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Abstract
Recent research indicates that transient errors will increasingly become a critical concern in microprocessor design. As embedded 
processors are widely used in reliability-critical or noisy environments, it is necessary to develop cost-effective fault-tolerant techniques 
to protect processors against transient errors. The register file is one of the critical components that can significantly affect microproces-
sor system reliability, since registers are typically accessed very frequently, and transient errors in registers can be easily propagated 
to functional units or the memory system, leading to silent data error (SDC) or system crash. This paper focuses on investigating the 
impact of register file soft errors on system reliability and developing cost-effective techniques to improve the register file immunity to 
soft errors. This paper proposes the register vulnerability factor (RVF) concept to characterize the probability that register transient 
errors can escape the register file and thus potentially affect system reliability. We propose an approach to compute the RVF based on 
register access patterns. In this paper, we also propose two compiler-directed techniques and a hybrid approach to improve register 
file reliability cost-effectively by lowering the RVF value. Our experiments indicate that on average, RVF can be reduced to 9.1% 
and 9.5% by the hyperblock-based instruction re-scheduling and the reliability-oriented register assignment respectively, which can 
potentially lower the reliability cost significantly, without sacrificing the register value integrity.
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I. INTRODUCTION

Recent research efforts indicate that microprocessors will be-
come increasingly susceptible to transient errors (also called soft 
errors) due to shrinking feature size, lower supply voltage, high-
er frequency and higher density. Unlike hard errors that can be 
detected in the testing phase, transient errors occur at operation 
time, which can lead to silent data corruption (SDC) or system 
crash if left without protection. Consequently, microprocessors 
must be protected against soft errors to meet pre-defined reliabil-
ity goals. A number of techniques (e.g., N Modular Redundan-
cy), time redundancy or information redundancy (e.g., parity or 
error correction code [ECC]) fight transient errors, such as space 
redundancy. However, all these techniques incur various penal-

ties in performance, area, energy consumption and cost. While 
some of these techniques are affordable for high-end products, it 
becomes increasingly necessary to develop cost-effective tech-
niques to improve reliability against transient errors for embed-
ded systems or processors with stringent cost constraints.

Soft error rate (SER) is typically described in failure in time 
(FIT). One FIT represents one error in a billion hours. Soft er-
rors can be divided into two categories: undetected or detected. 
Undetected errors are also called SDC. The detected errors can 
be either recoverable or unrecoverable. The latter is referred to 
as detected unrecoverable errors (DUE), since the recoverable 
errors are generally not a concern. Accordingly, the soft error 
rate can be classified into SDC FIT and DUE FIT. Both the SDC 
and DUE errors can cause severe reliability problems. The soft 
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error rate is currently often specified in terms of SDC and DUE 
numbers in industry [1].

While theoretically one would expect to kill all the soft er-
rors, so the system is entirely error free, in practice, industry 
typically sets soft-error-rate budgets for their product based on 
target market requirements. For instance, IBM targets 114 SDC 
FIT, 4,566 system-kill DUE FIT and 11,415 processor-kill DUE 
FIT for Power4 processors [2]. Therefore, designers should de-
velop or choose the most cost-effective mechanisms to meet the 
pre-defined reliability goal in terms of SDC FIT and DUE FIT to 
minimize reliability cost.

With the widespread use of load/store architecture, modern 
microprocessors often employ register files with a large number 
of registers and multiple ports that unfortunately are susceptible 
to soft errors. Moreover, since registers are accessed very fre-
quently, soft errors occurring in the register file can easily propa-
gate to the functional units or the memory hierarchy, leading to 
severe system reliability problems. Previous work has already 
shown that soft errors in register files can lead to a large number 
of system failures [3]. Some processors use error detection and 
correction schemes in the register files to enhance register file 
immunity to soft errors. For instance, IBM G5 utilizes an ECC-
based scheme [4] to protect the registers. While the ECC scheme 
can detect double-bit errors and correct single-bit errors, it can-
not correct double-bit errors. In addition, the ECC scheme is 
costly in terms of performance and energy consumption. Trem-
blay and Tamir [5] show that a simple ECC operation can incur 
three times the delay of a simple arithmetic logic unit (ALU) 
operation. Although ECC computation and verification can be 
performed in the background, the energy consumption cannot 
be hidden. Recent work indicates that the energy consumption 
of ECC is approximately an order of magnitude larger than that 
of a register access [6]. Therefore, ECC protection will be a 
very expensive mechanism for registers, especially for embed-
ded processors with cost constraints. Compared to ECC, a less 
expensive technique to enhance register file immunity is parity 
check. However, reliability improvement by parity is limited, 
because the parity-based schemes cannot correct any errors or 
detect even-bit errors. Therefore, it is important to develop cost-
effective techniques to enhance register file reliability without 
significantly affecting cost, performance and energy consump-
tion, especially for embedded processors.

