
Copyright 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 5, No. 3, September 2011, pp. 161-166

A Fast Algorithm for Korean Text Extraction and Segmentation
from Subway Signboard Images Utilizing Smartphone Sensors

Igor Milevskiy and Jin-Young Ha*

Department of Computer Science and Engineering, Kangwon National University, Chucheon, Korea

io.milewski@kangwon.ac.kr, jyha@kangwon.ac.kr

Abstract
We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order

to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition

(OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart

phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binariza-

tion is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in

computational time. Text location is guided by user’s marker-line placed over the region of interest in binarized image via smart phone

touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string

into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part

of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method

is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved

better quality than other methods.

Category: Smart and intelligent computing; Human computing

Keywords: Optical character recognition; Text segmentation; Image binarization; Smart phone

I. INTRODUCTION

Korean text extraction from signboard images is a sophisti-

cated task. Most signboards are made of or covered with plastic,

and even text on the signboards is designed to have high con-

trast with the background, so images captured by smart phone

in many cases have glare near the text region [1, 2]. Non-uni-

form illumination makes global thresholding methods [3] less

effective. On the other hand, adaptive thresholding methods are

showing much better results; however, these methods are rela-

tively slow from a computational point of view [4].

Unlike Latin characters, Korean characters (Hangul) consist

of disjoined letters. Each character consists of two or three let-

ters. This number may be increased up to six, if we count the

individual component separately: e.g., “뽥” consists of “ㅂ”,

“ㅂ”, “ㅗ”, “ㅏ”, “ㄹ”, and “ㄱ”. Letters inside one character

could touch other letters or letters from other characters. Fur-

thermore, text on images of natural scenes taken by smart phone

cameras has uneven direction and size.

Recent models of smart phones are equipped with a wide

range of sensors including camera, accelerometer, and capaci-

tive touch screen. However, these devices are still limited by

processing and memory resources. It is important for an appli-

cation running on a mobile device to make efficient use of both

computing time and memory. Data received from sensors could

be used to avoid resource-demanding algorithms in order to

reduce computing time and memory usage, thus increasing the

user satisfaction.

We used two types of sensors: accelerometer and touch

screen. The accelerometer provides information about the smart

Received 25 March 2011, Accepted 1 June 2011

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2011.5.3.161 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 161-166

http://dx.doi.org/10.5626/JCSE.2011.5.3.161 162 Igor Milevskiy and Jin-Young Ha

phone orientation in space. The angle between axis of smart

phone and the directional pull of gravity is used for image rota-

tion. Thus, an image captured by a user while holding a camera

at an arbitrary angle is treated as if it is taken by holding the

camera ideally horizontally. Next, the Canny edge filter and

connected component is applied for character candidate

retrieval [5]. The result is subjected to a connected component

analysis – pairs of points that define blobs are used during the

following text location and segmentation. To determine the text

location, the user defines a region of interest by performing a

flicking gesture on the touch screen. After the string of charac-

ters is reconstructed using connected component information,

affine transformation is applied to the region of the string and

connected component information, which are used on the final

step – text segmentation.

The most difficult part in optical character recognition

(OCR) for natural scene images is text extraction including text

localizing and text segmentation. The resulting data of our

method could be used as OCR input, hence solving the most

difficult part of OCR of text area included in natural scene

images, with less computation resources.

II. RELATED WORKS

Recently, a number of systems for text extraction from natu-

ral scene images have been developed. Image binarization and

text localizing are essential in such systems. Popular algorithms

for image binarization include k-mean clustering and threshold-

ing. Lee et al. [6, 7] and Jung et al. [8] described method of

clustering in HVC (hue, value, chroma) color space; Lai et al.

[9] used RBG (red, green, blue) color space. A number of clus-

ters is defined according to the number of the most common

colors and is roughly 20. The most popular thresholding algo-

rithms include Otsu [3], Niblack and Sauvola thresholding [4].

The first one is the global thresholding algorithm, which can

hardly be used for natural scene images. The last two methods

are local adaptive algorithms, which show better quality for

image thresholding, and will be described further in Section III.

 Text localization algorithms are based on profile analysis.

Bae et al. [10] dealt with relatively simple text images, for

which text localization could be done using only projection pro-

files. Park et al. [1] required a text region to be located at the

center of outdoor signboard images.

