
Copyright 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 5, No. 3, September 2011, pp. 223-235

Secure Blocking + Secure Matching = Secure Record Linkage

Alexandros Karakasidis*

Department of Computer and Communication Engineering, University of Thessaly, Volos, Greece akarakasidis@inf.uth.gr

Vassilios S. Verykios
School of Science and Technology, Hellenic Open University, Patras, Greece verykios@eap.gr

Abstract
Performing approximate data matching has always been an intriguing problem for both industry and academia. This task becomes

even more challenging when the requirement of data privacy rises. In this paper, we propose a novel technique to address the problem

of efficient privacy-preserving approximate record linkage. The secure framework we propose consists of two basic components. First,

we utilize a secure blocking component based on phonetic algorithms statistically enhanced to improve security. Second, we use a

secure matching component where actual approximate matching is performed using a novel private approach of the Levenshtein Dis-

tance algorithm. Our goal is to combine the speed of private blocking with the increased accuracy of approximate secure matching.

Category: Ubiquitous computing; Security and privacy

Keywords: Security privacy; Record linkage; Approximate matching; Phonetic codes; Edit distance

I. INTRODUCTION

The contemporary era is characterized by a high degree of

involvement of computers harvesting data in various aspects of

everyday life. From simply carrying a cell phone to traveling

and from casual shopping to receiving medical aid, all these

activities induce the collection of large volumes of information

that also include private data. These independently stored data

often need to be integrated.

Combining independently stored information could benefit a

large number of domains, such as medical research and public

safety. For instance, information integration could lead to the

creation of a public safety early warning system. Consider, as an

example, the recent H1N1 flu outbreak. Each time a person was

found to be infected with the disease, attempts were made to

spot his/her recent activities to prevent the spread of the epi-

demic by locating possible candidate patients. A typical exam-

ple is the case of airline travelers. When a passenger is found to

be infected with the H1N1 virus, a significant effort is made to

locate people who traveled on the same flight.

An effort like this would be much more successful if an early

warning monitoring system existed that would locate and inform

possible patients by integrating data from an airline’s passenger

list in our case, with the patient list in hospitals. When a traveler

is found to be infected with the flu, the other passengers can be

instantly alerted. Such a system however would require the

preservation of privacy of both patients and travelers. In the

case in which the hospital integrated travel and medical data, no

information should be revealed to the hospital database admin-

istrator regarding names of passengers. Correspondingly, if the

airline managed to merge this information, the medical record

of the patients should not be fully exposed.

Technically speaking, what we have presented previously is a

modified version of the classical record matching problem. In

classical record linkage, separate dataholders maintain data cor-

responding to the same real world entities (people, cases, events,

etc.) without necessarily maintaining common and unique link-

age identifiers. Dealing with non-unique identification informa-

tion is an important deficiency that needs to be addressed by all

the record linkage algorithms. Additionally, in database fields,

Received 1 February 2011, Accepted 20 March 2011

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2011.5.3.223 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 223-235

http://dx.doi.org/10.5626/JCSE.2011.5.3.223 224 Alexandros Karakasidis and Vassilios S. Verykios

such as names, and addresses, typing or spelling errors that may

accidentally occur make this task even more difficult. It is obvi-

ous that this is a task of increased complexity. As such, a tech-

nique called blocking has been introduced to improve performance

[1]. Private record linkage features an additional major compli-

cation during data matching: all data stored within independent

repositories contain sensitive individual information.

Therefore, any attempt towards data integration would lead

to privacy breaches, raising ethical and legal issues: certain leg-

islation, such as the EU Data Privacy Directive [2], render each

company responsible for maintaining the privacy of its stored

data and any explicit leaking might lead the dataholder to face

prosecution. It is evident that performing data linkage, while

preserving privacy is an important problem that needs to be

taken seriously into consideration.

To be more concise, the core of the private record linkage

problem renders the ability of merging data from two or more

databases in a way that the only additional information that each

of the database owners gain, will only refer to entities already

stored in his own database before integration.

In this paper, we propose a complete framework for address-

ing the problem of privacy preservation approximate record

matching. We achieve this by enhancing Edit Distance based

methods used for conventional approximate record matching

with privacy-preservation characteristics and increasing match-

ing performance by facilitating a secure blocking component

based on phonetic codes. We prove our assertions that our

approach offers the same accuracy with traditional edit distance

algorithms, while it respects privacy and compare our results to

a rival algorithm by extensive experimentation.

In the privacy preservation record linkage protocol we pro-

pose, we assume that all parties exhibit an Honest But Curious

behavior (HBC). All parties are honest in the sense that they are

all obliged to follow the protocol. They are curious, since they

maintain every new knowledge acquired during the execution

of the protocol. Our protocol satisfies these restrictions, since

no new information is revealed, apart from integrating comple-

mentary information regarding known real world entities.

The contribution of this paper is multidimensional. First, we

propose a complete framework towards secure approximate

matching. Second, this framework consists of a secure blocking

component and a secure matching component featuring an open

architecture. Openness is a very important feature, since we do

not provide a single monolithic technique, but a framework

which allows the usage of a variety of techniques depending on

their suitability in each case. Third, we propose a secure block-

ing component enhanced by three levels of privacy: phonetic

encoding, encryption and random noise insertion in the form of

fake phonetic codes. Fourth, we propose an approximate private

matching algorithm by enhancing with security the widely used

Levenshtein distance algorithm [3], while maintaining intact its

matching accuracy. Fifth, we present an in-depth security analy-

sis of our approach. Finally, we provide a set of extensive

experiments that prove the correctness, security and high per-

formance of our approach.

The remainder of this paper is organized as follows. Section

II presents previous work related to ours. Section III provides

necessary background knowledge. Section IV presents the pro-

posed private matching framework. Section V contains the eval-

uation of our methodology in terms of complexity and privacy.

Our approach is empirically assessed in Section VI. Finally,

Section VII contains conclusions and future research directions.

II. RELATED WORK

Record matching (or linkage) is a rather old yet important

area of research. As such, numerous methods have been pro-

posed to address the problem. A detailed analysis of all major

currently used methods can be found in [4]. Approximate string

matching methods consider comparing strings to possible typo-

graphical errors. These methods fall into three major categories:

token-based methods, distance-based methods and phonetics-

based methods.

Token-based methods calculate tokens of the strings to be

matched and then count the number of common tokens. N-

grams based methods fall into this category [5]. Distance-based

methods measure the differences between strings. Some of the

most widely used methods are Levenshtein distance [3], the

Jaro [6] and Jaro-Winkler metrics [7, 8]. Conversely, phonetics-

based methods make use of certain string transformations to

take advantage of the way words sound for purging the effects

of various typing and spelling errors. Typical examples of this

class include Soundex [9], Metaphone [10], ONCA [11], and

NYSIIS [12]. Based on all the aforementioned methods, a vari-

ety of systems, such as Tailor [13], Febrl [14] and WHIRL [15]

has been developed to perform approximate record linkage.