The first step is to understand the impact of register soft errors 
on system reliability to protect the register file against transient 
errors cost-effectively. Estimation based on raw register SER 
is too conservative, since not all register soft errors can affect 
system reliability. Overestimating the register reliability prob-
lem can lead to over-protection that will unnecessarily increase 
reliability cost. Similarly, underestimating the register reliability 
problem may result in under-protection, which will make the 
processors unreliable. In this paper, we study the register file 
susceptibility to soft errors by defining a new metric — register 
vulnerability factor (RVF). RVF characterizes the probability 
that register transient errors can escape the register file and thus 
potentially affect system reliability.

Based on the register access patterns and the assumption 
that soft errors distribute uniformly, we develop an approach to 
compute the RVF quantitatively, which can be used to estimate 
the reliability requirement of register files accurately to avoid 

over-protection or under-protection. We propose two compiler-
guided techniques to increase register reliability by perform-
ing instruction re-scheduling and reliability-oriented register 
assignment with a partially ECC- protected register file built 
upon the RVF concept. Our experiments indicate that on aver-
age, hyperblock-based instruction re-scheduling can reduce the 
RVF to 9.1% and the reliability-oriented register assignment 
with partial ECC protection can reduce the RVF less than 10%. 
Moreover, we propose a hybrid approach by integrating these 
two techniques to reduce the RVF further. Our experimental re-
sults show the hybrid approach can reduce the average RVF to 
6.1% with only four out of 64 registers covered by ECC, lead-
ing to substantial improvement of register reliability against soft 
errors without significant impact on cost or performance. The 
remainder of this paper is organized as follows. Section II in-
troduces the concept of the register vulnerability factor. Section 
III presents two compiler-guided techniques to improve register 
file reliability against transient errors by reducing the register 
vulnerability factor. Section IV explains the evaluation method-
ology. The experimental results are given in section V.

Section VI discusses related work. Section VII concludes the 
paper.

II. REGISTER VULNERABILITY FACTOR

Register files are more resilient to transient errors than are 
conventional memory cells. However, as technology scales, the 
charge retaining capabilities of CMOS devices decrease, and 
more clock edges can occur during a given period. Thus, the 
window of vulnerability for a flip-flop being around its clock 
edges makes it more susceptible to soft errors at increased fre-
quencies [7]. While it is important to protect the register file 
against soft errors early in the design cycle, one should be cau-
tious not to overestimate this problem, which can lead to expen-
sive and excessive protection. Design based on the raw SER of 
latches will over-estimate the register reliability problem, since 
not all soft errors occurring in the register file can lead to vis-
ible system faults. For instance, soft errors between two register 
write operations to the same register will be automatically cor-
rected by the latter write operation. Therefore, designers must 
accurately measure the probability that register soft errors can 
affect other system components and thus lead to erroneous final 
output. Mukherjee et al. [1] proposed the concept of architec-
tural vulnerability factor (AVF). AVR is defined as the prob-
ability that a fault in a processor structure will lead to a visible 
error in the final program output. In general, the AVF provides 
designers an accurate estimate of the soft error rate for various 
hardware components to make cost/reliability trade-offs. While 
the concept of AVF can also be applied to the register file, it 
fails to exploit the fact that soft errors in the register file can 
be automatically overlapped by the new values written to the 
register file. If a value with soft errors is written before it is 
read, it will have no impact on the system output. We define the 
RVF to be the probability that a soft error in registers can be 
propagated to other system components (i.e., functional units, 
memory) toward the goal to measure register file susceptibility 
to soft errors accurately and quantitatively. RVF concentrates 
on the probability of soft error propagation to other hardware 
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elements, in contrast to the AVF concept [1] that focuses on the 
effect of soft error propagation. Even if a soft error occurred 
in the register file is consumed by an instruction, it may still 
not affect the final output, since this instruction may be miss-
speculated. Indeed, such effects can be easily captured by the 
AVF [1]. Thus, this paper focuses on examining the RVF. Obvi-
ously, the RVF and the AVF can be combined to select the most 
cost-effective techniques to increase the register file reliability 
against soft errors.