Fragoso et al. [11] described a method that deals with per-

spectively-distorted text location. Another approach is co-lin-

earity weight calculation [7]; however, these methods handle

only joined characters such as Latin and not disjoined ones such

as Korean. For instance the string “인천” could be detected as

two lines “이처” and “ㄴㄴ”.

Previously described methods, that deal with direction ambi-

guity and disjoined letter-location, are based on Hough transfor-

mation [12], which requires intensive computing time and high

memory usage, which are not suitable for mobile devices.

III. PROPOSED METHOD

A. Preprocessing with Accelerometer Employment

To reduce computational time, a captured image is re-sized to

800 × 600 pixels and converted from color to gray scale image.

The goal of preprocessing is to resolve ambiguous text direc-

tion. While signboard text is located horizontally, the users can

capture images at any arbitrary angle. The accelerometer pro-

vides information about the smart phone camera orientation in

space. The angle between the axis of smart phone and the direc-

tion of gravity is calculated as shown in Eq. (1),

angle = atan2 (x, z) (1)

where x and z are the first and third accelerometer values,

respectively. The image, rotated by the same angle, has text

strings oriented by the horizon. As a result, any image captured

by the user is treated as if the camera was held horizontally at

the time the image was captured. Examples of color image rota-

tion using accelerometer data are demonstrated in Fig. 1.

B. Image Binarization

Image binarization workflow is presented in Fig. 2.

First, the Canny edge filter is applied to the gray scale image,

resulting in an edge map. On the map, every closed loop con-

tour is regarded as a connected component (blob). Each blob

could be a character or a part of a character. Connected compo-

Fig. 1. Accelerometer based image rotation: (a) original and (b) rotated
images. Fig. 2. Binarization workflow.

A Fast Algorithm for Korean Text Extraction and Segmentation

Igor Milevskiy and Jin-Young Ha 163 http://jcse.kiise.org

nent analysis returns a list of boxes that bounds blobs. We use

the algorithm from openCV extension library – cvBlobsLib 6.

After this step, the blobs that are too small or too big are

excluded. Next, the gray-scale image is thresholded on the area

defined by a single blob by sliding the window over. The win-

dow size depends on the blob size. The threshold level is exclu-

sively calculated for every pixel and defined by Eq. (2),

T = m (2)

where m is mean gray scale level inside a window around a

pixel.

Previous methods [4] described the adaptive Niblack that

defines the threshold level by Eq. 3 and Sauvola (Eq. 4) thresh-

olding methods.

T = m + k * s (3)

T = m * [1 – k (1 - s/R)] (4)

where m is the mean, s is the standard deviation of the gray

scale level inside a window around a pixel, R is usually equal to

128, k is a predefined coefficient and is selected according to

the text color. If the text color has a darker background, then let

k be a negative value in order to get proper foreground text, oth-

erwise it is positive.

The disadvantages of these methods include that they are

required to perform thresholding twice, and it is not clear

beforehand what coefficient k gives the best results.

The result of thresholding is copied to a blank image and

shown to the user for text location (Fig. 3b, 3f). Fig. 3 shows the

original images and the results of different binarization meth-

ods. The turquoise area of the result of the proposed method

was not processed, resulting in much computational time reduc-

tion.

C. User Guided Text Location

After the user sees the result of binarization, he can select the

area of interest by performing a flicking gesture on the smart

phone screen as shown in Fig. 4.

In case the user-defined line is not horizontal, knowing the

start and end point of that line horizontal median line is calcu-

lated (Fig. 5).

Then, we perform two runs on the set of blobs. Blob informa-

tion is extracted from the binarization step in Section III.B.

First, all blobs that hit the median line are selected (Fig. 6).

Fig. 3. Original images: (a, e) result of binarization, (b, f) proposed
method, (c, g) Niblack, (d, h) Sauvola adaptive thresholding.

Fig. 4. User defined area of interest. User places marker line over screen
area.

Fig. 5. Horizontal median line and user define line.

Fig. 6. Text location. First run. Blobs that hit the line are selected.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 161-166

http://dx.doi.org/10.5626/JCSE.2011.5.3.161 164 Igor Milevskiy and Jin-Young Ha

During this step, the average blob height and width is calcu-

lated.

On the second run we, select all blobs that are inside the area

as shown in Fig.7. Thus, if on the first run only first consonants

and vowels were hit during second run final consonants will be

selected as well or vice versa.