Research directions were provided in [16] stating the needs

and problems of this research field regarding privacy-preserv-

ing matching. State of the art in token-based privacy-preserving

matching includes the work of Churches and Christen [17] who

propose deidentifying the dice coefficient of n-grams using

hashing. However, approaches relying on [17] suffer from very

high complexity. Privacy preservation of distance-based meth-

ods, such as Edit Distance [18] and the Jaro-Winkler string met-

ric [7] performed well only in cases of non-encrypted data, as

indicated in [19]. Previous work in privacy-preserving phonet-

ics-based matching required the existence of a trusted third

party [20]. Moreover, as detailed in Trepetin’s survey [21],

some attempts to address the problem of privacy-preserving

record linkage fall short in providing a sound solution, either

because they are very resource intensive [22, 23] or because

they are unable to provide both matching accuracy and fault tol-

erance [24].

Approaches that are more recent include the one suggested

by Inan et al. [25] that uses a hybrid scheme combining crypto-

graphic methods with anonymization techniques creating value

generalization hierarchies. Scanapiecco et al. [26] achieve pri-

vacy-preserving data matching using embedding spaces and

schema matching based on a global schema. The privacy prop-

erties of k-anonymity on joins explored by Kantarcioglu et al.

can by found in [27]. Guidelines to build a privacy-preserving

matching system are detailed in [28] and a categorization of

recent approaches in [29]. The latest work in this field is by

Inan et al. [30] based on differential privacy.

Atallah et al. [31] proposed an approach that resembles our

methodology, where the edit distance algorithm is modified to

provide privacy to genome sequence comparisons. This approach

Secure Blocking + Secure Matching = Secure Record Linkage

Alexandros Karakasidis and Vassilios S. Verykios 225 http://jcse.kiise.org

was aimed towards sequence comparisons and has considerable

communication cost. In contrast, our methodology has low

communication cost, since it targets data stored in files or data-

bases.

Bloom Filters [32] are an essential part of our architecture.

They have been used in a variety of contexts, ranging from

indexes for XPath queries [33] to summary caches [34]. Schnell

et al. [35] proposed a method based on a combination of big-

rams and Bloom filters regarding private record linkage. Each

matching party creates a Bloom Filter where bigrams are stored.

Then, one party manages to compare the filters by performing a

logical AND on them and calculating similarity in terms of

common bits, using the Jaccard coefficient.

III. BACKGROUND

In this section, we provide the necessary background required

to present our methodology, along with a running example used

throughout the rest of our paper. Specifically, we describe the

phonetic algorithms and distance-based matching methods.

Moreover, we present the operation of Bloom filters and their

extension, counting Bloom filters used in our approach, and dis-

cuss guidelines for selecting the appropriate hash functions for

our framework.

A. Example Scenario

Let us go back to the example presented in the introduction,

where we wish to integrate a hospital’s database with the data-

base of an airline to locate possible H1N1 patients. We consider

two parties, A that will represent the hospital database (Table 1)

and B that will represent the airline database (Table 2). These

two parties will also be referred to as sources.

Both databases hold sensitive information that can be used to

uniquely identify individuals. For simplicity, we will assume

that both databases have different schemas but share a common

subset of attributes, i.e., Name, Lastname, and Area. These data

will be referred to as private data, because they should not be

revealed. These fields will be used for record linkage as well.

Additionally, each of the two databases holds quasi-identifiers.

These are data that are not self-descriptive of real world entities,

but provide private information if combined with the private

data. Let us assume for the hospital that this is the Room field

and for the airline the Flight field.

Our aim is to integrate these two databases in such a way that

neither the hospital will be aware of all of the airline’s passen-

gers, nor the airline will get any knowledge regarding the hospi-

tal’s patients. The only knowledge that will be gained by both

parties will be over the airline passengers that have been hospi-

talized for the influenza virus. In the next section, we will illus-

trate the operation of approximate matching algorithms used in

their original forms. Data from this example will be used to do

this.

B. Phonetic Algorithms

A phonetic algorithm is an algorithm to match words based

on their pronunciation. Phonetic algorithms have been broadly

used in the past for record matching performed on names. The

main feature of the phonetic algorithms is their fault tolerance

against typographical errors. For illustration purposes, we will

use Soundex [9] in this paper. However, our methodology can

be easily applied to other phonetic algorithms.

The operation of Soundex is quite straightforward: for each

word to be encoded certain rules of grouping similar sounds are

applied. The result is a four character hash that represents the

pronunciation of the word. This hash consists of a capital letter

followed by three digits. For example for the word “Cooper”, its

Soundex code is C160.

C. Distance-Based Methods

Distance-based methods employ functions that map a pair of

strings to a real number [36] Levenshtein distance [3] is the best

known representative of distance functions. It measures the

minimum number of operations required (insert, delete, replace)

to transform one string to another. Here, two strings are said to

match if their distance is less than d operations, d > 0. For

example, consider the word “ryan” from Table 1, its distance

from “rayn” of Table 2 will be 2, since two modifications (two

replacements) are required to transform one word to another.

D. Bloom Filters

A Bloom Filter [32] is a method for representing a set A = α1,

α2, . . . αx of x elements (also called keys) to support member-

ship queries. The idea is to allocate a vector v of y bits, initially

all set to 0, and then choose z independent hash functions, h1, h2,

. . . , hz, each with range 1, . . . , y. For each element αi in A, the

bits at positions h1(ai), h2(ai), . . . , hz(ai), in v are set to 1. (A par-

ticular bit might be set to 1 multiple times). Given a query for b,

we check the bits at positions h1(b), h2(b), . . . , hz(b). If any of

them is 0, then certainly b is not in the set A. Otherwise, we

conjecture that b is in the set although there is a certain proba-

bility that we are wrong. This is called a “false positive”.

A Bloom Filter extension is the Counting Filter proposed by

Fan et al. [34]. In this construct, a counter is used consisting of

three or more bits, instead of a single bit per position. Thus, the

number of elements inserted in the filter may be explicitly com-

puted. The operation of Bloom Filters is based on the hash func-

tion used to encode items to be inserted. This function should be

Table 1. Hospital data (source A)

Row Name Lastname Area Room

1 Mayi Pounder Clarkson 199

2 Cooper Moble Kirrawee 054

3 Ryan Joshua Andrews 222

Table 2. Airline data (source B)

Row Name Lastname Area Flight

1 Rayn Joshua Andrews OX532

2 Maya Pounder Clarkson AZ117

3 Iachlan Grossman Cranbourne AAA512

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 223-235

http://dx.doi.org/10.5626/JCSE.2011.5.3.223 226 Alexandros Karakasidis and Vassilios S. Verykios

both secure and provide a uniformly distributed hash. For this

purpose, we selected the MD5 hashing algorithm [37] due to its

broadly studied properties and as it is considered relatively fast.

