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Abstract 
To resolve ambiguities in speech act classification, various machine learning models have been proposed over the past 10 years. In this

paper, we review these machine learning models and present the results of experimental comparison of three representative models,

namely the decision tree, the support vector machine (SVM), and the maximum entropy model (MEM). In experiments with a goal-

oriented dialogue corpus in the schedule management domain, we found that the MEM has lighter hardware requirements, whereas the

SVM has better performance characteristics.
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I. INTRODUCTION

Goal-oriented dialogues such as appointment scheduling, call

routing, and hotel reservation booking consist of sequences of

goal-oriented utterances. The speakers’ intentions implied by

each utterance can be represented using semantic forms called

speech acts [1]. In Table 1, Utterance (3) shows that a user

requests a system to search his schedule. The requesting action

comprising Utterance (3) is the speech act.

As shown in Table 1, to generate correct reactions, a dialogue

system should identify the speech acts indicated by users’ utter-

ances to capture the speaker’s intentions. If a dialogue system

fails to capture users’ intentions, the system will not be able to

decide whether to respond to users’ questions or to request addi-

tional information from users to achieve the task goals. It is dif-

ficult, however, to infer speech acts from surface utterances

because they are context-dependent. For example, the speech
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Table. 1. Example of a goal-oriented dialogue annotated with speech acts

No. Speaker Utterance Speech act

1 User Hello. Greeting

2 System May I help you? Opening

3 User Tell me tomorrow’s schedule. Request

4 System You have an appointment with 

Kildong Hong at 11 a.m.

Response

5 User We changed the appointment. Inform

6 System What changed? Ask_ref

7 User The appointment date changed. Response
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act of Utterance (7) in Table 1 can be evaluated as an “inform”

or “response” in surface analysis. Various models have been

proposed over the past 25 years to resolve this ambiguity. In

recent years, there has been increased interest in using statistical

and machine learning approaches. In this paper, we review a

representative probabilistic model for speech act classification

and then compare various machine learning models to it.

This paper is organized as follows. In Section II, we review ear-

lier work on speech act identification. In Section III, we review

speech act classification models based on machine learning

methods. In Section IV, we experimentally compare the reviewed

models. And finally, in Section V, we draw conclusions.

II. EARLIER WORK

Initial approaches to speech act identification have been

based on knowledge such as plan inference recipes and domain-

specific knowledge [2, 3]. Since these knowledge-based models

depend on costly handcrafted knowledge, they are difficult to

scale up and expand to other domains. To overcome this prob-

lem, in recent years, many machine learning approaches have

been proposed for speech processing. The task of identifying

users’ intentions is an example of an area in which this approach

has been relatively successful as shown using various machine

learning models [4-14]. Machine learning models offer a way to

associate utterance features with particular categories indicating

users’ intentions since the computer can efficiently analyze a

large quantity of data and consider many different feature inter-

actions. However, input features critically affect machine learn-

ing models. If the input features are uninformative and biased,

they do not take full advantage of particular input features that

may provide valuable clues in identifying users’ intentions. Many

feature extraction and selection methods have been proposed to

resolve these problems. Lee et al. [5] have used the structural

information of discourse in speech act analysis. However, such

structural information is insufficient for covering various dia-

logues since the authors used a restricted rule-based model such

as a recursive transition network to perform the discourse struc-

ture analysis. Kim et al. [15] comparatively studied optimal fea-

ture identification for Korean speech act classification. They

evaluated and compared each feature combination. Many research-

ers have studied feature selection methods for text categoriza-

tion and speech act classification [16, 17]. Yang and Pedersen

[17] present a comparative study of the feature selection meth-

ods for statistical learning in text categorization. They found

information gain and use of the χ
2
 statistic to be most effective

in the experiments. Kim et al. [16] proposed that a neural net-

work can partially increase precision and decrease training time

using the feature selection method based on the χ
2
 statistic.

III. SPEECH ACT CLASSIFICATION MODEL

A. Representative Probabilistic Model for Speech
Act Classification

Given n utterances U1,n in a dialogue, let S1,n denote the

speech acts of U1,n. The speech act classification model can then

be formally defined as follows:

. (1)

We can rewrite Equation (1) as Equation (2) using the Bayes

theorem. We exclude P(U1,n) from Equation (s) since it is

always constant for S1,n:

 

. (2)

Next we simplify Equation (2) by making the following

assumptions: the current speech act is only dependent on earlier

speech acts, and the current utterance is dependent on its speech

act. With these assumptions, we formulate the speech act classi-

fication model as a product of sentential probability 

and contextual probability  [4, 18] as shown in

Equation (3):

SA(U1,n) . (3)

Equation (3) is a representative probability model (a so-called

hidden Markov model, HMM), which has been the basis of

many machine learning approaches to speech act classification.

B. Machine Learning Models Adopted in Speech
Act Classification

The earlier machine learning approaches for speech act

classification can be divided into 3 groups: rule-, margin-, and

statistics-based. The main idea of the rule-based group is to

automatically generate a set of ordered rules from a training

corpus. Transformation-based learning (TBL) and a decision

tree (DT) are often used for speech act classification [7, 19].

