
Copyright © 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computing and Reducing Transient Error Propagation in Registers
Jun Yan
Mathworks, Boston, MA, USA Jun.Yan@mathworks.com

Wei Zhang*
Department of Electrical and Computer Engineering, Virginia Commonwealth University Richmond, VA, USA wzhang4@vcu.edu

Abstract
Recent research indicates that transient errors will increasingly become a critical concern in microprocessor design. As embedded
processors are widely used in reliability-critical or noisy environments, it is necessary to develop cost-effective fault-tolerant techniques
to protect processors against transient errors. The register file is one of the critical components that can significantly affect microproces-
sor system reliability, since registers are typically accessed very frequently, and transient errors in registers can be easily propagated
to functional units or the memory system, leading to silent data error (SDC) or system crash. This paper focuses on investigating the
impact of register file soft errors on system reliability and developing cost-effective techniques to improve the register file immunity to
soft errors. This paper proposes the register vulnerability factor (RVF) concept to characterize the probability that register transient
errors can escape the register file and thus potentially affect system reliability. We propose an approach to compute the RVF based on
register access patterns. In this paper, we also propose two compiler-directed techniques and a hybrid approach to improve register
file reliability cost-effectively by lowering the RVF value. Our experiments indicate that on average, RVF can be reduced to 9.1%
and 9.5% by the hyperblock-based instruction re-scheduling and the reliability-oriented register assignment respectively, which can
potentially lower the reliability cost significantly, without sacrificing the register value integrity.

Category: Embedded computing

Keywords: Performance, Reliability, Transient errors, Compiler, Register files

I. INTRODUCTION

Recent research efforts indicate that microprocessors will be-
come increasingly susceptible to transient errors (also called soft
errors) due to shrinking feature size, lower supply voltage, high-
er frequency and higher density. Unlike hard errors that can be
detected in the testing phase, transient errors occur at operation
time, which can lead to silent data corruption (SDC) or system
crash if left without protection. Consequently, microprocessors
must be protected against soft errors to meet pre-defined reliabil-
ity goals. A number of techniques (e.g., N Modular Redundan-
cy), time redundancy or information redundancy (e.g., parity or
error correction code [ECC]) fight transient errors, such as space
redundancy. However, all these techniques incur various penal-

ties in performance, area, energy consumption and cost. While
some of these techniques are affordable for high-end products, it
becomes increasingly necessary to develop cost-effective tech-
niques to improve reliability against transient errors for embed-
ded systems or processors with stringent cost constraints.

Soft error rate (SER) is typically described in failure in time
(FIT). One FIT represents one error in a billion hours. Soft er-
rors can be divided into two categories: undetected or detected.
Undetected errors are also called SDC. The detected errors can
be either recoverable or unrecoverable. The latter is referred to
as detected unrecoverable errors (DUE), since the recoverable
errors are generally not a concern. Accordingly, the soft error
rate can be classified into SDC FIT and DUE FIT. Both the SDC
and DUE errors can cause severe reliability problems. The soft

*Corresponding Author

10.5626/JCSE.2011.5.2.121Open Access

Regular Paper

Received 25 January 2011, Accepted 4 March 2011

http://jcse.kiise.org

Journal of Computing Science and Engineering,
Vol. 5, No. 2, June 2011, pp. 121-130

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 121-130

DOI: 10.5626/JCSE.2011.5.2.121 122 Jun Yan and Wei Zhang

error rate is currently often specified in terms of SDC and DUE
numbers in industry [1].

While theoretically one would expect to kill all the soft er-
rors, so the system is entirely error free, in practice, industry
typically sets soft-error-rate budgets for their product based on
target market requirements. For instance, IBM targets 114 SDC
FIT, 4,566 system-kill DUE FIT and 11,415 processor-kill DUE
FIT for Power4 processors [2]. Therefore, designers should de-
velop or choose the most cost-effective mechanisms to meet the
pre-defined reliability goal in terms of SDC FIT and DUE FIT to
minimize reliability cost.

With the widespread use of load/store architecture, modern
microprocessors often employ register files with a large number
of registers and multiple ports that unfortunately are susceptible
to soft errors. Moreover, since registers are accessed very fre-
quently, soft errors occurring in the register file can easily propa-
gate to the functional units or the memory hierarchy, leading to
severe system reliability problems. Previous work has already
shown that soft errors in register files can lead to a large number
of system failures [3]. Some processors use error detection and
correction schemes in the register files to enhance register file
immunity to soft errors. For instance, IBM G5 utilizes an ECC-
based scheme [4] to protect the registers. While the ECC scheme
can detect double-bit errors and correct single-bit errors, it can-
not correct double-bit errors. In addition, the ECC scheme is
costly in terms of performance and energy consumption. Trem-
blay and Tamir [5] show that a simple ECC operation can incur
three times the delay of a simple arithmetic logic unit (ALU)
operation. Although ECC computation and verification can be
performed in the background, the energy consumption cannot
be hidden. Recent work indicates that the energy consumption
of ECC is approximately an order of magnitude larger than that
of a register access [6]. Therefore, ECC protection will be a
very expensive mechanism for registers, especially for embed-
ded processors with cost constraints. Compared to ECC, a less
expensive technique to enhance register file immunity is parity
check. However, reliability improvement by parity is limited,
because the parity-based schemes cannot correct any errors or
detect even-bit errors. Therefore, it is important to develop cost-
effective techniques to enhance register file reliability without
significantly affecting cost, performance and energy consump-
tion, especially for embedded processors.