IV. THE PRIVATE RECORD LINKAGE PROTOCOL

In this section, we will put the pieces together and delve into

our proposed protocol. We formally define the following nota-

tion to be more precise with our description. A and B are the two

data sources used in our setup that will also be referred to as

parties or dataholders. Each of them holds data within relations

RA(A1, . . . , Ak) and RB(B1, . . . , Bl) respectively. We assume that

even though the participating sites do not share a common

schema, matching is still performed on a bare minimum of

overlapping fields that exist in both sources A and B.

Thus, we will define two additional relation types. First, the

Blocking Schemas that for A and B will respectively reflect rela-

tions (, . . . ,) and (, . . . ,). Each of

these relations contains n fields with n ≤ min(k, l) that will be

referred to as Blocking Fields or Blocking Keys. These fields are

used in the Blocking Component of our framework.

Second, the Matching Schemas that for A and B are repre-

sented by (, . . . ,) and (, . . . ,), respec-

tively. Each of these relations contains m fields with m ≤ min(k,

l), which hence will be termed Matching Fields or Matching

Keys. These fields are used in the Matching Component of our

protocol. For either of the two parties, these datasets are related

as follows: and .

A. Formal Problem Definition

Considering the two data sources A and B, the privacy-pre-

serving record linkage problem boils down to performing

record matching between RA and RB with an additional con-

straint. At the end, source A will only know the subset of B’s

data that match A’s data. Equivalently, B will only acquire the

subset of A’s data that match its own data. Notice here that all

the other parameters of the record linkage problem addressed

remain as in the classical case. This means that our proposed

methodology can equally well deal with non-unique identifiers,

as well as data of low quality.

B. Framework Operation Overview

We will now provide a generic view of our protocol before

we introduce the reader to the specific components of our solu-

tion, as illustrated in Fig. 1. First, the two matching parties A

and B will prepare their data to be used in both Private Blocking

and Private Matching components. Then A delivers its prepared

data to B. B now merges his own blocking data with A’s. The

secure blocking component is now initiated. After the comple-

tion of blocking, the private matching component begins its

operation. The overall matching sequence of our framework

consists of several blocking and matching passes. Therefore,

after secure matching concludes, a new blocking pass begins.

When the entire process is complete, B holds the matching

results and delivers a copy back to A for further processing.

Our protocol consists of two components. First, the Private

Blocking Component aims to reduce the candidate pairs between

the records to be matched. This is achieved by converting each

of the blocking keys to its phonetic code equivalent.

Phonetic codes are used as a first approximate matching indi-

cator, since they feature some tolerance against typological

errors. We inject a random number of records consisting of fake

phonetic codes to increase fuzziness, i.e., combinations of pho-

netic codes not found within the ones created by the actual

dataset. These codes are then encrypted using a secure hash

function. Identical ciphers that represent phonetic codes, are

grouped together. Each group indicates which records should be

further examined in more detail for matching.

Detailed approximate private matching by means of the Pri-

vate Matching Component is performed only between records

grouped together by the Blocking Component. Consider the

main matching phase, sensitive matching data will be hidden by

Bloom Filters. Party A will use a Bloom Filter to replace sensi-

tive data for each field used for matching. For each blocking

field B will create candidate pairs. Afterwards, the candidate

pairs will be examined for matching using relations and

by Bloom Filter based Levenshtein distance algorithm, resulting

in a partial set of matching rows. This set is added to the set of

total matching rows. This procedure is executed for each of the

blocking fields. For the resulting set Bmatch of matched rows, B

will append its corresponding non-sensitive information to each

Bloom Filter and deliver Bmatch back to A. Finally, A will merge

these data with its own.

C. Private Blocking Component

The aim of the Blocking Component is to make the entire

RA

BL
A1

BL
An

BL
RB

BL
B1

BL
Bn

BL

RA

M
A1

M
Am

M
RB

M
B1

M
Bm

M

R
BL

 R⊆ R
M

 R⊆

RA

M
RB

M

Fig. 1. Protocol overview.

Secure Blocking + Secure Matching = Secure Record Linkage

Alexandros Karakasidis and Vassilios S. Verykios 227 http://jcse.kiise.org

matching procedure more time efficient by reducing the candi-

date record pairs, while simultaneously maintaining privacy. We

employ three levels of security to achieve this: Phonetic encod-

ing, random noise generation, implemented by fake code addi-

tion and secure hash encryption.

1) Preparation: The entire process can be outlined as fol-

lows. One or more phonetic codes are generated at the respec-

tive party for each of the fields in and , resulting in the

datasets and . Both parties proceed to the

same encodings for the same fields. The two new datasets with

the phonetic codes may consist of more fields than the initial

datasets with the original text fields. This is due to the fact that

each blocking key may be encoded with more than one phonetic

algorithm.

We follow this process to take advantage of the fault toler-

ance that phonetic codes exhibit, rendering them appropriate for

approximate matching. We use more than one phonetic algo-

rithms for a specific field, since each phonetic algorithm per-

forms better in a different context. Now, a number of fake

records comprising phonetic codes are injected into the phoneti-

cally encoded datasets. The number and the data of the fakes

differ for each of the matching parties. We employ this strategy

to artificially increase fuzziness with the phonetics dataset. That

is, this approach aims to increase the entropy of the phonetically

encoded dataset and as a result, elevate its security.

Next, each field belonging to and is

encrypted by the respective party using the same secure hash

function, resulting in relations and respectively.

These relations consist of the same number of fields with the

relations holding the phonetic codes. Encryption is performed to

both ensure confidentiality during transmission and that during

the blocking phase the actual data will not be inferred from their

phonetic equivalents, since a single blocking field may have

many phonetic transformations featuring high entropy.

We will clarify our approach based on the example data in

Tables 1 and 2. Fig. 2 illustrates the preparation for the private

blocking step in party A. In our example, we will use fields

(Name, Area) for blocking. For Name, we will use Soundex and

Metaphone for phonetic encoding, while for Area we will only

use Soundex.

First, all data within the blocking fields will be transformed

to their phonetic equivalents. At this point, it is useful to point

out the importance of using different phonetic algorithms over a

single blocking field. Considering, the Name field in both of the

datasets we can see that there is a misspelling regarding the

name ‘ryan’. It is spelled correctly in the third row of Table 1,

while there is a misspelling in the first row of Table 2. The pho-

netic encodings of these two versions using Metaphone are

‘RYN’ and ‘RN’ while Soundex produces ‘R500’ for both ver-

sions. It is obvious that using a single phonetic algorithm, Meta-

phone in this case may lead to missing matches. Next, fakes are

injected and finally, all phonetic codes are encrypted using a

secure hash function. We selected MD5 for this example. The

same operations take place at party B. The same set of fields is

encoded using the same phonetic algorithms, fakes are injected

and then all records are encrypted using the same secure hash

function.