The central idea of TBL is to learn an ordered set of symbolic

rules according to their contribution to the training corpus. A

DT is a decision-making mechanism that automatically generates

possible choices according to information gain. TBL and the

DT offer the advantage of having human-interpretable rules that

can be manually edited for performance tuning.

The main idea of the margin-based group is to identify the

most effective decision boundaries that separate positive

examples and negative examples in a vector space. A support

vector machine (SVM) and a multilayer perceptron (MLP; a

feed forward artificial neural network model) have shown good

performance in speech act classification [20, 21]. The goal of an

SVM is to find the particular hyperplane that maximizes the

margin of separation between a cluster of positive examples and

a cluster of negative examples. An SVM transforms the given

non-linear problems into linear problems by projecting input

features into higher dimensions and then quickly solving the

given problems high performance. An SVM is one of the best

known binary classification models. The goal of MLP is to find

the set of weight values that will cause the neural network out-

put to match the actual target values as closely as possible. In

particular, anything that can be represented as a mapping

between vector spaces can be approximated to arbitrary preci-

sion by MLP (the most frequently used type). In practice, MLP
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is especially useful for solving mapping problems to which hard

and fast rules cannot easily be applied.

The goal of the statistics-based group is to overcome the

following weak points of an HMM: the observation bias problem

and the label bias problem. A maximum entropy model (MEM)

and conditional random fields (CRFs) are representative statistical

models that are adopted in speech act classification [13, 22]. A

MEM focuses on relaxing the 2 independence assumptions of

the HMM mentioned in Section III-A. Due to the strong

independence assumptions, the observation targets of the HMM

are restricted to atomic entities such as words and parts of

speech (POS). In particular, it is not practical to represent

multiple interacting features or long-range dependencies of the

observations [23]. In Equation (3), all terms of the right hand

side are represented by conditional probabilities. We can esti-

mate the probability of each term using Equation (4):

. (4)

Now we can evaluate P(a,b) using the MEM shown in Equa-

tion (5) [24]: 

, where , i = {1, 2, ..., k}. (5)

In Equation (5), a is a speech act, depending on the term, b is

the context of a, π is a normalization constant, while αi  is the

model parameter corresponding to each feature function, fi.

CRFs are focused on resolving the problem of transition

probabilities being locally normalized (the so-called label bias

problem): the transitions leaving a given state compete only

against each other rather than against all of the other transitions

in the model [23] as shown in Equation (6):

, where  is the entire obervation 

sequence. (6)

Machine learning model performance is critically affected by

the quality of the input features (i.e., how informative the input

features are). Therefore, many researchers have performed

various feature extraction methods [5, 15, 16]. Kim et al. [15]

comparatively studied optimal feature identification for Korean

speech act classification. Table 2 shows a set of optimal features

proposed by Kim et al. [15].

As shown in Table 2, input features for speech act classification

are divided into two types: one pertains to the input features

associated with the sentential probability  in Equation

(3), while the other pertains to the input features associated with

the contextual probability  in Equation (3). The

former are generally called sentential features, while the latter

are called contextual features. In many cases, sentential features

are too numerous to be used as inputs to machine learning

models. Therefore, methods of removing non-informative

features have been required. Yang and Pedersen [17] performed

a comparative study of optimal feature selection for document

classification. They showed that the χ2 statistic outperforms

mutual information and information gain in document

classification. The χ
2
 statistic measures the lack of indepen-

dence between a feature, f, and a category, S (i.e., a speech act)

as shown in Equation (7):

. (7)

In Equation (7), A is the number of times that f and S co-

occur, B is the number of times that f occurs without S, C is the

number of times that S occurs without f, and D is the number of

times neither S nor f occur. To remove non-informative features,

the maximum χ2 statistic of a feature-category pair is calculated,

as shown in Equation (8), and the top-n features are selected

according to the feature scores:

{χ
2
(f, S

k
). (8)

In Equation (8), S k is the k th instance among m speech acts.

VI. EXPERIMENTS

A. Data Sets and Experimental Settings

We collected a Korean dialogue corpus simulated in a schedule

management domain similar to appointment scheduling and

alarm setting. The dialogue corpus was obtained by eliminating

interjections and erroneous expressions from the original

transcriptions of simulated dialogues between two speakers, to

whom a task of the dialogue had been given in advance: one

participant freely asks something about his/her daily schedules,

and the other participant responds to the questions or asks some

questions in return, using knowledge bases provided in advance.

This corpus consists of 900 dialogues, 20,079 utterances (22.3

utterances per dialogue). Each utterance in the dialogues is

manually annotated with speech acts and concept sequences.

Table 3 shows part of the annotated dialogue corpus.

In Table 3, KS represents a Korean sentence and EN represents

the translated English sentence that is not written in the original

dialogue corpus. SP has a value of either User or System depending

on the speaker. SA represents a speech act. In this paper, we

define 11 domain-independent speech acts (Table 4).