Multiple values can be stored in the same register, as long as 
their lifetimes do not overlap, since processors only employ a 
limited number of architecture registers, while programs typical-
ly use a large number of values. In general, a value is first writ-
ten to a register, then it is read once or more and finally another 
value is written to the same register, which finishes the lifetime 
of the old value and begins the lifetime of the new value. As de-
picted in Fig. 1, we can divide the accesses to register files into 
four different patterns (or intervals), namely, the write-read (W-
R), read-read (R-R), read-write (R-W) and write-write (W-W) 
patterns (note that the read/write mentioned in this paper refers 
to the corresponding operations on register values, including but 
not limited to the load/store instructions, which operate on the 
data from the memory hierarchy). Among these four patterns, 
the register file is only susceptible to soft errors during the W-R 
and R-R intervals. In contrast, the soft errors occurring during 
the R-W and W-W intervals can be overlapped by the latter write 
operations, and hence will not affect other system components. 
It is widely accepted that fault-inducing particle strikes are ran-
domly and uniformly distributed [1]. Therefore, the probability 
that a soft error in registers can be propagated to other system 
components can be computed, as the average ratio to which the 
register values are exposed to the susceptible intervals (i.e., W-R 
and R-R), as described in Equation (1). In this Equation, RVi rep-
resents any register value, the SusceptibleTime(RVi) represents 
the time intervals that RVi is exposed to the susceptible intervals 
(i.e., W-R and R-R intervals for RVi), and the Lifetime(RVi) rep-
resents the lifetime of RVi, which is the time interval between 
the time that a register is allocated for RVi and the time it is over-
lapped by another value. It would be straightforward to compute 
the RVF, since both the Susceptible Time(RVi) and Lifetime(RVi) 
can be easily obtained from a performance simulator.

(1)i

i

SusceptibleTime(RV )RVF
Lifetime(RV )

=
∑

The RVF indicates the probability that register soft errors can 
spread to other hardware elements and thus affect the system 
output. The higher the RVF, the lower the register file reliability, 

and hence more expensive techniques are needed to fight soft 
errors. Measuring the RVF is not only useful to understand the 
reliability requirement of register files more accurately to avoid 
both over-protection or under-protection, it also opens up the 
avenues for software (e.g., compiler) to enhance register file re-
liability by reordering and optimizing the read/write operations 
to minimize the RVF. In contrast, traditional soft- ware optimi-
zations focus on performance. Therefore, RVF allows the com-
piler to consider both performance and reliability to optimize 
register access patterns. Such a software-based approach has 
no hardware overhead, which fundamentally differs from tradi-
tional space redundancy or information redundancy techniques.

We define a new metric called register file reliability factor 
(RFRF), based on the concept of RVF, which is the product of 
1) the RVF, 2) the raw SER per latch, and 3) the number of 
latches per register file. As shown in Equation 2, N denotes the 
number of latches per register file and SERlatch represents the raw 
soft error rate per latch that varied with different technology. 
Therefore, we can estimate the reliability of register file against 
transient errors more accurately by incorporating the RVF.

RFRF = RVF * SERlatch * N                                                                                 (2)

III. TECHNIQUES TO REDUCE REGISTER VULNER-
ABILITY FACTOR

There are a number of research efforts on improving reli-
ability of various system components of processors in the lit-
erature. These include techniques to address soft errors for main 
memory [8, 9], cache [10, 11], and the datapath [4, 12, 13]. 
However, very little work has been done to explore the impact 
of soft errors on register files. Memik et al. [14] proposed a 
scheme to replicate register values into the physical registers to 
increase the register file reliability. However, such a technique 
cannot be applied to processors without physical registers, such 
as very long instruction word (VLIW) architectures, which are 
increasingly used in embedded systems. This paper, in compari-
son, proposes two compiler-guided techniques to improve the 
register file immunity to soft errors that can be applied to a wide 
variety of embedded processors. Based on the RVF concept, 
the first technique aims to enhance register file reliability by re-
scheduling the register read/write operations to reduce the RVF 
value without impacting performance. The second technique 
assumes that a fraction of the register file employs the ECC code 
and thus we modify the register allocator to protect the registers 
that are most susceptible to soft errors based on the RVF pro-
filing results. Built upon these two techniques, we propose a 
hybrid scheme that can reduce the RVF further to improve the 
register file immunity to transient errors.

A. Re-schedule Instructions to Reduce RVF

RVF can be reduced by delaying the write operations as late 
as possible and scheduling the read operations as early as possi-
ble, since registers are only susceptible to transient errors during 
the W-R and R-R intervals. Thus, the W-R and R-R intervals are 
shortened, while the R-W interval is lengthened, both of which 
can lead to a smaller RVF value and hence higher register file 

Fig. 1. Register access patterns.



Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 121-130

DOI: 10.5626/JCSE.2011.5.2.121 124 Jun Yan and Wei Zhang 

reliability. The movement of the register read or write operations, 
however, is subject to the data dependence between different 
operations. We propose to re-schedule the read/write operations 
by exploiting the scheduling slacks to not impact performance. 
Fig. 2 sketches the algorithm of the instruction re-scheduling.

This algorithm takes a region of code to schedule (region). 
compute slack() computes the slack for each operation in the re-
gion and build slack list() builds a list of operations with slacks. 
In the for-loop, we employ a selection heuristic to determine 
the most beneficial operation candidate for slack exploitation to 
minimize the RVF. Specifically, our selection heuristic evaluates 
each operation with a slack and calculates the potential gain if 
the associated slack is exploited. 

The potential gain is the difference in RVF between the origi-
nal schedule and the schedule after exploiting the slack, which is 
performed in the function compute rvf(). The heuristic RVF() 
function will calculate the potential gain of rescheduling by 
considering all the operands of the instruction, including the 
destination operands and two source operands. The added po-
tential gain is returned to the main algorithm, which will select 
the operation with the largest potential gain (curr_max keeps 
the maximum RVF reduction so far). After selecting an opera-
tion with positive gain in RVF, the scheduler updates the code 
region, and calls itself with the updated region to exploit the 
remaining slack.

The complexity of this algorithm is O(n2), where n is the 
number of instructions in the region. This complexity has the 
same order of magnitude, as some other widely used optimiza-
tion phases of compilation, such as the instruction scheduling. 

Therefore, the latency of the instruction re-scheduling can be 
tolerated by the compiler to generate better code by considering 
both register reliability and performance.

Fig. 3 shows an example of instruction re-scheduling, where 
instruction I3 is dependent on I1 and I2, and I5 is dependent 
on I3 and I4. Given sufficient resources, I1, I2 and I4 can be 
scheduled at the first cycle, I3 can be scheduled at the second 
cycle and I5 is scheduled at the third cycle, as shown in Fig. 3b.

As can be seen, I4 has one cycle slack, since it can be sched-
uled in the second cycle without increasing the critical path de-
lay. Since I4 writes to register R6 and I5 reads register R6, we 
can re-schedule I4 to be executed in the second clock cycle, as 
shown in Fig. 3c. While R6 is susceptible to soft errors during 
two clock cycles in schedule (b), its susceptible interval is re-
duced to one clock cycle in schedule (c). Consequently, the RVF 
of R6 is reduced. By exploiting the scheduling slacks to move 
register write operations as late as possible and register read op-
erations as early as possible, the RVF can be potentially lowered 

Fig. 2. Instruction rescheduling algorithm to reduce register vulnerability factor (RVF). We assume an ASAP scheduling algorithm, where each operation 
is scheduled as early as possible.

Fig. 3. (a) Sample code (b) Original schedule (c) Re-schedule to reduce 
register vulnerability factor (RVF) by exploiting the slack of I4.
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puting. We implement the proposed RVF-based techniques in 
the trimaran framework [17] that consists of both an advanced 
compiler and a VLIW simulator. A program flows through the 
frontend compiler IMPACT, the backend compiler Elcor, and 
the cycle-level VLIW processor simulator. IMPACT applies op-
timization level 4 (O4), which includes machine-independent 
classical optimizations and transformations to the source pro-
gram; whereas Elcor is responsible for machine-dependent opti-
mizations, including instruction scheduling and register alloca-
tion. The VLIW configuration used in our experiments has four 
IALUs (integer ALUs), two FPALUs (floating-point ALUs), one 
LD/ST (load/store) unit and one branch unit. The register file 
consists of 64 general-purpose registers. Table 1 shows the de-
fault cache parameters. We assume each instruction word con-
tains eight operations in the simulated VLIW processor. The 
basic block-scheduling algorithm is used as the default algo-
rithm. We select ten benchmarks from Mediabench [18] for the 
evaluation.

V. EXPERIMENTS

A. Register Vulnerability Factor Results

Fig. 4 shows the RVF for different benchmarks. As can be 
seen, except for mpeg2enc, the RVF values of all other bench-
marks are less than 20% and some RVF values are even less 
than 5%.