2) Private Blocking: After both parties complete this proce-

dure, party A transmits the dataset consisting of relations

and to party B. Now, for each of the blocking fields a multi

pass approach is followed. As suggested in [38], datasets

and are concatenated into a single dataset RBL
. This

dataset is sorted over the first blocking field that is scanned and

sets consisting of identical ciphers are formed. Records within

each resulting set are examined with each other within the Pri-

vate Matching Component. The occurring matching records set

is added to the total matching records set that is initially empty.

This procedure is repeated for all blocking fields, so that after

each pass on a different blocking key, new records are added to

the total matching records set.

D. Private Matching Component

The Private Matching Component is responsible for offering

elaborate and accurate approximate private matching. It utilizes

a secure version of the Levenshtein Distance algorithm that we

have developed to achieve this. To the best of our knowledge,

distance based matching algorithms share some common char-

acteristics to operate properly. First, the position of each charac-

ter within a string has to be known. Second, the size of both of

the matching strings has to be known to evaluate the various

distance metrics. These two parameters play an important role

in our implementation. Considering the example scenario pre-

RA

BL
RB

BL

RA.Phonetic

BL
RB.Phonetic

BL

RA.Phonetic

BL
RB.Phonetic

BL

RA.Enc

BL
RB.Enc

BL

RA.Enc

BL

RA

M

RA.Enc

BL

RB.Enc

BL

Fig. 2. Blocking preparation at A.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 223-235

http://dx.doi.org/10.5626/JCSE.2011.5.3.223 228 Alexandros Karakasidis and Vassilios S. Verykios

sented previously in section 3, A and B will agree to merge their

data using fields Name, Lastname and Area that will comprise

the matching relations and .

1) Preparation: We have developed the following methodol-

ogy to be able to use such characteristics. For each field

each of its characters is extracted. Each of the characters is

appended with a number indicating its position within the string

resulting in tokens, consisting of a letter and a number indicat-

ing the position of this character within the original string. Next,

every token is encoded within a Counting Bloom Filter. We pre-

fer a Counting Bloom Filter, to have exact knowledge of the

number of elements inserted. This is achieved by summing the

bits of the filter that are set. This number is equal to the string

length of the original field .

To be clearer regarding this part of our approach, consider

the first row of Table 1 where data from party A are stored.

Applying our methodology to word ‘mayi’, we get four ele-

ments: {m1, a2, y3, i4}. Each of these elements will be inserted

into the Counting Bloom Filter. After insertion, the sum of bits

set by the filter will reflect the number of elements inserted,

which in this example equals 4.

A separate filter is used for each field in each row of the

matching dataset. After all fields are converted, the matching

dataset is transformed to a dataset consisting of Counting

Bloom Filters, one for each field of each row. This dataset,

which will be referred to as together with , is

transferred to party B. It is worth mentioning that this procedure

is followed by party A, no matter which distance metric will be

used for matching evaluation.

2) Private Matching: Each of the blocking passes occurring

within the Private Blocking component results in sets of candi-

date matching records that according to our protocol will be

compared using some distance metric. We will assume the Lev-

enshtein distance metric, modified for our purposes, to better

illustrate our approach. Algorithm 1 displays the modified ver-

sion to be used with Bloom Filters. The changes to the original

algorithm are very limited. Specifically, in line 1, a Counting

Bloom Filter is used, instead of providing a second string as

input. Next, lines 10 and 11 describe that to each character of

the known string, its position within the string is appended, and

this token is examined for membership against the filter, instead

of comparing characters at specific positions as in the original

algorithm.

An example will help clarify our approach. Let us consider

the case that a blocking pass over the Name field has brought

near records 1 from A and 2 from B, as illustrated in Tables 1

and 2. When applying Algorithm 1, s = ‘maya’ and b equals to

the bloom filter holding elements {m1, a2, y3, i4}. Each charac-

ter of s is extracted and its position is appended to it. Then, the

resulting token is checked against the filter: ‘m1’, ‘a2’, ‘y3’ are

found in the filter, while i4 is not. The result of the algorithm is

that the Levenshtein distance equals 1.

V. EVALUATION

In this section, we will provide detailed analysis regarding

operations taking place at both the Blocking and the Matching

Component. The evaluation is made in terms of efficiency and

complexity and in terms of protocol security.

A. Efficiency and Complexity

It could be argued that the blocking approach could be used

as the main matching procedure, omitting the matching compo-

nent. However, phonetic codes do not offer detailed matching,

leading to increased number of mismatches, having simulta-

neously increased sensitivity to specific alterations. This ren-

ders them unsuitable for detailed matching evaluation.

The use of blocking is essential for the performance of the

matching procedure, since it reduces the matching space. Sort-

ing each field of RBL
 requires O(nlogn) and scanning O(n) oper-

ations, reducing the candidate pairs significantly. Comparing all

by all matching fields would require O(n2) comparisons. The

decreased complexity of our approach allows applying the

blocking passes more than once with different blocking keys.

B. Privacy Analysis

We will present an analysis focusing on two aspects, the

information gained by each of the data holders and the informa-

tion gained by a possible eavesdropper over the transmission

channel, to evaluate the privacy offered to the integrated data by

our protocol.

1) Privacy during Transmission: Private data belonging either

to the matching or to the blocking datasets are encoded using a

secure hash function. Therefore, if an eavesdropper gained the

linkage file, the difficulty to infer information stored in the

Bloom Filters is equivalent to the difficulty of breaking the

secure hash function. Moreover, the attacker should be aware of

the key used in the hash function. Therefore, the attacker should

Algorithm 1. Secure edit distance

Require: String s, Counting Bloom Filter b

 1: Declare integer d[0.. |s|, 0..|b|]

 2: for i = 0 to |s| do

 3: d[i, 0] ← i

 4: end for

 5: for j = 0 to |b| do

 6: d[0, j] ← j

 7: end for

 8: for j = 1 to |b| do

 9: for i = 1 to |s| do

10: k ← APPEND(s[i], i)

11: if k ∈ b then

12: d[i, j] ← d[i − 1, j − 1]

13: else

14: d[i, j] ← min(d[i − 1, j] + 1, d[i, j − 1] + 1, d[i − 1,

j − 1] + 1)

15: end if

16: end for

17: end for

18: return d[|b|, |s|]

RA

M
RB

M

Ai

M

Ai

M

ABloom

M
RA.Enc

BL

Secure Blocking + Secure Matching = Secure Record Linkage

Alexandros Karakasidis and Vassilios S. Verykios 229 http://jcse.kiise.org

pose a brute force attack to identify the hashing key used and

the type of matching algorithm used, since all data are broken

into tokens depending on the agreed matching technique.