If more than 50% of the blob is inside the area, then it is

regarded as “inside”; otherwise, it is “outside” (Fig. 8).

Blobs selected during the second run are regarded as parts of

a string and define four points. Using these four points, affine

transformation is performed for both image and blob informa-

tion.

D. Connected-Components Based Text Segmentation

The process of test segmentation is illustrated in Fig. 9. In the

first string “당고개”, the last character consists of two disjoined

in vertical projection letters: “ㄱ” and “ㅐ”. The segmentation

algorithm must join them into “개”. The second example dem-

onstrates how connected-component analysis due to noise

defines two characters “청” and “량” as one solid “청량”. The

algorithm must handle this problem too.

First, the blobs coordinate information is merged by ordinate

axis (Fig. 9b) and line segments are received. Next, the mean

height of the line segments is calculated, and, proceeding from

right to left, the line segments that are shorter than 70% of the

mean height are merged with the line segment on the left (Fig.

9c). Thus, vertical vowels like “ㅏ”, “ㅐ” are merged with the

first consonants. For example, “ㄱ” and “ㅐ” are united into

“개”. Finally, proceeding from left to right, we split the line

Fig. 7. Text location. Area for the second run.

Fig. 8. Inside and outside blobs.

Fig. 9. Blob based text segmentation. Two difficult cases of character
segmentation.

Fig. 10. Text segmentation result: (a) original image, (b) result of
binarization, red line is user defined marker-line, (c) segmentation result.

Fig. 11. Binarization runtime.

A Fast Algorithm for Korean Text Extraction and Segmentation

Igor Milevskiy and Jin-Young Ha 165 http://jcse.kiise.org

segments that are longer than 150% of the mean (Fig. 9d), so

line segments that define two and more joined letters are split.

For example, “청량” is split into “청” and “량” (Fig. 9e). To

ensure the split is accurate, we calculate the vertical projection

profile for the area between the expected characters. Split is

done at the point where the profile has minimum value. At last

knowing the start and end points of characters image is cut to

give the images for individual characters. Since binarization

was performed once, there are two cases: having white text on

black background or vice versa. Then, the quantity of white and

black pixels is calculated for all blobs. If the number of white

pixels is greater than that of black ones, which is the second

case (black background, white characters), then color is

inverted. The result of segmentation on the real images is dem-

onstrated in Fig. 10.

IV. EXPERIMENTS

A. Implementation Details

The method described above was implemented on iPhone

3Gs running iOS 4.3 and written in C++ STL using precom-

piled static libraries: OpenCV 2.0 and cvBlobsLib 6. The graph-

ical user interface is written in Objective-C using Quartz 2D

graphical library.

B. Runtime

For runtime evaluation, we estimated the time that it would

take to perform all steps that our method of binarization

includes. To make an accurate comparison, we ran Niblack and

Sauvola adaptive thresholdings and connected component anal-

ysis and measured the process time for each. We run tests for 18

images three times for each image and calculate the average

time. The results are shown in Fig. 11.

On average, runtime for our proposed method is 119 ms;

runtime for Niblack and Sauvola adaptive thresholding methods

are 411 ms and 449 ms, respectively, which means that the pro-

posed method is 3.5 times faster than adaptive Niblack and 3.7

times faster than the adaptive Sauvola thresholding method.

Experiments were executed on a desktop simulator equipped

with Intel Core 2 Duo (2.4 GHz) CPU, and 4GB of PC3-8500

RAM.

C. Quality

The adaptive Niblack and Sauvola thresholding result depends

on the window size. If window size is not selected correctly,

then the result becomes noisy. This effect is illustrated in Figure

12, where characters from “사당”, “오이도” strings have black

noise inside them on Niblack and Saulova thresholding results.

In the proposed adaptive thresholding, the window is recalcu-

lated for each blob individually, and thus the result is better.

Experiments showed that the window size that is 1.7 times

greater than the blob’s height is optimal.

V. CONCLUSION AND FURTHER STUDY

We presented a fast algorithm for Korean text extraction and

segmentation from subway signboards based on smart phone

sensors employment. Smart phone sensors provide valuable

information helps simplify algorithms, increase processing

speed, and reduce memory usage. Adaptive thresholding shows

the best result when the window size is matched to the size of

character. In case of natural image processing, the runtime of

character candidates search and binarization is much smaller

than the time required for a whole-image binarization.