The manual tagging of speech acts was performed by five
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Table 2. Optimal feature set for Korean speech act classification

Type of features Optimal features

N-gram Morpheme-parts of speech pair

Last predicate information Last word

Last verb

Last adverb

The endings of a word

Grammatical morpheme sequence/set Grammatical morpheme sequence

Surface information Length of utterance (S/M/L)

Context information The previous speech act of 

a partner’s utterance

The previous speech act of 

a speaker’s utterance
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graduate students with dialogue analysis knowledge and post-

processed by a student in a doctoral course for consistency. To

evaluate various machine learning models, we divided the

annotated dialogue corpus into the training corpus (800 dialogues)

and the testing corpus (100 dialogues). We selected a representative

model per machine learning group for use as comparison models:

a DT in the rule-based group, an SVM in the margin-based

group, and a MEM in the statistics-based group. We selected

MEM instead of CRFs in the statistics-based group because

CRFs showed performance similar to the MEM despite the

requirement of much more training time. We think that CRFs

are more appropriate for batch jobs, such as POS tagging and

named entity (NE) tagging, which are started after all strings

have been input. The comparison models used the same input

features as in Table 2. The numbers of features for machine

learning methods are determined experimentally. A total of

3,000 sentential features were selected based on the χ2 statistic

in Equation (8) for each SVM and MEM. Because the feature

selection did not improve DT performance, it used all of the

sentential features (10,082 features). The toolkits used for

implementations included C4.5 [25] for the DT, SVMlight [26]

for the SVM, and MEMT [27] for the MEM. We set all parameters

of each toolkit to default values.

B. Experimental Results

The first experiment performed evaluated the memory

requirements and processing speeds of the various models.

Table 5 shows the results of the first experiment. The comparison

Table 3. Part of the annotated dialogue corpus

Tag Values

/ID/ 3-9

/SP/ User

/KS/ 약속 날짜와 장소가 바뀌었어 .

/EN/ The appointment date and place were changed.

/SA/ Inform

/ID/ 3-10

/SP/ System

/KS/ 바뀐 날짜가 언제인가요 ?

/EN/ When is the changed date?

/SA/ Ask_ref

/ID/ 3-11

/SP/ User

/KS/ 12월  5일 

/EN/ December 5 

/SA/ Response

SP: a value of either User or System depending on the speaker, KS:

Korean sentence, EN: the translated English sentence that is not written

in the original dialogue corpus, SA: speech act.

Table 4. Speech acts and their meanings

Speech act Description Occurrence ratio in corpus

Greeting The opening greeting of a dialogue 9.48

Expressive The closing greeting of a dialogue 8.80

Opening Sentences for opening a goal-oriented dialogue 0.02

Ask_ref Wh-questions 22.52

Ask_if Yn-questions 2.70

Response Responses of Ask_ref, Ask_if, Request 37.99

Request Declarative sentences for requesting actions 14.54

Ask_confirm Questions for confirming previous actions 0.03

Confirm Reponses of Ask_confirm 0.03

Inform Declarative sentences for giving information 2.05

Accept Agreement 1.83

Table 5. Comparison of memory requirements and processing speeds

Model
Training Testing

Memory usage (MB) Spending time (sec) Memory usage (MB) Response time (sec/utterance)

C4.5 276.69 1973.86 19.98 0.06

SVM 10.61 715.27 0.83 0.04

MEM 5.60 46.47 0.75 0.01

SVM: support vector machine, MEM: maximum entropy model.
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models were evaluated on a personal computer with an Intel

Xeon 2.00 GHz CPU, 4 GB MB memory, and Red Hat Linux.

As shown in Table 5, the memory usage and spending time of

a DT showed low performance compared to those of the other

methods because the feature selection did not work in the DT.

Because an SVM is a binary classification method, extension of

the binary classification using an SVM is normally applied to n-

ary classification. Therefore, the SVM requires more memory

and computation time than does a MEM.

The second experiment compared the performance of the

various models. Table 6 shows the model performance in terms

of various evaluation measures such as the accuracy, macro

precision, macro recall rate, and macro F1 measure.

In Table 6, the accuracy is the proportion of correct speech

acts of those returned. The macro precision is the average

proportion of correct speech acts per category of those returned.

The macro recall rate is the average proportion of correctly

returned speech acts per category of those that are correct. The

macro F1-measure combines the macro precision and macro

recall rate with an equal weighting in the following form: F1 =

(2.0 × macro precision × macro recall rate)/(macro precision +

macro recall rate). As shown in Table 6, an SVM shows the best

performance, which is similar to Kim et al. [15], which reported

that the MEM is also an efficient method for speech act

classification because it has advantages in terms of hardware

requirements and exhibits a performance of <1% compared

with the SVM.

V. CONCLUSION

We reviewed the earlier machine learning methods for Korean

speech act classification. First we reviewed a representative

statistical model. Based on the statistical model, we reviewed

three groups of machine learning models: a rule-based group, a

margin-based group, and a statistics-based group. In the

experiments with a goal-oriented dialogue corpus in a schedule

management domain, we selected a single representative per

group among previous models: C4.5 in the rule-based group,

SVM in the margin-based group, and MEM in the statistics-based

group. We then compared the representative models using various

evaluation measures. The experimental results revealed that the

MEM offers advantages in terms of hardware requirements

while the SVM offers advantages in terms of performance.
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