The first step is to understand the impact of register soft errors
on system reliability to protect the register file against transient
errors cost-effectively. Estimation based on raw register SER
is too conservative, since not all register soft errors can affect
system reliability. Overestimating the register reliability prob-
lem can lead to over-protection that will unnecessarily increase
reliability cost. Similarly, underestimating the register reliability
problem may result in under-protection, which will make the
processors unreliable. In this paper, we study the register file
susceptibility to soft errors by defining a new metric — register
vulnerability factor (RVF). RVF characterizes the probability
that register transient errors can escape the register file and thus
potentially affect system reliability.

Based on the register access patterns and the assumption
that soft errors distribute uniformly, we develop an approach to
compute the RVF quantitatively, which can be used to estimate
the reliability requirement of register files accurately to avoid

over-protection or under-protection. We propose two compiler-
guided techniques to increase register reliability by perform-
ing instruction re-scheduling and reliability-oriented register
assignment with a partially ECC- protected register file built
upon the RVF concept. Our experiments indicate that on aver-
age, hyperblock-based instruction re-scheduling can reduce the
RVF to 9.1% and the reliability-oriented register assignment
with partial ECC protection can reduce the RVF less than 10%.
Moreover, we propose a hybrid approach by integrating these
two techniques to reduce the RVF further. Our experimental re-
sults show the hybrid approach can reduce the average RVF to
6.1% with only four out of 64 registers covered by ECC, lead-
ing to substantial improvement of register reliability against soft
errors without significant impact on cost or performance. The
remainder of this paper is organized as follows. Section II in-
troduces the concept of the register vulnerability factor. Section
III presents two compiler-guided techniques to improve register
file reliability against transient errors by reducing the register
vulnerability factor. Section IV explains the evaluation method-
ology. The experimental results are given in section V.

Section VI discusses related work. Section VII concludes the
paper.

II. REGISTER VULNERABILITY FACTOR

Register files are more resilient to transient errors than are
conventional memory cells. However, as technology scales, the
charge retaining capabilities of CMOS devices decrease, and
more clock edges can occur during a given period. Thus, the
window of vulnerability for a flip-flop being around its clock
edges makes it more susceptible to soft errors at increased fre-
quencies [7]. While it is important to protect the register file
against soft errors early in the design cycle, one should be cau-
tious not to overestimate this problem, which can lead to expen-
sive and excessive protection. Design based on the raw SER of
latches will over-estimate the register reliability problem, since
not all soft errors occurring in the register file can lead to vis-
ible system faults. For instance, soft errors between two register
write operations to the same register will be automatically cor-
rected by the latter write operation. Therefore, designers must
accurately measure the probability that register soft errors can
affect other system components and thus lead to erroneous final
output. Mukherjee et al. [1] proposed the concept of architec-
tural vulnerability factor (AVF). AVR is defined as the prob-
ability that a fault in a processor structure will lead to a visible
error in the final program output. In general, the AVF provides
designers an accurate estimate of the soft error rate for various
hardware components to make cost/reliability trade-offs. While
the concept of AVF can also be applied to the register file, it
fails to exploit the fact that soft errors in the register file can
be automatically overlapped by the new values written to the
register file. If a value with soft errors is written before it is
read, it will have no impact on the system output. We define the
RVF to be the probability that a soft error in registers can be
propagated to other system components (i.e., functional units,
memory) toward the goal to measure register file susceptibility
to soft errors accurately and quantitatively. RVF concentrates
on the probability of soft error propagation to other hardware

Computing and Reducing Transient Error Propagation in Registers

123 http://jcse.kiise.orgJun Yan and Wei Zhang

elements, in contrast to the AVF concept [1] that focuses on the
effect of soft error propagation. Even if a soft error occurred
in the register file is consumed by an instruction, it may still
not affect the final output, since this instruction may be miss-
speculated. Indeed, such effects can be easily captured by the
AVF [1]. Thus, this paper focuses on examining the RVF. Obvi-
ously, the RVF and the AVF can be combined to select the most
cost-effective techniques to increase the register file reliability
against soft errors.

Multiple values can be stored in the same register, as long as
their lifetimes do not overlap, since processors only employ a
limited number of architecture registers, while programs typical-
ly use a large number of values. In general, a value is first writ-
ten to a register, then it is read once or more and finally another
value is written to the same register, which finishes the lifetime
of the old value and begins the lifetime of the new value. As de-
picted in Fig. 1, we can divide the accesses to register files into
four different patterns (or intervals), namely, the write-read (W-
R), read-read (R-R), read-write (R-W) and write-write (W-W)
patterns (note that the read/write mentioned in this paper refers
to the corresponding operations on register values, including but
not limited to the load/store instructions, which operate on the
data from the memory hierarchy). Among these four patterns,
the register file is only susceptible to soft errors during the W-R
and R-R intervals. In contrast, the soft errors occurring during
the R-W and W-W intervals can be overlapped by the latter write
operations, and hence will not affect other system components.
It is widely accepted that fault-inducing particle strikes are ran-
domly and uniformly distributed [1]. Therefore, the probability
that a soft error in registers can be propagated to other system
components can be computed, as the average ratio to which the
register values are exposed to the susceptible intervals (i.e., W-R
and R-R), as described in Equation (1). In this Equation, RVi rep-
resents any register value, the SusceptibleTime(RVi) represents
the time intervals that RVi is exposed to the susceptible intervals
(i.e., W-R and R-R intervals for RVi), and the Lifetime(RVi) rep-
resents the lifetime of RVi, which is the time interval between
the time that a register is allocated for RVi and the time it is over-
lapped by another value. It would be straightforward to compute
the RVF, since both the Susceptible Time(RVi) and Lifetime(RVi)
can be easily obtained from a performance simulator.