For future research, on text blobs could be filtered better

using more sophisticated heuristics, but keeping computing

time minimal. The proposed algorithm could be used for the

future development of smart phone applications. We plan to

deploy it in the subway navigation system, where text from

signboard image could be extracted and recognized, and thus

provide information about user’s current location and direc-

tions.

REFERENCES

1. J. Park, G. Lee, A. N. Lai, E. Kim, J. Lim, S. Kim, H. Yang, and

S. Oh, “Automatic detection and recognition of shop name in

outdoor signboard images,” IEEE International Symposium on

Signal Processing and Information Technology 2008, Sarajebo,

Bosnia & Herzegovina, 2008, pp. 111-116.

2. T. N. Dinh, J. H. Park, and G. S. Lee, “Low-complexity text

extraction in Korean signboards for mobile applications,” 8th

IEEE International Conference on Computer and Information

Technology 2008, Sydney, 2008, pp. 333-337.

Fig. 12. Quality comparison: (a) proposed method, (b) Sauvola, and (c) Niblack adaptive thresholding.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 161-166

http://dx.doi.org/10.5626/JCSE.2011.5.3.161 166 Igor Milevskiy and Jin-Young Ha

3. N. Otsu, “A threshold selection method from gray-level histo-

grams,” IEEE Transactions on System, Man, and Cybernetics,

vol. 9, no. 1, pp. 62-66, Jan. 1979.

4. J. He, Q. D. M. Do, A. C. Downton, and J. J. Kim, “A compari-

son of binarization methods for historical archive documents,”

Eighth International Conference on Document Analysis and Rec-

ognition, Seoul, Korea, 2005, pp. 538-542.

5. John Canny, “A Computational Approach to Edge Detection,”

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. PAMI-8, no. 6, pp. 679-698, 1986.

6. S. H. Lee, J. H. Seok, K. M. Min, and J. H. Kim, “Scene Text

Extraction using Image Intensity and Color Information,” Chi-

nese Conference on Pattern Recognition, Nanjing, China, 2009,

pp. 1-5.

7. S. H. Lee, M. S. Cho, K. Jung, and J. H. Kim, “Scene text

extraction with edge constraint and text collinearity,” 20th Inter-

national Conference on Pattern Recognition, Istanbul, Turkey,

2010, pp. 3983-3986.

8. J. Jung, E. Kim, S. H. Lee, and J. H. Kim, “Scene text separa-

tion using touch screen interface,” Chinese Conference on Pat-

tern Recognition, Nanjing, China, 2009, pp. 1-5.

9. A. N. Lai, K. N. Park, M. Kumar, and G. S. Lee, “Korean text

extraction by local color quantization and k-means clustering in

natural scene,” First Asian Conference on Intelligent Informa-

tion and Database Systems 2009, Dong Hoi, Vietnam, 2009, pp.

138-143.

10. K. S. Bae, K. K. Kim, Y. G. Chung, and W. P. Yu, “Character

recognition system for cellular phone with camera,” 29th Annual

International Computer Software and Applications Conference

2005, Edinburgh, UK, 2005, pp. 539-544.

11. V. Fragoso, S. Gauglitz, S. Zamora, J. Kleban, and M. Turk,

“TranslatAR: a mobile augmented reality translator,” 2011 IEEE

Workshop on Applications of Computer Vision, Kona, HI, 2011,

pp. 497-502.

12. O. Shiku, K. Kawasue, and A. Nakamura, “A method for charac-

ter string extraction using local and global segment crowded-

ness,” Fourteenth International Conference on Pattern Recognition,

Brisbane, Australia, 1998, pp. 1077-1080.

Jin-Young Ha

Jin-Young Ha is currently professor at Department of Computer Science and Engineering, Kangwon National University.
He was a visiting researcher at IBM T.J. Watson Research Center for 1 year from 2000 to 2001. He graduated from Seoul
National University (B.E) in 1987. He got M.S. and Ph.D from KAIST in 1989 and 1994, respectively. His research topics
include character/pattern recognition and HCI.

Igor Milevskiy

Igor Milevskiy is currently a M. Eng. candidate in the Department of Computer and Communications Engineering at the
Kangwon National University, Korea. He received his specialist’s degree in Computer Science from the Pacific National
University, Russia in 2009. His research interests include pattern recognition, image processing, and ubiquitous
computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