2) Privacy at the Dataholders: We have assumed that both of

the data holders follow an Honest But Curious (HBC) behavior

[39], trying to infer knowledge by any available information.

We will evaluate the privacy of our approach using the metric of

Information Gain. Information Gain is closely related to Entropy.

The amount of information in a message is formally measured

by the entropy of the message [40]. The entropy is a function of

the probability distribution over the set of all possible messages.

The entropy of a discrete random variable X is defined as:

H(X) = log2 p(x) (1)

Practically speaking, the measure of entropy provides a mea-

sure of a set’s predictability. Low entropy of X means low

uncertainty and as a result, high predictability of X’s values.

Similarly, the conditional entropy of a discrete random variable

Y given the value of the discrete random variable X, H(Y|X) is

defined as:

H(Y|X) = H(Y|X = x) (2)

Empirically, the notion of conditional entropy aims at quanti-

fying the amount of uncertainty in predicting the value of dis-

crete random variable Y given X.

Information Gain between the discrete random variables Y, X

is defined as

I(Y ;X) = H(Y) − H(Y|X) (3)

Information Gain is a metric to assess the difficulty of infer-

ring the original text (Y), knowing its enciphered version (X), or

that is, how the knowledge of X’s value can reduce the uncer-

tainty of inferring Y. Lower Information Gain means that it is

difficult to infer the original text from the cipher. In Section VI,

we compare the incurred Information Gain in both the Blocking

and the Matching Components to the performance of a rival pri-

vate record matching algorithm.

VI. EXPERIMENTS

In this section, we provide experiments that prove the effec-

tiveness, the security and the high performance of the proposed

framework. We will evaluate the performance of our method in

terms of time execution and matching accuracy and compare the

results to the performance of the original Levenshtein Distance

[3] method and the Bloom Bigram method introduced in [35].

A. Methodology

In our experiments, we will evaluate four methodologies to

compare them. First, we consider the original Levenshtein method

for reference purposes only. The secure Levenshtein Distance

method used in the Private Matching Component of our frame-

work will be the second to evaluate. Of course, we will examine

the behavior of the fully deployed framework we propose, con-

sisting of the Private Blocking Component and the Private

Matching Component. This is displayed in the graphs as ‘Sec.

Levenshtein + Sec. Blocking’. Finally, we will use the Bloom

Bigram algorithm as a rival to our framework comparing its

security, performance and matching accuracy.

We have used in these experiments the bare minimum of the

Blocking Component i.e., without injecting any phonetic codes

to be fair. In this way, we will be able to assess the minimum

security offered by the Blocking Component, without affecting

matching accuracy. The fact that the injection of fake phonetic

codes does not affect matching accuracy is indicated in [20].

B. Data Sets Used

We employed two different data sources to conduct our

experiments. We used synthetic data generated by the FEBRL

[14] data generator for our performance and accuracy experi-

ments and real world data deriving from the DataFerrett [41]

utility for our security evaluation. We used FEBRL to take

advantage of its ability to generate random datasets, but also

due to its feature to create duplicates of these datasets with a

variety of error types. The types of alterations created in dupli-

cate datasets range from simple character deletions, replace-

ments or insertions, to field transpositions and nickname

transformations (e.g. “Vanessa”, “Nessi”).

Particularly, we created five different datasets (A-E), as illus-

trated in Table 3. All these datasets have identical schemas but

hold different data. For the duplicates dataset, we required that

errors will follow a uniform distribution, with up to 1 error per

matching field. The database created by FEBRL has the follow-

ing schema: Firstname, Lastname ,Street Number, Address 1,

Address 2, Suburb, Postcode, State, Date of Birth, Age, Phone

Number, and Socsecid. We will be using the set {Firstname,

Lastname, Area, Address 1} as blocking fields and the set

{Firstname, Lastname, Area} as matching fields. The reason for

using DataFerrett was to be able to assess real world data distri-

butions to extract safe conclusions regarding the security of our

approach. Specifically, we used data derived from the Histori-

cal Census Data from IPUMS 1920 General Sample forming

dataset F, as illustrated in Table 3. From the schema of this

dataset, we used the following field set: Firstname, Lastname,

and Address.

C. Setup

We used MD5 to construct all the methods requiring Bloom

p x()
x χ∈

∑–

p x()
x χ∈

∑–

Table 3. Dataset and experiments

Dataset Original records Duplicate records Source

Performance and accuracy

A 10,000 1,000 FEBRL

B 10,000 2,500 FEBRL

C 10,000 5,000 FEBRL

D 10,000 7,500 FEBRL

E 10,000 10,000 FEBRL

Security evaluation

F 1,050,634 - DataFerett

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 223-235

http://dx.doi.org/10.5626/JCSE.2011.5.3.223 230 Alexandros Karakasidis and Vassilios S. Verykios

Filters. Each of the Filters consisted of 900 bits, and four differ-

ent hash functions. An Intel Core2Duo T5550 was used featur-

ing 2GBs of physical memory for all of the experiments. Data

was stored in a MySQL 5 database. All algorithms were materi-

alized in Java 6.

D. Privacy

This set of experiments aims at evaluating the security

offered by the privacy-preserving methods in our test bed. As

such, the original Levenshtein Distance algorithm will not par-

ticipate in this metric. Moreover, we will separately examine the

Private Blocking component and the Private Matching compo-

nent to be more detailed with our analysis. Specifically, regard-

ing the Private Blocking component, we will present results

ranging from one to three blocking keys. These are represented

in Table 5 and in Fig. 3 in rows 1 to 3 having respectively Method

Ids A to C.

The methodology followed for this set of experiments is as

follows. We measure privacy in terms of Information Gain, as

explained previously. We used dataset F to perform our evalua-

tion. Specifically, the resulting figures concern calculations

over the ‘Lastname’ field of dataset F. We initially encrypted

the ‘Lastname’ field of the dataset using each of the three meth-

ods following to evaluate the Information Gain metric for each

case. We also used blocking sets {Lastname, Firstname} and

{Lastname, Firstname, Address} for the Private Blocking com-

ponent. All calculations necessary for our security analysis were

performed using SQL queries, as in the one displayed in Table 4.

It has to be clarified that in the case of the Soundex method,

the results refer to the plain text version of Soundex. This is due

to the fact that during blocking, information is revealed in the

form of phonetic codes. Party B retrieves phonetic codes, even

for records that will not be matched by the Private Matching

Component due to the nature of blocking itself. Therefore, it is

important to calculate the impact posed to security by our

approach.