(1)i

i

SusceptibleTime(RV)RVF
Lifetime(RV)

=
∑

The RVF indicates the probability that register soft errors can
spread to other hardware elements and thus affect the system
output. The higher the RVF, the lower the register file reliability,

and hence more expensive techniques are needed to fight soft
errors. Measuring the RVF is not only useful to understand the
reliability requirement of register files more accurately to avoid
both over-protection or under-protection, it also opens up the
avenues for software (e.g., compiler) to enhance register file re-
liability by reordering and optimizing the read/write operations
to minimize the RVF. In contrast, traditional soft- ware optimi-
zations focus on performance. Therefore, RVF allows the com-
piler to consider both performance and reliability to optimize
register access patterns. Such a software-based approach has
no hardware overhead, which fundamentally differs from tradi-
tional space redundancy or information redundancy techniques.

We define a new metric called register file reliability factor
(RFRF), based on the concept of RVF, which is the product of
1) the RVF, 2) the raw SER per latch, and 3) the number of
latches per register file. As shown in Equation 2, N denotes the
number of latches per register file and SERlatch represents the raw
soft error rate per latch that varied with different technology.
Therefore, we can estimate the reliability of register file against
transient errors more accurately by incorporating the RVF.

RFRF = RVF * SERlatch * N (2)

III. TECHNIQUES TO REDUCE REGISTER VULNER-
ABILITY FACTOR

There are a number of research efforts on improving reli-
ability of various system components of processors in the lit-
erature. These include techniques to address soft errors for main
memory [8, 9], cache [10, 11], and the datapath [4, 12, 13].
However, very little work has been done to explore the impact
of soft errors on register files. Memik et al. [14] proposed a
scheme to replicate register values into the physical registers to
increase the register file reliability. However, such a technique
cannot be applied to processors without physical registers, such
as very long instruction word (VLIW) architectures, which are
increasingly used in embedded systems. This paper, in compari-
son, proposes two compiler-guided techniques to improve the
register file immunity to soft errors that can be applied to a wide
variety of embedded processors. Based on the RVF concept,
the first technique aims to enhance register file reliability by re-
scheduling the register read/write operations to reduce the RVF
value without impacting performance. The second technique
assumes that a fraction of the register file employs the ECC code
and thus we modify the register allocator to protect the registers
that are most susceptible to soft errors based on the RVF pro-
filing results. Built upon these two techniques, we propose a
hybrid scheme that can reduce the RVF further to improve the
register file immunity to transient errors.

A. Re-schedule Instructions to Reduce RVF

RVF can be reduced by delaying the write operations as late
as possible and scheduling the read operations as early as possi-
ble, since registers are only susceptible to transient errors during
the W-R and R-R intervals. Thus, the W-R and R-R intervals are
shortened, while the R-W interval is lengthened, both of which
can lead to a smaller RVF value and hence higher register file

Fig. 1. Register access patterns.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 121-130

DOI: 10.5626/JCSE.2011.5.2.121 124 Jun Yan and Wei Zhang

reliability. The movement of the register read or write operations,
however, is subject to the data dependence between different
operations. We propose to re-schedule the read/write operations
by exploiting the scheduling slacks to not impact performance.
Fig. 2 sketches the algorithm of the instruction re-scheduling.

This algorithm takes a region of code to schedule (region).
compute slack() computes the slack for each operation in the re-
gion and build slack list() builds a list of operations with slacks.
In the for-loop, we employ a selection heuristic to determine
the most beneficial operation candidate for slack exploitation to
minimize the RVF. Specifically, our selection heuristic evaluates
each operation with a slack and calculates the potential gain if
the associated slack is exploited.

The potential gain is the difference in RVF between the origi-
nal schedule and the schedule after exploiting the slack, which is
performed in the function compute rvf(). The heuristic RVF()
function will calculate the potential gain of rescheduling by
considering all the operands of the instruction, including the
destination operands and two source operands. The added po-
tential gain is returned to the main algorithm, which will select
the operation with the largest potential gain (curr_max keeps
the maximum RVF reduction so far). After selecting an opera-
tion with positive gain in RVF, the scheduler updates the code
region, and calls itself with the updated region to exploit the
remaining slack.

The complexity of this algorithm is O(n2), where n is the
number of instructions in the region. This complexity has the
same order of magnitude, as some other widely used optimiza-
tion phases of compilation, such as the instruction scheduling.

Therefore, the latency of the instruction re-scheduling can be
tolerated by the compiler to generate better code by considering
both register reliability and performance.

Fig. 3 shows an example of instruction re-scheduling, where
instruction I3 is dependent on I1 and I2, and I5 is dependent
on I3 and I4. Given sufficient resources, I1, I2 and I4 can be
scheduled at the first cycle, I3 can be scheduled at the second
cycle and I5 is scheduled at the third cycle, as shown in Fig. 3b.

As can be seen, I4 has one cycle slack, since it can be sched-
uled in the second cycle without increasing the critical path de-
lay. Since I4 writes to register R6 and I5 reads register R6, we
can re-schedule I4 to be executed in the second clock cycle, as
shown in Fig. 3c. While R6 is susceptible to soft errors during
two clock cycles in schedule (b), its susceptible interval is re-
duced to one clock cycle in schedule (c). Consequently, the RVF
of R6 is reduced. By exploiting the scheduling slacks to move
register write operations as late as possible and register read op-
erations as early as possible, the RVF can be potentially lowered

Fig. 2. Instruction rescheduling algorithm to reduce register vulnerability factor (RVF). We assume an ASAP scheduling algorithm, where each operation
is scheduled as early as possible.