Such low RVF values indicate that the majority of soft errors 
occurring in the register file can be automatically overlapped 
by the write operations, and hence have no impact on other 
system components or the system output. Thus, the reliability 
cost can be potentially reduced by choosing less expensive (and 
often less powerful) techniques to protect the register file, while 
meeting the pre-defined reliability goal. These results also show 
that the register vulnerability factor is dependent on the applica-
tion behaviour. Different applications access the register file in 
different patterns, leading to varied RVF values. Therefore, for 
embedded processors, which typically run a set of fixed applica-
tions, one can evaluate the register access patterns in the early 
design cycle to derive the RVF value, based on which the most 

without compromising performance. The advantage of this ap-
proach is that it is purely a software-based approach, which can 
increase the register file reliability with no additional hardware 
cost. However, the effectiveness of the approach depends on the 
flexibility to move the read/write operations in the scheduled 
code regions, which is constrained by data dependences and 
the critical path latency. We also make use of the superblock 
scheduling [15] and hyperblock scheduling [16] algorithms to 
form larger blocks, in which the compiler will have more flex-
ibility to re-arrange and optimize the register access patterns to 
minimize the RVF value to enhance the compiler’s capability to 
reorder instructions.

B. Reliability-oriented Register Assignment with 
Partial ECC Protection

In contrast to the first technique, which is purely software-
based, the second scheme assumes that a certain number of reg-
isters have employed the ECC code, which can detect double-bit 
errors and correct single-bit errors. The ECC code is sufficient 
to protect the register file against soft errors in most cases, since 
most soft errors are one-bit errors. Therefore, we assume a sin-
gle-bit soft error model in this paper. We assume that only a 
small fraction of register file is covered by ECC, because ECC 
is costly, especially for embedded processors. We propose to 
modify the conventional register allocation algorithm by dis-
tinguishing the registers with ECC and the normal registers 
without ECC to minimize the RVF of a partially ECC-protected 
register file. We develop a profiling-based approach to direct the 
register allocation. Specifically, based on the RVF profiling for 
each register, the compiler selects the registers with the high-
est RVF values. If these registers are not protected by ECC, the 
compiler then re-assigns the registers, so that the registers with 
ECC always have the highest RVF values. Since the most sus-
ceptible register values are now covered by ECC (i.e., the reg-
isters with ECC will not be susceptible to soft errors during any 
access intervals), the overall reliability of the register file can 
be improved substantially.

C. Hybrid Scheme

We propose a hybrid scheme that combines both the re-sched-
uling and the reliability-oriented register assignment, based on 
these two techniques. In the hybrid scheme, the compiler firstly 
performs the instruction re-scheduling to minimize the RVF 
based on hyperblocks and then re-allocate registers based on 
the profiling information and the number of registers covered by 
ECC. Compared with the pure software-based approach, such a 
hybrid scheme can improve the reliability further, by exploiting 
the small number of registers that are protected by ECC. Like-
wise, the cost of the partially ECC-protected register file can be 
reduced by first applying the software-based instruction resched-
uling to lower the RVF value, as much as possible.

IV. EVALUATION METHODOLOGY

We evaluate the register file reliability in a VLIW processor, 
since VLIW architecture is increasingly used in embedded com-

Table 1. Default parameters used in our simulations 

Parameters Value

L1 instruction cache

L1 instruction cache latency 

L1 instruction cache block size 

L1 data cache

L1 data cache latency 

L1 data cache block size 

Unified L2 cache

L2 cache latency

L2 cache block size

Memory latency

32 KB direct-mapped

1 cycle

32 B

32 KB 2-way set associative

1 cycle

32 B

512 KB 4-way set associative

10 cycles

64 B

100 cycles
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cost-effective technique can be selected to protect the register 
file against soft errors.

B. Effect of Instruction Re-scheduling

Table 2 lists the RVF values by re-scheduling the register 
write operations, as late as possible, and the register read opera-
tions, as early as possible, based on the scheduling slacks, since a 
small RVF value implies high reliability. The second column in 
Table 2 gives the RVF values of the original schedule that uses 
the list-scheduling algorithm [19]. The RVF values after instruc-
tion re-scheduling decrease for all benchmarks compared to the 
base scheme. These results clearly indicate that the compiler 
can optimize the register access patterns to improve the register 
file immunity to soft errors. Nevertheless, we also find that the 
amount of RVF reduction is insignificant, since the instruction 
reordering is limited within small basic blocks.

Fig. 5 shows the RVF values of instruction re-scheduling 
based on superblocks [15] and hyperblocks [16]. The compiler 
has more flexibility to move instructions without increasing 
the critical path delay, since the superblocks and hyperblocks 
are much larger than the basic blocks. Thus, we observe that 

the RVF values of some benchmarks are reduced substan-
tially. For instance, the RVF of djpeg decreases from 20% to 
3.5% and 3.3%, respectively, for the superblock-based and 
hyperblock-based instruction re-scheduling approaches. On av-
erage, the superblock-based and hyperblock-based instruction 
re-scheduling can achieve an averaged RVF value as low as 
10.9% and 9.1%, respectively, which can be translated to the 
register file reliability improvement and the reliability cost re-
duction. We also find that for some benchmarks, the RVF values 
become larger, because superblock scheduling and hyperblock 
scheduling also change the total execution cycles, compared to 
basic block scheduling.