The results of our experiments indicate, as expected, that the

secure Levenshtein Distance approach (illustrated by D) is

almost equally secure with Bloom Bigrams (illustrated by E),

since, for the same dataset, the amount of information inferred

in both cases is practically equal. This is due to the fact that

both approaches use the same medium for encryption, i.e.,

Bloom Filters.

However, the most interesting result regards the security per-

formance of the Blocking Component. It is evident from Fig. 3

that in this case, statistically speaking, it is much more difficult

to infer the original text from the Soundex code than both the

Bloom Bigram and secure Levenshtein approaches, even in the

case of using two blocking fields. Finally, using three blocking

fields proves to be as secure as using the Bloom Bigram Field.

The reason for this is twofold. First, data undergoing the

Soundex transformation suffer some information loss, due to

the algorithm’s nature. Second, many strings may be mapped to

the same Soundex code. Conversely, Bloom Filter based

approaches result in a much greater number of ciphers of the

original text. All these results are detailed in Table 5.

Additionally, someone might argue that if party B had a

plaintext list with the original names, it would be able to infer

information combining the plaintext with the phonetic code.

However, this is not exactly the case. Observing the last column

of Table 5, we can see that the information gain, even when

using three blocking keys (which in our case is a candidate key

for our schema) has lower information gain compared to Secure

Levenshtein and Bloom Bigrams.

This result seems awkward at first sight but it is totally expli-

cable considering the properties of phonetic encoding algo-

rithms, since phonetic codes do not feature one to one mapping.

Fig. 3. Information gain (IG) comparison.

Table 4. Sample query for entropy evaluation

SELECT

SUM((Occurences/Totals)*log2(Totals/Occurences))

AS Spec_Entropy, Sndx_Lastname

FROM Joint_Soundex_Tables

GROUP BY Sndx_Lastname

ORDER BY Spec_Entropy DESC

Table 5. Entropy and information gain

Method Method No ciphers H (lastname; cipher) Information gain

A Private blocking component, 1 blocking field 3688 4.3310 9.9576

B Private blocking component, 2 blocking field 805620 2.0773 12.2113

C Private blocking component, 3 blocking field 707239 0.0579 14.2307

D Secure Levenshtein 115948 0.0119 14.2768

E Bloom Bigrams 117865 0.0005 14.2881

Secure Blocking + Secure Matching = Secure Record Linkage

Alexandros Karakasidis and Vassilios S. Verykios 231 http://jcse.kiise.org

Consider the following case. Someone has a Soundex code and

a plaintext that may produce this phonetic code. Even in this

case, it is not 100% sure that the given phonetic code refers to

the plaintext. For example, both “Smith” and “Sandy” share the

same Soundex code, S530.

It is evident that using more blocking fields increases the

probability of compromising privacy, but not significantly.

Thus, even in the case of three blocking fields, the probability

of breaking privacy is marginally lower compared to methods D

and E.

E. Execution Time

This set of experiments aims at assessing the performance of

our complete framework in terms of execution time and com-

paring it to both the classical Levenshtein Distance and Bloom

Bigrams. We also employ the Private Matching component

alone to illustrate the necessity of the blocking step. Fig. 4 com-

pares, using a logarithmic scale, the performance of all the

aforementioned methods. As can be seen, our private record

linkage framework outperforms both classical Levenshtein and

Bloom Bigrams, despite the overhead induced by the crypto-

graphic algorithm used. This clarifies the benefit posed by the

Blocking Component. It compensates for the encryption bur-

den, and further improves execution performance.

F. Matching Accuracy

The aim of this set of experiments is twofold. First, we wish

to assess the correctness of the secure Levenshtein Distance

algorithm we propose. Second, we aim to evaluate the matching

accuracy of our private matching framework compared to the

original Levenshtein Distance algorithm and Bloom Bigram

approach.

We will examine the matching performance of the frame-

work we propose from two aspects. The first regards the behav-

ior of the algorithms for a given matching threshold. That is for

distance based algorithms, Edit Distance of 3 and for Bloom

Bigrams Dice Coefficient of 0.3 (Fig. 5).

At this point, we consider it necessary to state an interesting

detail. Selecting a appropriate matching threshold for the Big-

ram based approach was tricky, since the Dice Coefficient met-

ric, as presented in [35], depends on the size of the Bloom

Filter. As such, this method required some time to properly cali-

brate the threshold, given our Bloom Filter setup. Conversely,

the method we propose is based on the widely used Levenshtein

Distance metric that is much easier to calibrate. However, we

will not delve into more detail, since this issue goes beyond the

scope of this paper.

We employ the Precision, Recall, and F-Score metrics,

widely used by the information retrieval community, to evaluate

our results. Precision is defined as the number of relevant

records retrieved by a search divided by the number of records

retrieved by that search, and Recall is defined as the number of

relevant records retrieved by a search divided by the number of

existing relevant records (that should have been retrieved). F-

Score is the harmonic mean of precision recall and defined as

F = (4)

Regarding the first aspect of our results, we can assess that

our private record linkage framework outperforms classical

Levenshtein Distance in terms of Precision, as shown in Fig. 6a,

while it features slightly lower Recall, as shown in Fig. 6b.

Higher Precision occurs due to the Blocking Component, since

only records with similar phonetic encoding are examined for

matching. Conversely, lower Recall is a side effect of the sensi-

tivity of Soundex to alterations of consonants in the blocking

fields. Thus, a totally different Soundex code is generated, lead-

ing to lower chances of matching. The fact that our suggested

method exhibits similar overall performance to the original ver-

sion is illustrated by the F-Score metric in Fig. 6c. We also

observe that the secure Levenshtein Distance algorithm we pro-

pose behaves identically to the original version, a fact that

proves its correctness. Moreover, we deduce that the differences

in Precision and Recall of our framework from the original Lev-

enshtein Distance are due to the blocking approach we used.

It is evident that our method outperforms Bloom Bigrams in

all of precision (Fig. 6a), Recall (Fig. 6b), and F-score (Fig. 6c)

metrics. This is mainly due to the fact that our approach without

blocking, features identical performance to the classical Leven-

shtein Distance algorithm, in terms of matching accuracy. Not

2
Precision Recall×

Precision Recall+
---×

Fig. 4. Time performance comparison. Fig. 5. Blocking keys time performance.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 223-235

http://dx.doi.org/10.5626/JCSE.2011.5.3.223 232 Alexandros Karakasidis and Vassilios S. Verykios

even the use of the Blocking Component degrades the matching

performance. All these results lead us to the conclusion that our

proposed method is superior to Bloom Bigrams approach in all

cases.

