 2008, pp. 1087-1097.

13. M. Jaedicke and B. Mitschang, “On parallel processing of aggre-
gate and scalar functions in object-relational DBMS,” SIGMOD
Record, vol. 27, no. 2, pp. 379-389, Jun. 1998.

14. M. Navas and C. Ordonez, “Efficient computation of PCA with
SVD in SQL,” Workshop on Data Mining using Matrices and Ten-
sors in Conjunction with the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (DMMT),
Paris, France, 2009.

15. S. Manegold, P. Boncz, and M. Kersten, “Optimizing main-mem-
ory join on modern hardware,” IEEE Transactions on Knowledge
and Data Engineering, vol. 14, no. 4, pp. 709-730, Jul. 2002.

16. J. Cieslewicz, W. Mee, and K. A. Ross, “Cache-conscious buff-
ering for database operators with state,” Proceedings of the 5th
International Workshop on Data Management on New Hardware,
Providence, RI, 2009, pp. 43-51.

17. R. Ross, V. S. Subrahmanian, and J. Grant, “Aggregate operators
in probabilistic databases,” Journal of ACM, vol. 52, no. 1, pp. 54-
101, Jan. 2005.

18. A. Knobbe, A. Siebes, and B. Marseille, “Involving aggregate
functions in multi-relational Search,” Principles of Data Mining
and Knowledge Discovery. Lecture Notes in Computer Science vol.
2431, Heidelberg: Springer Berlin, 2002, pp. 145-168.

19. C. Garcia-Alvarado, Z. Chen, and C. Ordonez, “OLAP with UDFs
in digital libraries,” ACM 18th International Conference on Infor-
mation and Knowledge Management, Hong Kong, 2009, pp. 2073-
2074.

20. H. Wang and C. Zaniolo, “User defined aggregates in object-rela-
tional systems,” Proceedings of the 16th International Conference
on Data Engineering, San Diego, CA, 2000, pp. 135-144.

21. C. Luo, H. Thakkar, H. Wang, and C. Zaniolo, “A native extension
of SQL for mining data streams,” ACM SIGMOD International
Conference on Management of Data, Baltimore, MD, 2005, pp.
873-875.

22. Z. He, B. S. Lee, and R. Snapp, “Self-tuning cost modeling of user-
defined functions in an object-relational DBMS,” ACM Transac-
tions on Database Systems, vol. 30, no. 3, pp. 812-853, Sep. 2005.

23. C. Ordonez and S. K. Pitchaimalai, “Fast UDFs to compute suffi-
cient statistics on large data sets exploiting caching and sampling,”
Data & Knowledge Engineering, vol. 69, no. 4, pp. 383-398, Apr.
2010.

Carlos Ordonez got his Ph.D. degree in Computer Science from the Georgia Institute of Technology, USA, in 2000.
He worked six years extending the Teradata DBMS with advanced data mining techniques to analyze large databases.
He is currently an Assistant Professor at the University of Houston. His research is centered on the integration of machine
learning and statistical techniques into database systems to analyze large data sets as well as their application to scien-
tific problems. His research has produced over 70 papers, over 800 citations and has been funded by NSF.

Carlos Ordonez

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 111-120

DOI: 10.5626/JCSE.2011.5.2.111 120 Carlos Ordonez et al.

Mario Navas got his B.S. in Computer Science from PUCE University, Ecuador, in 2006. Then he got an M.S. degree in
Computer Science from the University of Houston, USA, in 2009. His research focuses on how to integrate dimensionality
reduction and regression models with a DBMS.

Mario Navas

Carlos Garcia-Alvarado got a B.E. degree in Computer Engineering from Universidad de las Americas, Puebla, and an
M.S. degree in Industrial Engineering from Instituto Tecnologico de Estudios Superiores de Monterrey. He came to the
University of Houston where he received an M.S. degree from University of Houston in 2008. His research focuses on
combining database systems and information retrieval technologies.

Carlos Garcia-Alvarado