Fig. 3. (a) Sample code (b) Original schedule (c) Re-schedule to reduce
register vulnerability factor (RVF) by exploiting the slack of I4.

Computing and Reducing Transient Error Propagation in Registers

125 http://jcse.kiise.orgJun Yan and Wei Zhang

puting. We implement the proposed RVF-based techniques in
the trimaran framework [17] that consists of both an advanced
compiler and a VLIW simulator. A program flows through the
frontend compiler IMPACT, the backend compiler Elcor, and
the cycle-level VLIW processor simulator. IMPACT applies op-
timization level 4 (O4), which includes machine-independent
classical optimizations and transformations to the source pro-
gram; whereas Elcor is responsible for machine-dependent opti-
mizations, including instruction scheduling and register alloca-
tion. The VLIW configuration used in our experiments has four
IALUs (integer ALUs), two FPALUs (floating-point ALUs), one
LD/ST (load/store) unit and one branch unit. The register file
consists of 64 general-purpose registers. Table 1 shows the de-
fault cache parameters. We assume each instruction word con-
tains eight operations in the simulated VLIW processor. The
basic block-scheduling algorithm is used as the default algo-
rithm. We select ten benchmarks from Mediabench [18] for the
evaluation.

V. EXPERIMENTS

A. Register Vulnerability Factor Results

Fig. 4 shows the RVF for different benchmarks. As can be
seen, except for mpeg2enc, the RVF values of all other bench-
marks are less than 20% and some RVF values are even less
than 5%.

Such low RVF values indicate that the majority of soft errors
occurring in the register file can be automatically overlapped
by the write operations, and hence have no impact on other
system components or the system output. Thus, the reliability
cost can be potentially reduced by choosing less expensive (and
often less powerful) techniques to protect the register file, while
meeting the pre-defined reliability goal. These results also show
that the register vulnerability factor is dependent on the applica-
tion behaviour. Different applications access the register file in
different patterns, leading to varied RVF values. Therefore, for
embedded processors, which typically run a set of fixed applica-
tions, one can evaluate the register access patterns in the early
design cycle to derive the RVF value, based on which the most

without compromising performance. The advantage of this ap-
proach is that it is purely a software-based approach, which can
increase the register file reliability with no additional hardware
cost. However, the effectiveness of the approach depends on the
flexibility to move the read/write operations in the scheduled
code regions, which is constrained by data dependences and
the critical path latency. We also make use of the superblock
scheduling [15] and hyperblock scheduling [16] algorithms to
form larger blocks, in which the compiler will have more flex-
ibility to re-arrange and optimize the register access patterns to
minimize the RVF value to enhance the compiler’s capability to
reorder instructions.

B. Reliability-oriented Register Assignment with
Partial ECC Protection

In contrast to the first technique, which is purely software-
based, the second scheme assumes that a certain number of reg-
isters have employed the ECC code, which can detect double-bit
errors and correct single-bit errors. The ECC code is sufficient
to protect the register file against soft errors in most cases, since
most soft errors are one-bit errors. Therefore, we assume a sin-
gle-bit soft error model in this paper. We assume that only a
small fraction of register file is covered by ECC, because ECC
is costly, especially for embedded processors. We propose to
modify the conventional register allocation algorithm by dis-
tinguishing the registers with ECC and the normal registers
without ECC to minimize the RVF of a partially ECC-protected
register file. We develop a profiling-based approach to direct the
register allocation. Specifically, based on the RVF profiling for
each register, the compiler selects the registers with the high-
est RVF values. If these registers are not protected by ECC, the
compiler then re-assigns the registers, so that the registers with
ECC always have the highest RVF values. Since the most sus-
ceptible register values are now covered by ECC (i.e., the reg-
isters with ECC will not be susceptible to soft errors during any
access intervals), the overall reliability of the register file can
be improved substantially.

C. Hybrid Scheme

We propose a hybrid scheme that combines both the re-sched-
uling and the reliability-oriented register assignment, based on
these two techniques. In the hybrid scheme, the compiler firstly
performs the instruction re-scheduling to minimize the RVF
based on hyperblocks and then re-allocate registers based on
the profiling information and the number of registers covered by
ECC. Compared with the pure software-based approach, such a
hybrid scheme can improve the reliability further, by exploiting
the small number of registers that are protected by ECC. Like-
wise, the cost of the partially ECC-protected register file can be
reduced by first applying the software-based instruction resched-
uling to lower the RVF value, as much as possible.

IV. EVALUATION METHODOLOGY

We evaluate the register file reliability in a VLIW processor,
since VLIW architecture is increasingly used in embedded com-

Table 1. Default parameters used in our simulations

Parameters Value

L1 instruction cache

L1 instruction cache latency

L1 instruction cache block size

L1 data cache

L1 data cache latency

L1 data cache block size

Unified L2 cache

L2 cache latency

L2 cache block size

Memory latency

32 KB direct-mapped

1 cycle

32 B

32 KB 2-way set associative

1 cycle

32 B

512 KB 4-way set associative

10 cycles

64 B

100 cycles

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 121-130

DOI: 10.5626/JCSE.2011.5.2.121 126 Jun Yan and Wei Zhang

cost-effective technique can be selected to protect the register
file against soft errors.