C. Effect of Reliability-oriented Register Assign-
ment

Commercial microprocessors, such as IBM G5, [4] have 
employed ECC to protect the register file against soft error. Al-
though it is too costly to add ECC to each register for embed-
ded processors, it is attractive to employ ECC to protect a lim-
ited number of registers that store the most critical data, since 
reliability is also critical to many embedded applications and 
not all registers are accessed uniformly. Table 3 lists the RVF 
values of the reliability-oriented register assignment by vary-
ing the number of registers protected by ECC. The profiling-
based register assignment is effective in reducing RVF values. 
On average, RVF is reduced to 9.5%, with only four out of 
64 registers protected by ECC. The RVF value can be further 
lowered with more registers covered by ECC. For instance, with 
eight and sixteen registers protected by ECC, the average RVF 
value is reduced to 6.5% and 3.2%, respectively. Obviously, cost 
will also increase, with more registers covered by ECC. Con-
sequently, the designers need to trade-off cost and reliability to 
meet design goals.

We also experiment reducing the total number of general-
purpose registers, so that each register is likely to be accessed 
more frequently, to evaluate the effectiveness of the proposed 
reliability-oriented register assignment scheme. Tables 4 and 5 
give the RVF values with 0, 2, 4, 8 and 16 registers covered by 
ECC for register files with 32 and 16 registers. The base RVF 

Fig. 4. Register vulnerability factor for different benchmarks.
Fig. 5. Register vulnerability factor (RVF) of instruction re-scheduling 
based on superblock and hyperblock scheduling.

Table 2. Register vulnerability factor values of instruction re-scheduling 
compared to the base scheme.

Benchmarks Base Re-schedule

cjpeg 0.186 0.185

djpeg 0.200 0.195

des 0.034 0.033

g721decode 0.061 0.060

gsm decode 0.050 0.050

gsm encode 0.049 0.049

mpeg2enc 0.274 0.273

cordic 0.151 0.145

rawcaudio 0.198 0.198

rawdaudio 0.178 0.177

Average 0.138 0.137
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value is increased, since each register will be accessed more fre-
quently with fewer registers. The RVF values can still be reduced 

effectively, by allocating the reliable registers with ECC to cover 
the most susceptible intervals. For instance, with four out of 32 
registers protected by ECC, the average RVF value is as low as 
10%. However, protecting four registers with ECC for a register 
file with 16 registers can only reduce the RVF to 13.7% on aver-
age. Nevertheless, the average RVF for a small register file is 
reduced more significantly by protecting more registers with 
ECC. For instance, with eight our of 64 registers covered by 
ECC, the average RVF is 6.5%, while with eight out of 32 or 16 
registers protected by ECC, the average RVF is 5.8% and 5.9% 
respectively. That is, a larger portion of register will be covered 
by ECC, because for a smaller register file, leading to higher re-
liability. Obviously, if all the 16 registers are covered by ECC, the 
RVF value becomes zero under the single-bit error model, indi-
cating high register reliability. Therefore, the reliability-oriented 
register assignment is quite effective in improving register file 
immunity to soft errors for varying numbers of registers.

D. Effect of the Hybrid Scheme

Tables 6-8 list the RVF values of the hybrid scheme for a 

Table 4. The register vulnerability factor values of register assignment 
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 32 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.092 0.068 0.049 0.034 0.014

cjpeg 0.189 0.155 0.127 0.084 0.033

g721decode 0.124 0.078 0.049 0.019 0.000

des 0.040 0.016 0.014 0.009 0.003

gsm decode 0.100 0.057 0.029 0.008 0.000

gsm encode 0.097 0.057 0.024 0.006 0.000

djpeg 0.133 0.108 0.092 0.069 0.038

mpeg2enc 0.221 0.180 0.141 0.096 0.025

rawcaudio 0.396 0.334 0.271 0.147 0.000

rawdaudio 0.356 0.294 0.231 0.107 0.000

Average 0.175 0.135 0.103 0.058 0.011

Table 5. The register vulnerability factor values of register assignment 
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 16 registers.