Having established the superior security, accuracy and time

performance of our private record linkage framework against its

rival, it is now time to explore the details of its behavior. There-

fore, in the next set of experiments we have not used the Bloom

Bigrams method.

In this set of experiments, we will assess the matching accu-

racy of our performance, experimenting with a variety of Lev-

enshtein Distance thresholds. We have chosen to use dataset C

to reduce the space of possible combinations. Examining our

results in terms of Edit Distance, we can see in Fig. 7b that

again the proposed framework outperforms the original version

of Levenshtein Distance, while it closely follows its Recall per-

formance (Fig. 7b). The stability of the suggested method is

more evident in Fig. 7c, where we can see that for lower values

of Edit Distance, our method behaves similarly to the original

Levenshtein algorithm, while for bigger values it significantly

outperforms it. Again, this is due to the use of the Blocking

Component, where the phonetic algorithm filters most of the

unwanted candidate matches, leading to a reduced matching

space. Moreover, this set of experiments assures once more the

correctness of our approach, since the results between the clas-

sical Levenshtein Distance and the secure version we propose

are again identical, irrespective of the edit distance. This leads

us to the safe conclusion that this approach can be used instead

of the classical Levenshtein Edit Distance algorithm, when pri-

vacy is required.

G. Blocking Performance

The Blocking Component is an essential part of our protocol,

therefore we study separately how its behavior is affected by the

blocking keys used. We have used five different sets of blocking

keys, as they are listed in Table 6, for this set of experiments.

Fig. 5 displays the results concerning the effect on execution

time of the various key configurations, while Fig. 8 illustrate the

results concerning Precision, Recall and F-Score, for each of the

key combinations used. We used dataset C for this set of experi-

ments and considered an edit distance equal to 3. The results are

compared to the secure Levenshtein algorithm, which we proved

earlier performs identically to its original version, in terms of

matching accuracy. It is evident that increasing the number of

blocking keys, the quality of results increases, while, as expected,

the protocol needs more time to conclude execution. This prop-

Fig. 6. Results for fixed thresholds.

Fig. 7. Precision, recall, Fscore vs. edit distance.

Table 6. Blocking key sets used

Set Blocking keys

A Name

B Name, Lastname

C Name, Lastname, Suburb

D Name, Lastname, Suburb, Address 1

E Name, Lastname, Suburb, Address 1, State

Secure Blocking + Secure Matching = Secure Record Linkage

Alexandros Karakasidis and Vassilios S. Verykios 233 http://jcse.kiise.org

erty allows the application of a variety of strategies during the

matching procedure between matching accuracy and time effi-

ciency.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach to perform

approximate private matching based on the well-known Leven-

shtein Distance algorithm. Our experiments prove the correct-

ness of our method; it outperforms the original algorithm in

terms of execution time, while assuring privacy, and offers

almost the same matching performance, which in some cases is

superior to the original algorithm.

An important feature of our protocol is that we manage to

offer privacy-preserving blocking. Specifically, the Private

Blocking component offers the ability to tradeoff matching

accuracy and speed, without sacrificing privacy. Depending on

the application, we can calibrate the Private Blocking compo-

nent accordingly.

Our future research directions focus on improving perfor-

mance in terms of matching accuracy, to overcome the limita-

tions posed by the phonetic algorithms and to explore ways of

selecting the blocking keys, in such a way that low execution

times are maintained, while matching performance is achieved.

Moreover, we are interested in exploring ways to evenly distrib-

ute computational burden among matching parties. Finally, we

would be interested to modify our protocol to involve more than

two matching parties in the computational process.

REFERENCES

1. R. Baxter, P. Christen, and T. Churches, “A comparison of fast

blocking methods for record linkage,” Proceedings of the ACM

SIGKDD Workshop on Data Cleaning, Record Linkage, and

Object Consolidation, Washington, DC, 2003, pp. 25-27.

2. The European Union, “Directive 95/46/EC of the European Par-

liament and of the Council of 24 October 1995 on the protection

of individuals with regard to the processing of personal data and

on the free movement of such data,” Official Journal of the

European Union, vol. L281, pp. 31-50, Nov. 1995.

3. V. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8,

pp. 707-710, 1966.

4. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Dupli-

cate record detection: a survey,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 19, no. 1, pp. 1-16, 2007.

5. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muth-

ukrishnan, L. Pietarinen, and D. Srivastava, “Using q-grams in a

dbms for approximate string processing,” IEEE Data Engineer-

ing Bulletin, vol. 24, no. 4, pp. 28-34, 2001.

6. M. A. Jaro, “Advances in record-linkage methodology as applied

to matching the 1985 census of Tampa, Florida,” Journal of the

American Statistical Association, vol. 84, no. 406, pp. 414-420,

1989.

7. W. E. Winkler, The State of Record Linkage and Current

Research Problems, Washington, DC: Statistical Research Divi-

sion, US Bureau of the Census, 1999.

8. W. E. Winkler, Overview of Record Linkage and Current

Research Directions, Washington, DC: Statistical Research Divi-

sion, US Census Bureau, 2006.

9. M. K. Odell and R. C. Russell, US Patent Number 1261167,

1918.

10. L. Philips, “Hanging on the metaphone,” Computer Language,

vol. 7, no. 12, pp. 39-43, Dec. 1990.

11. L. E. Gill, “OX-LINK: the Oxford medical record linkage sys-

tem,” Record Linkage Techniques--1997: Proceedings of an

International Workshop and Exposition, Arlington, VA, 1997,

pp.15-33.

12. R. L. Taft, Name Search Techniques. Special Report / New York

State Identification and Intelligence System, Albany, NY: Bureau

of Systems Development, 1970.

13. M. G. Elfeky, V. S. Verykios, and A. K. Elmagarmid, “TAILOR:

a record linkage tool box,” Proceedings of the 18th Interna-

tional Conference on Data Engineering, San Jose, CA, 2002.

14. P. Christen, “Febrl--an open source data cleaning, deduplication

and record linkage system with a graphical user interface,” Pro-

ceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Las Vegas, NV, 2008,

pp. 1065-1068.

15. W. W. Cohen, “The WHIRL approach to integration: an over-

view,” Proceedings of the AAAI-98 Workshop on AI and Informa-

tion Integration, Madison, WI, 1998, pp. 26-27.

16. C. Clifton, M. Kantarcioglu, A. Doan, G. Schadow, J. Vaidya, A.

Elmagarmid, and D. Suciu, “Privacy-preserving data integration

and sharing,” Proceedings of the 9th Workshop on Research

Issues in Data Mining and Knowledge Discovery, In Conjunc-

Fig. 8. Precision, recall, F-score vs. blocking keys.