B. Effect of Instruction Re-scheduling

Table 2 lists the RVF values by re-scheduling the register
write operations, as late as possible, and the register read opera-
tions, as early as possible, based on the scheduling slacks, since a
small RVF value implies high reliability. The second column in
Table 2 gives the RVF values of the original schedule that uses
the list-scheduling algorithm [19]. The RVF values after instruc-
tion re-scheduling decrease for all benchmarks compared to the
base scheme. These results clearly indicate that the compiler
can optimize the register access patterns to improve the register
file immunity to soft errors. Nevertheless, we also find that the
amount of RVF reduction is insignificant, since the instruction
reordering is limited within small basic blocks.

Fig. 5 shows the RVF values of instruction re-scheduling
based on superblocks [15] and hyperblocks [16]. The compiler
has more flexibility to move instructions without increasing
the critical path delay, since the superblocks and hyperblocks
are much larger than the basic blocks. Thus, we observe that

the RVF values of some benchmarks are reduced substan-
tially. For instance, the RVF of djpeg decreases from 20% to
3.5% and 3.3%, respectively, for the superblock-based and
hyperblock-based instruction re-scheduling approaches. On av-
erage, the superblock-based and hyperblock-based instruction
re-scheduling can achieve an averaged RVF value as low as
10.9% and 9.1%, respectively, which can be translated to the
register file reliability improvement and the reliability cost re-
duction. We also find that for some benchmarks, the RVF values
become larger, because superblock scheduling and hyperblock
scheduling also change the total execution cycles, compared to
basic block scheduling.

C. Effect of Reliability-oriented Register Assign-
ment

Commercial microprocessors, such as IBM G5, [4] have
employed ECC to protect the register file against soft error. Al-
though it is too costly to add ECC to each register for embed-
ded processors, it is attractive to employ ECC to protect a lim-
ited number of registers that store the most critical data, since
reliability is also critical to many embedded applications and
not all registers are accessed uniformly. Table 3 lists the RVF
values of the reliability-oriented register assignment by vary-
ing the number of registers protected by ECC. The profiling-
based register assignment is effective in reducing RVF values.
On average, RVF is reduced to 9.5%, with only four out of
64 registers protected by ECC. The RVF value can be further
lowered with more registers covered by ECC. For instance, with
eight and sixteen registers protected by ECC, the average RVF
value is reduced to 6.5% and 3.2%, respectively. Obviously, cost
will also increase, with more registers covered by ECC. Con-
sequently, the designers need to trade-off cost and reliability to
meet design goals.

We also experiment reducing the total number of general-
purpose registers, so that each register is likely to be accessed
more frequently, to evaluate the effectiveness of the proposed
reliability-oriented register assignment scheme. Tables 4 and 5
give the RVF values with 0, 2, 4, 8 and 16 registers covered by
ECC for register files with 32 and 16 registers. The base RVF

Fig. 4. Register vulnerability factor for different benchmarks.
Fig. 5. Register vulnerability factor (RVF) of instruction re-scheduling
based on superblock and hyperblock scheduling.

Table 2. Register vulnerability factor values of instruction re-scheduling
compared to the base scheme.

Benchmarks Base Re-schedule

cjpeg 0.186 0.185

djpeg 0.200 0.195

des 0.034 0.033

g721decode 0.061 0.060

gsm decode 0.050 0.050

gsm encode 0.049 0.049

mpeg2enc 0.274 0.273

cordic 0.151 0.145

rawcaudio 0.198 0.198

rawdaudio 0.178 0.177

Average 0.138 0.137

Computing and Reducing Transient Error Propagation in Registers

127 http://jcse.kiise.orgJun Yan and Wei Zhang

value is increased, since each register will be accessed more fre-
quently with fewer registers. The RVF values can still be reduced

effectively, by allocating the reliable registers with ECC to cover
the most susceptible intervals. For instance, with four out of 32
registers protected by ECC, the average RVF value is as low as
10%. However, protecting four registers with ECC for a register
file with 16 registers can only reduce the RVF to 13.7% on aver-
age. Nevertheless, the average RVF for a small register file is
reduced more significantly by protecting more registers with
ECC. For instance, with eight our of 64 registers covered by
ECC, the average RVF is 6.5%, while with eight out of 32 or 16
registers protected by ECC, the average RVF is 5.8% and 5.9%
respectively. That is, a larger portion of register will be covered
by ECC, because for a smaller register file, leading to higher re-
liability. Obviously, if all the 16 registers are covered by ECC, the
RVF value becomes zero under the single-bit error model, indi-
cating high register reliability. Therefore, the reliability-oriented
register assignment is quite effective in improving register file
immunity to soft errors for varying numbers of registers.

D. Effect of the Hybrid Scheme

Tables 6-8 list the RVF values of the hybrid scheme for a

Table 4. The register vulnerability factor values of register assignment
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 32 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.092 0.068 0.049 0.034 0.014

cjpeg 0.189 0.155 0.127 0.084 0.033

g721decode 0.124 0.078 0.049 0.019 0.000

des 0.040 0.016 0.014 0.009 0.003

gsm decode 0.100 0.057 0.029 0.008 0.000

gsm encode 0.097 0.057 0.024 0.006 0.000

djpeg 0.133 0.108 0.092 0.069 0.038

mpeg2enc 0.221 0.180 0.141 0.096 0.025

rawcaudio 0.396 0.334 0.271 0.147 0.000

rawdaudio 0.356 0.294 0.231 0.107 0.000

Average 0.175 0.135 0.103 0.058 0.011

Table 5. The register vulnerability factor values of register assignment
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 16 registers.