Benchmarks ECC=0 ECC=2 ECC=4 ECC=8 ECC=16

cordic 0.094 0.047 0.035 0.020 0.000

cjpeg 0.185 0.132 0.090 0.045 0.000

g721decode 0.226 0.134 0.079 0.024 0.000

des 0.061 0.013 0.010 0.004 0.000

gsm decode 0.184 0.102 0.047 0.008 0.000

gsm encode 0.193 0.102 0.042 0.007 0.000

djpeg 0.118 0.065 0.047 0.024 0.000

mpeg2enc 0.293 0.215 0.170 0.083 0.000

rawcaudio 0.605 0.480 0.355 0.134 0.000

rawdaudio 0.743 0.618 0.493 0.243 0.000

Average 0.270 0.191 0.137 0.059 0.000

Table 3. Register vulnerability factor values of register assignment with 

0, 2, 4, 8, and 16 registers protected by ECC. There are 64 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.151 0.120 0.089 0.047 0.024

cjpeg 0.186 0.161 0.136 0.098 0.062

g721decode 0.061 0.039 0.023 0.009 0.000

des 0.034 0.022 0.020 0.016 0.011

gsm decode 0.050 0.029 0.014 0.004 0.000

gsm encode 0.049 0.028 0.012 0.003 0.000

djpeg 0.200 0.187 0.175 0.154 0.115

mpeg2enc 0.274 0.253 0.233 0.192 0.111

rawcaudio 0.198 0.167 0.136 0.073 0.000

rawdaudio 0.178 0.147 0.116 0.053 0.000

Average 0.138 0.115 0.095 0.065 0.032

Table 7. The register vulnerability factor values of the hybrid scheme 
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 32registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.024 0.003 0.002 0.001 0.000

cjpeg 0.086 0.060 0.051 0.037 0.014

g721decode 0.137 0.093 0.063 0.024 0.000

des 0.034 0.010 0.008 0.006 0.002

gsm decode 0.121 0.079 0.049 0.013 0.000

gsm encode 0.127 0.088 0.052 0.012 0.000

djpeg 0.043 0.018 0.016 0.012 0.006

mpeg2enc 0.289 0.247 0.211 0.153 0.078

rawcaudio 0.097 0.066 0.047 0.019 0.003

rawdaudio 0.028 0.004 0.002 0.001 0.001

Average 0.099 0.067 0.050 0.028 0.010

Table 6. The register vulnerability factor values of the hybrid scheme 
with 0, 2, 4, 8 and 16 registers protected by ECC. There are 64 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.026 0.004 0.002 0.002 0.001

cjpeg 0.127 0.114 0.106 0.091 0.067

g721decode 0.068 0.045 0.030 0.011 0.000

des 0.023 0.011 0.010 0.008 0.006

gsm decode 0.060 0.040 0.025 0.006 0.000

gsm encode 0.064 0.044 0.026 0.006 0.000

djpeg 0.034 0.021 0.019 0.016 0.012

mpeg2enc 0.289 0.269 0.251 0.215 0.144

rawcaudio 0.205 0.174 0.142 0.086 0.028

rawdaudio 0.023 0.011 0.008 0.005 0.002

Average 0.092 0.073 0.062 0.045 0.026
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register file with 64, 32, or 16 registers, respectively. The hybrid 
scheme is more effective at reducing the RVF for different 
benchmarks than either the re-scheduling and register re-as-
signment approaches alone. The RVF value is as low as 6.1%, 
on average, with only four out of 64 registers protected by ECC. 
Protecting four registers with ECC will reduce the RVF to 5.0% 
and 4.7% for a register file with 32 or 16 registers, respectively, 
indicating great improvement in register file immunity against 
soft errors.

VI. RELATED WORK

Transient errors caused by external particle strikes have tradi-
tionally been a concern for systems that operate in highly noisy 
environments. They have increasingly become a challenge for 
microprocessors ranging from high-end servers to embedded 
processors used for reliability-critical applications with the scal-
ing of technology. Kim and Somani [20] conducted fault injec-
tion experiments on picoJava-II in its RTL model to understand 
the micro- processor vulnerability to soft errors. They found 
large variations for different hardware blocks. Wang et al. [21] 
studied the soft error sensitivity of a modern microprocessor, 
similar to the Alpha 21264, through fault injection on a RTL 
model. They reported that less than 15% of single bit errors in 
the processor state result in software visible errors. Mukherjee 
et al. [1] proposed an approach to measure AVF based on a 
performance model. They reported the AVFs of the instruction 
queue and execution units are 28% and 9%, respectively, for an 
Itanium2-like IA64 processor.