Journal of Computing Science and Engineering, Vol. 5, No. 3, September 2011, pp. 223-235

http://dx.doi.org/10.5626/JCSE.2011.5.3.223 234 Alexandros Karakasidis and Vassilios S. Verykios

tion with ACM SIGMOD International Conference on Manage-

ment of Data, Paris, France, 2004, pp. 19-26.

17. T. Churches and P. Christen, “Blind data linkage using n-gram

similarity comparisons,” Proceedings of the 8th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, Sydney,

Australia, 2004, pp. 121-126.

18. D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and

Macromolecules: The Theory and Practice of Sequence Compari-

son, Stanford, CA: Center for the Study of Language and Infor-

mation, 1999.

19. V. S. Verykios, A. Karakasidis, and V. K. Mitrogiannis, “Privacy

preserving record linkage approaches,” International Journal of

Data Mining, Modelling and Management, vol. 1, no. 2, pp. 206-

221, 2009.

20. A. Karakasidis and V. S. Verykios, “Privacy preserving record

linkage using phonetic codes,” The 4th Balkan Conference in

Informatics, Thessalonikei, Greece, 2009, pp. 101-106.

21. S. Trepetin, “Privacy-preserving string comparisons in record

linkage systems: a review,” Information Security Journal: A Glo-

bal Perspective, vol. 17, no. 5-6, pp. 253-266, Dec. 2008.

22. D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for

searches on encrypted data,” IEEE Symposium on Security and

Privacy, Berkeley, CA, 2000, pp. 44-55.

23. W. Du and M. J. Atallah, “Protocols for secure remote database

access with approximate matching,” Proceedings of the 7th ACM

Conference on Computer and Communications, and the First

Workshop on Security and Privacy in E-Commerce, Athens,

Greece, 2000.

24. E. Van Eycken, K. Haustermans, F. Buntinx, A. Ceuppens, J.

Weyler, E. Wauters, H. Van Oyen, M. De Schaever, D. Van den

Berge, and M. Haelterman, “Evaluation of the encryption proce-

dure and record linkage in the Belgian National Cancer Regis-

try,” Archives of Public Health, vol. 58, no. 6, pp. 281-294,

2000.

25. A. Inan, M. Kantarcioglu, E. Bertino, and M. Scannapieco, “A

hybrid approach to private record linkage,” Proceedings of the

24th International Conference on Data Engineering, Cancun,

Mexico, 2008, pp. 496-505.

26. M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elmagarmid,

“Privacy preserving schema and data matching,” ACM SIGMOD

International Conference on Management of Data, Beijing,

China, 2007, pp. 653-664.

27. M. Kantarcioglu, W. Jiang, and B. Malin, “A privacy-preserving

framework for integrating person-specific databases,” Privacy in

Statistical Databases UNESCO Chair in Data Privacy Interna-

tional Conference, PSD 2008, Istanbul, 2008, pp. 24-26.

28. S. S. Bhowmick, L. Gruenwald, M. Iwaihara, and S.

Chatvichienchai, “PRIVATE-IYE: a framework for privacy pre-

serving data integration,” Proceedings of the 22nd International

Conference on Data Engineering, Atlanta, GA, 2006, pp. 91-91.

29. R. Hall and S. E. Fienberg, “Privacy-preserving record linkage,”

Proceedings of the International Conference on Privacy in Statis-

tical Databases, Corfu, Greece, 2010, pp. 269-283.

30. A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino, “Private

record matching using differential privacy,” Proceedings of the

13th International Conference on Extending Database Technol-

ogy: Advances in Database Technology, Lausanne, Switzerland,

2010, pp. 123-134.

31. M. J. Atallah, F. Kerschbaum, and W. Du, “Secure and private

sequence comparisons,” Proceedings of the 2003 ACM Work-

shop on Privacy in the Electronic Society, Washington, DC,

2003, pp. 39-44.

32. B. H. Bloom, “Space/time trade-offs in hash coding with allow-

able errors,” Communications of the ACM, vol. 13, no. 7, pp.

422-426, 1970.

33. G. Koloniari and E. Pitoura, “Distributed structural relaxation of

XPath queries,” Proceedings of the 25th International Confer-

ence on Data Engineering, Shanghai, China, 2009, pp. 529-540.

34. L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:

a scalable wide-area web cache sharing protocol,” IEEE/ACM

Transactions on Networking, vol. 8, no. 3, pp. 281-293, Jun.

2000.

35. R. Schnell, T. Bachteler, and J. Reiher, “Privacy-preserving

record linkage using Bloom filters,” BMC Medical Informatics

and Decision Making, vol. 9, no. 1, p. 41, Aug. 2009.

36. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of

string distance metrics for name-matching tasks,” Proceedings of

the IJCAI 2003 Workshop on Information Integration on the Web,

Acapulco, Mexico, 2003, pp. 73-78.

37. R. Rivest, “The MD5 message-digest algorithm,” http://

www.ietf.org/rfc/rfc1321.txt?number=1321.

38. M. A. Hernandez and S. J. Stolfo, “Real-world data is dirty: data

cleansing and the merge/purge problem,” Data Mining and

Knowledge Discovery, vol. 2, no. 1, pp. 9-37, 1998.

39. O. Goldreich, Foundations of Cryptography, Vol 2: Basic Appli-

cations, New York, NY: Cambridge University Press, 2004.

40. C. E. Shannon, “A mathematical theory of communication,” Bell

System Technical Journal, vol. 27, no. 3, pp. 379-423, Jul. 1948.

41. US Census Bureau, “DataFerrett,” http://dataferrett.census.gov/.

Secure Blocking + Secure Matching = Secure Record Linkage

Alexandros Karakasidis and Vassilios S. Verykios 235 http://jcse.kiise.org

Alexandros Karakasidis

Alexandros Karakasidis received his Computer Science Degree from the Department of Computer Science of the
University of Ioannina in 2002. He received his MSc from the same department in 2005. Currently, he is a PhD candidate
in the Department of Computer and Communication Engineering at the University of Thessaly, in Volos, Greece. His
main research interests include privacy preserving record linkage, privacy, security and anonymity in advanced
database systems, data mining and data quality. He has published papers in refereed journals, international conferences
and workshops. He has served as a reviewer for International journals and conferences.

Vassilios S. Verykios

Vassilios S. Verykios received the Diploma in Computer Engineering from the University of Patras in Greece, in 1992 and
the MS and the PhD degrees from Purdue University in 1997, and 1999 respectively. He has been an associate professor
in the School of Science and Technology, at the Hellenic Open University in Patras, Greece, since January 2011. His main
research interests include data management, privacy, security and anonymity, data mining, data reconciliation, and
privacy preserving record linkage. He has published over 70 papers in major referred journals and in the proceedings of
international conferences and workshops, and he has coauthored a monograph on Association Rule Hiding for Data
Mining by Springer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