Benchmarks ECC=0 ECC=2 ECC=4 ECC=8 ECC=16

cordic 0.094 0.047 0.035 0.020 0.000

cjpeg 0.185 0.132 0.090 0.045 0.000

g721decode 0.226 0.134 0.079 0.024 0.000

des 0.061 0.013 0.010 0.004 0.000

gsm decode 0.184 0.102 0.047 0.008 0.000

gsm encode 0.193 0.102 0.042 0.007 0.000

djpeg 0.118 0.065 0.047 0.024 0.000

mpeg2enc 0.293 0.215 0.170 0.083 0.000

rawcaudio 0.605 0.480 0.355 0.134 0.000

rawdaudio 0.743 0.618 0.493 0.243 0.000

Average 0.270 0.191 0.137 0.059 0.000

Table 3. Register vulnerability factor values of register assignment with

0, 2, 4, 8, and 16 registers protected by ECC. There are 64 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.151 0.120 0.089 0.047 0.024

cjpeg 0.186 0.161 0.136 0.098 0.062

g721decode 0.061 0.039 0.023 0.009 0.000

des 0.034 0.022 0.020 0.016 0.011

gsm decode 0.050 0.029 0.014 0.004 0.000

gsm encode 0.049 0.028 0.012 0.003 0.000

djpeg 0.200 0.187 0.175 0.154 0.115

mpeg2enc 0.274 0.253 0.233 0.192 0.111

rawcaudio 0.198 0.167 0.136 0.073 0.000

rawdaudio 0.178 0.147 0.116 0.053 0.000

Average 0.138 0.115 0.095 0.065 0.032

Table 7. The register vulnerability factor values of the hybrid scheme
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 32registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.024 0.003 0.002 0.001 0.000

cjpeg 0.086 0.060 0.051 0.037 0.014

g721decode 0.137 0.093 0.063 0.024 0.000

des 0.034 0.010 0.008 0.006 0.002

gsm decode 0.121 0.079 0.049 0.013 0.000

gsm encode 0.127 0.088 0.052 0.012 0.000

djpeg 0.043 0.018 0.016 0.012 0.006

mpeg2enc 0.289 0.247 0.211 0.153 0.078

rawcaudio 0.097 0.066 0.047 0.019 0.003

rawdaudio 0.028 0.004 0.002 0.001 0.001

Average 0.099 0.067 0.050 0.028 0.010

Table 6. The register vulnerability factor values of the hybrid scheme
with 0, 2, 4, 8 and 16 registers protected by ECC. There are 64 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.026 0.004 0.002 0.002 0.001

cjpeg 0.127 0.114 0.106 0.091 0.067

g721decode 0.068 0.045 0.030 0.011 0.000

des 0.023 0.011 0.010 0.008 0.006

gsm decode 0.060 0.040 0.025 0.006 0.000

gsm encode 0.064 0.044 0.026 0.006 0.000

djpeg 0.034 0.021 0.019 0.016 0.012

mpeg2enc 0.289 0.269 0.251 0.215 0.144

rawcaudio 0.205 0.174 0.142 0.086 0.028

rawdaudio 0.023 0.011 0.008 0.005 0.002

Average 0.092 0.073 0.062 0.045 0.026

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 121-130

DOI: 10.5626/JCSE.2011.5.2.121 128 Jun Yan and Wei Zhang

register file with 64, 32, or 16 registers, respectively. The hybrid
scheme is more effective at reducing the RVF for different
benchmarks than either the re-scheduling and register re-as-
signment approaches alone. The RVF value is as low as 6.1%,
on average, with only four out of 64 registers protected by ECC.
Protecting four registers with ECC will reduce the RVF to 5.0%
and 4.7% for a register file with 32 or 16 registers, respectively,
indicating great improvement in register file immunity against
soft errors.

VI. RELATED WORK

Transient errors caused by external particle strikes have tradi-
tionally been a concern for systems that operate in highly noisy
environments. They have increasingly become a challenge for
microprocessors ranging from high-end servers to embedded
processors used for reliability-critical applications with the scal-
ing of technology. Kim and Somani [20] conducted fault injec-
tion experiments on picoJava-II in its RTL model to understand
the micro- processor vulnerability to soft errors. They found
large variations for different hardware blocks. Wang et al. [21]
studied the soft error sensitivity of a modern microprocessor,
similar to the Alpha 21264, through fault injection on a RTL
model. They reported that less than 15% of single bit errors in
the processor state result in software visible errors. Mukherjee
et al. [1] proposed an approach to measure AVF based on a
performance model. They reported the AVFs of the instruction
queue and execution units are 28% and 9%, respectively, for an
Itanium2-like IA64 processor.

Biswas et al. [22] extended the lifetime analysis technique to
examine the architectural vulnerability factors for address-based
structures. All these prior research efforts have motivated us to
study the sensitivity of register files to transient errors more
accurately. In contrast to previous work, this paper focuses on
studying the reliability of register files, which are not address-
based but can significantly affect overall system reliability if
unprotected. We develop a method to compute the probability
of register soft error propagation accurately by exploiting the
fact that register soft errors can be overlapped by the register

write operations, which are not captured by previous models.
In this paper, we also proposed several novel techniques to im-
prove register file reliability without significant hardware cost
or performance degradation.