Biswas et al. [22] extended the lifetime analysis technique to 
examine the architectural vulnerability factors for address-based 
structures. All these prior research efforts have motivated us to 
study the sensitivity of register files to transient errors more 
accurately. In contrast to previous work, this paper focuses on 
studying the reliability of register files, which are not address-
based but can significantly affect overall system reliability if 
unprotected. We develop a method to compute the probability 
of register soft error propagation accurately by exploiting the 
fact that register soft errors can be overlapped by the register 

write operations, which are not captured by previous models. 
In this paper, we also proposed several novel techniques to im-
prove register file reliability without significant hardware cost 
or performance degradation.

A number of techniques in the literature improve hardware 
reliability against transient errors. However, most of the research 
effort focuses on protecting main memory [8, 9], cache [8, 9, 
23], datapath [4, 12, 13, 24], or multicore [25]. Currently, parity 
and ECC are the most widely-used mechanisms to protect the 
storage units, but come at the cost of area, energy and design 
time. Particularly, if the ECC computation is on the critical path, 
it may affect performance. Rajaram et al. analyzed the soft error 
rate for a variety of flip-flops with regard to register reliability 
against transient errors [7].

Memik et al. [14] proposed a scheme to replicate register val-
ues in the physical registers to increase register file reliability. 
While this approach can utilize the available physical registers 
to enhance reliability, it can only be used for superscalar proces-
sors, where additional physical registers are employed to sup-
port dynamic register renaming. In contrast, VLIW processors 
rely on compilers to manage the registers. They typically do 
not have additional physical registers. Therefore, the approach 
proposed in [14] cannot be applied to VLIW-like processors that 
do not have physical registers. This paper, in comparison, pro-
poses two compiler-guided techniques to improve the register 
file immunity to soft errors that can be widely applied to a va-
riety of processors. Lee and Shrivastava [26] proposed a com-
piler-microarchitecture hybrid approach to enhance the energy 
efficiency of soft error protection for register files. In contrast, 
this paper focuses on improving the reliability of register files.

VII. CONCLUSION

As technology scales, lower supply voltage, higher density and 
higher frequency will make microprocessors more vulnerable to 
transient errors. The first step is to understand the vulnerability 
of different hardware components to soft errors accurately to en-
hance processor reliability cost-effectively. This is of particular 
importance for embedded systems with cost constraints. While 
existing work mainly focuses on examining the impact of soft 
errors on main memory [8, 9], cache [10, 11] or datapath [4, 12, 
13], this paper explores the register file reliability against soft 
errors, since registers are susceptible to transient errors and are 
accessed very frequently. In this paper, we propose the concept 
of RVF to characterize the probability that register soft errors 
can be propagated to other system components and thus affect 
the final output. We also propose an approach to compute RVF 
based on register access patterns. Therefore, the reliability of 
register files can be estimated using both the RVF and raw soft 
error rate of latches.

We develop two compiler-guided techniques built upon the 
concept of RVF to improve register file reliability by decreasing 
the RVF value, because a smaller RVF value indicates that the 
register file is less susceptible to soft errors and thus is more 
reliable. The first technique is a pure software-based approach 
that exploits the scheduling slack to move the register write op-
erations, as late as possible, and the register read operations, 
as early as possible, without increasing critical path latency. 

Table 8. The register vulnerability factor values of the hybrid scheme 
with 0, 2, 4, 8, and 16 registers protected by ECC. There are 16 registers.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.042 0.003 0.002 0.001 0.000

cjpeg 0.096 0.045 0.034 0.016 0.000

g721decode 0.249 0.157 0.100 0.030 0.000

des 0.059 0.009 0.007 0.002 0.000

gsm decode 0.243 0.164 0.106 0.021 0.000

gsm encode 0.235 0.147 0.092 0.020 0.000

djpeg 0.066 0.015 0.011 0.006 0.000

mpeg2enc 0.211 0.160 0.121 0.063 0.000

rawcaudio 0.057 0.008 0.004 0.001 0.000

rawdaudio 0.048 0.002 0.001 0.000 0.000

Average 0.131 0.071 0.048 0.016 0.000
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Our experiments demonstrate that the instruction re-scheduling 
based on hyperblocks [16] can reduce the RVF to 9.1% on 
average. 

The second technique targets register files that are partially 
protected by ECC. The proposed reliability-oriented register 
assignment improves register file immunity to soft errors by 
protecting the most susceptible intervals, based on the profiling 
information. We also propose a hybrid scheme built upon both 
these techniques to further reduce RVF. Experiments show the 
hybrid scheme can reduce average RVF to 6.1% with only four 
out of 64 registers covered by ECC. Thus, register file reliability 
is improved substantially without significantly influencing cost. 
Moreover, all the techniques proposed in this paper can enhance 
register file immunity to soft errors without compromising per-
formance.
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