A number of techniques in the literature improve hardware
reliability against transient errors. However, most of the research
effort focuses on protecting main memory [8, 9], cache [8, 9,
23], datapath [4, 12, 13, 24], or multicore [25]. Currently, parity
and ECC are the most widely-used mechanisms to protect the
storage units, but come at the cost of area, energy and design
time. Particularly, if the ECC computation is on the critical path,
it may affect performance. Rajaram et al. analyzed the soft error
rate for a variety of flip-flops with regard to register reliability
against transient errors [7].

Memik et al. [14] proposed a scheme to replicate register val-
ues in the physical registers to increase register file reliability.
While this approach can utilize the available physical registers
to enhance reliability, it can only be used for superscalar proces-
sors, where additional physical registers are employed to sup-
port dynamic register renaming. In contrast, VLIW processors
rely on compilers to manage the registers. They typically do
not have additional physical registers. Therefore, the approach
proposed in [14] cannot be applied to VLIW-like processors that
do not have physical registers. This paper, in comparison, pro-
poses two compiler-guided techniques to improve the register
file immunity to soft errors that can be widely applied to a va-
riety of processors. Lee and Shrivastava [26] proposed a com-
piler-microarchitecture hybrid approach to enhance the energy
efficiency of soft error protection for register files. In contrast,
this paper focuses on improving the reliability of register files.

VII. CONCLUSION

As technology scales, lower supply voltage, higher density and
higher frequency will make microprocessors more vulnerable to
transient errors. The first step is to understand the vulnerability
of different hardware components to soft errors accurately to en-
hance processor reliability cost-effectively. This is of particular
importance for embedded systems with cost constraints. While
existing work mainly focuses on examining the impact of soft
errors on main memory [8, 9], cache [10, 11] or datapath [4, 12,
13], this paper explores the register file reliability against soft
errors, since registers are susceptible to transient errors and are
accessed very frequently. In this paper, we propose the concept
of RVF to characterize the probability that register soft errors
can be propagated to other system components and thus affect
the final output. We also propose an approach to compute RVF
based on register access patterns. Therefore, the reliability of
register files can be estimated using both the RVF and raw soft
error rate of latches.

We develop two compiler-guided techniques built upon the
concept of RVF to improve register file reliability by decreasing
the RVF value, because a smaller RVF value indicates that the
register file is less susceptible to soft errors and thus is more
reliable. The first technique is a pure software-based approach
that exploits the scheduling slack to move the register write op-
erations, as late as possible, and the register read operations,
as early as possible, without increasing critical path latency.

Table 8. The register vulnerability factor values of the hybrid scheme
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 16 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.042 0.003 0.002 0.001 0.000

cjpeg 0.096 0.045 0.034 0.016 0.000

g721decode 0.249 0.157 0.100 0.030 0.000

des 0.059 0.009 0.007 0.002 0.000

gsm decode 0.243 0.164 0.106 0.021 0.000

gsm encode 0.235 0.147 0.092 0.020 0.000

djpeg 0.066 0.015 0.011 0.006 0.000

mpeg2enc 0.211 0.160 0.121 0.063 0.000

rawcaudio 0.057 0.008 0.004 0.001 0.000

rawdaudio 0.048 0.002 0.001 0.000 0.000

Average 0.131 0.071 0.048 0.016 0.000

Computing and Reducing Transient Error Propagation in Registers

129 http://jcse.kiise.orgJun Yan and Wei Zhang

Our experiments demonstrate that the instruction re-scheduling
based on hyperblocks [16] can reduce the RVF to 9.1% on
average.

The second technique targets register files that are partially
protected by ECC. The proposed reliability-oriented register
assignment improves register file immunity to soft errors by
protecting the most susceptible intervals, based on the profiling
information. We also propose a hybrid scheme built upon both
these techniques to further reduce RVF. Experiments show the
hybrid scheme can reduce average RVF to 6.1% with only four
out of 64 registers covered by ECC. Thus, register file reliability
is improved substantially without significantly influencing cost.
Moreover, all the techniques proposed in this paper can enhance
register file immunity to soft errors without compromising per-
formance.

REFERENCES

1.	 S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Aus-
tin, “A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor,” Pro-
ceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003, pp. 29-40.

2.	 S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error prob-
lem: an architectural perspective,” The 11th International Sympo-
sium on High-Performance Computer Architecture, San Francisco,
CA, 2005, pp. 243-247.

3.	 M. Rebaudengo, M. S. Reorda, and M. Violante, “An accurate anal-
ysis of the effects of soft errors in the instruction and data caches
of a pipelined microprocessor,” Design, Automation and Test in
Europe Conference and Exhibition, Munich, Germany, 2003, pp.
602-607.

4.	 S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” Proceedings of the 27th Internation-
al Symposium on Computer Architecture, Vancouver, BC, 2000, pp.
25-36.

5.	 M. Tremblay and Y. Tamir, “Support for fault tolerance in VLSI
processors,” IEEE International Symposium on Circuits and Sys-
tems, Portland, OR, 1989, pp. 388-392.

6.	 R. Phelan, Addressing Soft Errors in ARM Core-Based SoC, Cam-
bridge, UK: ARM Ltd., 2003.

7.	 R. Ramanarayanan, V. Degalahal, N. Vijaykrishnan, M. J. Irwin,
and D. Duarte, “Analysis of soft error rate in flip-flops and scan-
nable latches,” Proceedings of the IEEE International Systems-on-
Chip (SOC) Conference, Portland, OR, 2003, pp. 231-234.

8.	 C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semicon-
ductor memory applications: a state of the art review,” Reliable
Computer Systems: Design and Evaluation, 2nd ed., Burlington,
MA: Digital Press, 1992, pp. 771-786.

9.	 T. J. Dell, A White Paper on the Benefits of Chipkill-Correct ECC
for PC Serve Main Memory. Watson, NY: IBM Microelectronics
Division, 1997.

10.	 S. Kim and A. K. Somani, “Area efficient architectures for informa-
tion integrity in cache memories,” Proceedings of the 26th Annual
International Symposium on Computer Architecture, Atlanta, GA,
1999, pp. 246-255.

11.	 C. H. Chen and A. K. Somani, “Fault-containment in cache memo-
ries for TMR redundant processor systems,” IEEE Transactions on

Computers, vol. 48, no. 4, pp. 386-397, Apr. 1999.
12.	 T. M. Austin, “DIVA: a reliable substrate for deep submicron micro-

architecture design,” Proceedings of the 32nd Annual International
Symposium on Microarchitecture, Haifa , Israel, 1999, pp. 196-207.

13.	 J. Ray, J. C. Hoe, and B. Falsafi, “Dual use of superscalar datapath
for transient-fault detection and recovery,” Proceedings of the 34th
ACM/IEEE International Symposium on Microarchitecture, Austin,
TX, 2001, pp. 214-224.

14.	 G. Memik, M. T. Kandemir, and O. Ozturk, “Increasing register file
immunity to transient errors,” Proceedings of the Design, Automa-
tion and Test in Europe, Munich, Germany, 2005, pp. 586-591.

15.	 W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E.
Haab, J. G. Holm, and D. M. Lavery, “The superblock: an effec-
tive technique for VLIW and superscalar compilation,” Journal of
Supercomputing, vol. 7, no. 1-2, pp. 229-248, May. 1993.

16.	 S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann, “Effective compiler support for predicated execution using
the hyperblock,” Proceedings of the 25th Annual International Sym-
posium on Microarchitecture, Portland, OR, 1992, pp. 45-54.

17.	 “Trimaran: an infrastructure for research in backend compilation
and architecture exploration,” http://www.trimaran.org.

18.	 C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench:
a tool for evaluating and synthesizing multimedia and communica-
tions systems,” Proceedings of the 30th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, Research Triangle Park,
NC, 1997, pp. 330-335.

19.	 S. S. Muchnick, Advanced Compiler Design and Implementation.
San Francisco, CA: Morgan Kaufmann Publishers, 1997.

20.	 S. W. Kim and A. K. Somani, “Soft error sensitivity characterization
for microprocessor dependability enhancement strategy,” Proceed-
ings. International Conference on Dependable Systems and Net-
works, Washington, DC, 2002, pp. 416-425.

21.	 N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characteriz-
ing the effects of transient faults on a high-performance processor
pipeline,” International Conference on Dependable Systems and
Networks, Florence, Italy, 2004, pp. 61-70.

22.	 A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee,
and R. Rangan, “Computing architectural vulnerability factors for
address-based structures,” 32nd Interntional Symposium on Com-
puter Architecture, Madison, WI, 2005, pp. 532-543.

23.	 A. Biswas, C. Recchia, S. S. Mukherjee, V. Ambrose, L. Chan, A.
Jaleel, A. E. Papathanasiou, M. Plaster, and N. Seifert, “Explaining
cache SER anomaly using relative DUE AVF measurement,” The
16th IEEE International Symposium on High-Performance Com-
puter Architecture, Bangalore, India, 2010, pp. 1-12.

24.	 N. K. Soundararajan, A. Parashar, and A. Sivasubramaniam,
“Mechanisms for bounding vulnerabilities of processor structures,”
The 34th Annual International Symposium on Computer Architec-
ture, San Diego, CA, 2007, pp. 506-515.

25.	 N. Soundararajan, A. Sivasubramaniam, and V. Narayanan, “Char-
acterizing the soft error vulnerability of multicores running mul-
tithreaded applications,” Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Com-
puter Systems, New York, NY, 2010, pp. 379-380.

26.	 J. Lee and A. Shrivastava, “A compiler-microarchitecture hybrid
approach to soft error reduction for register files,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 29, no. 7, pp. 1018-1027, Jul. 2010.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 121-130

DOI: 10.5626/JCSE.2011.5.2.121 130 Jun Yan and Wei Zhang

Jun Yan is currently a research scientist at Mathworks. He received his Ph.D. degree in Electrical and Computer Engineer-
ing from Southern Illinois University Carbondale (SIUC) in 2009. He worked in R&D at Lucent Technologies from 2004 to
2005 and at Huawei Technologies from 2002 to 2004, before he came to SIUC. He received his MS from Tianjin University,
China, in 2002, and BS from Shenyang Architecture and Civil Engineering Institute, China, in 1998.

Jun Yan

Wei Zhang is an associate professor in Electrical and Computer Engineering at Virginia Commonwealth University. He
received his Ph.D. degree in computer science and engineering from the Pennsylvania State University in 2003. Since
then, he has worked as an assistant and an associate professor at Southern Illinois University Carbondale until August
2010. His research interests are in embedded and real-time computing systems, computer architecture and compiler.
Dr. Zhang has received the 2009 SIUC Excellence through Commitment Outstanding Scholar Award for the College of
Engineering, and 2007 IBM Real-time Innovation Award. His research has been supported by NSF, IBM and Altera. He is
a senior member of IEEE. He has served as a member of the technical program committees for several IEEE/ACM confer-
ences and workshops.

Wei Zhang

