
Copyright 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 5, No. 4, December 2011, pp. 294-304

Load Shedding for Temporal Queries over Data Streams

Mohammed Al-Kateb* and Byung Suk Lee
Department of Computer Science, The University of Vermont, Burlington, VT, USA

malkateb@cs.uvm.edu, bslee@cs.uvm.edu

Abstract
Enhancing continuous queries over data streams with temporal functions and predicates enriches the expressive power of those que-

ries. While traditional continuous queries retrieve only the values of attributes, temporal continuous queries retrieve the valid time

intervals of those values as well. Correctly evaluating such queries requires the coalescing of adjacent timestamps for value-equivalent

tuples prior to evaluating temporal functions and predicates. For many stream applications, the available computing resources may be

too limited to produce exact query results. These limitations are commonly addressed through load shedding and produce approxi-

mated query results. There have been many load shedding mechanisms proposed so far, but for temporal continuous queries, the pres-

ence of coalescing makes theses existing methods unsuitable. In this paper, we propose a new accuracy metric and load shedding

algorithm that are suitable for temporal query processing when memory is insufficient. The accuracy metric uses a combination of the

Jaccard coefficient to measure the accuracy of attribute values and PQI interval orders to measure the accuracy of the valid time inter-

vals in the approximate query result. The algorithm employs a greedy strategy combining two objectives reflecting the two accuracy

metrics (i.e., value and interval). In the performance study, the proposed greedy algorithm outperforms a conventional random load

shedding algorithm by up to an order of magnitude in its achieved accuracy.

Categories: Ubiquitous computing

Keywords: Algorithms; Load shedding; Data streams; Temporal query processing

I. INTRODUCTION

Continuous queries [1] are standing queries, which typically

run indefinitely. These queries are central to applications deal-

ing with continuous and unbounded data streams [2]. Many of

these applications handle data whose values may change over

time. For this class of application, enhancing continuous queries

with temporal functions and predicates [3] enriches the seman-

tics of queries and, consequently, enables users to define tempo-

ral expressions in their queries. In this paper we refer to this

class of queries as continuous temporal queries.

Unlike traditional continuous queries that typically return

only the values of specified attributes, a continuous temporal

query returns the valid time interval of each value as well the

attribute values themselves [4]. The selection predicates in this

type of query includes a temporal predicate for the time inter-

vals associated with the attribute values satisfying the value

predicate.

To guarantee the correctness of the result of a temporal

query, adjacent or overlapping timestamps of value-equivalent

tuples should be merged prior to the evaluation of the temporal

function or predicate specified in the query. This merge process

is referred to as temporal coalescing [5]. This coalescing is

essential for temporal query processing because queries evalu-

ated on uncoalesced data may generate incorrect answers [5, 6].

The same is true for continuous temporal queries over data

streams [7].

For stream applications, it is not uncommon to have insuffi-

cient system resources to process or keep all tuples arriving

from the input data stream in memory [2]. In these situations,

discarding a fraction of tuples, called load shedding [8], often

becomes necessary to resolve the problem. With load shedding

Received 8 May 2011, Revised 14 August 2011, Accepted 9 November 2011

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2011.5.4.294 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Load Shedding for Temporal Queries over Data Streams

Mohammed Al-Kateb and Byung Suk Lee 295 http://jcse.kiise.org

in place, however, the system cannot produce an exact result,

thus ensuring the accuracy of an approximate query result is an

important issue [9].

In this paper, we study the problem of load shedding from a

data stream in the presence of temporal coalescing, with a par-

ticular focus on the case of insufficient memory to keep all

tuples in the window specified in a continuous temporal selec-

tion query. The presence of coalescing as an integral step in

temporal query processing poses two major challenges for the

load shedding mechanism.

The first challenge is that the accuracy metrics used in the

existing load shedding methods (e.g., the number of tuples in

the approximate result as in [10-16] or the relative deviation

between estimated and actual aggregate values as in [17, 18])

are not suitable for continuous temporal queries. Since a tempo-

ral query returns both attribute values and their valid time inter-

vals, the accuracy metric should take both into account. The

second challenge is a direct consequence of the first challenge,

that is, the existing load shedding algorithms (whether random

load shedding as in [17] or semantic load shedding as in [11])

are therefore inadequate for temporal queries.

To address the first challenge, we introduce a new accuracy

metric that combines a value similarity metric and an interval

similarity metric. The proposed metric is not only intuitive and

semantically correct but also has theoretical backing. Specifi-

cally, the value similarity metric is based on the Jaccard coeffi-

cient [19], and the interval similarity metric is based on PQI

interval orders [20]. The Jaccard coefficient is a common statis-

tic used for comparing the similarity between two sets. PQI

interval orders provide a similarity metric for comparing inter-

vals (mapped from elements).

In response to the second challenge, we present a new “coa-

lescence-aware” algorithm that keeps the effects of coalescing

in mind when deciding which tuples to drop. Making an optimal

load-shedding decision requires holding all tuples in memory

but, because the available memory is limited, we propose a

greedy algorithm that takes a quadratic running time and con-

sumes linear memory space. It employs a greedy strategy that

combines two greedy objectives, one targeting the value simi-

larity and the other targeting the interval similarity. More spe-

cifically, it tries to minimize the number of extraneous tuples

and the length of coalesced intervals lost in the approximate

result as a consequence of dropping tuples.

A performance study compares the proposed coalescence-

aware algorithm to a conventional random load shedding algo-

rithm. (Note that other existing load-shedding algorithms are

not comparable, since they do not work with coalescing.) The

main purpose of the performance study is to compare the two

mechanisms in terms of the achieved accuracy. The experiment

results show that the accuracy improvement of our proposed

mechanism over the random mechanism approaches an order of

magnitude as the coalescing probability increases and the avail-

able memory size decreases. We have also examined the effects

of the two greedy objectives on the performance of the pro-

posed coalescence-aware algorithm and confirmed that the

objectives are well balanced in their influence on the accuracy

achieved by the greedy algorithm.

The main contributions of this paper can be summarized as

follows.

■ It introduces the new problem of load shedding for continuous

temporal queries over a windowed data stream.
■ It identifies coalescing as an important barrier to overcome,

and proposes a new accuracy metric and a new algorithm for

load shedding while taking coalescing effects into consider-

ation.
■ It presents a thorough performance study on the proposed coa-

lescence-aware algorithm and two partially coalescence-aware

algorithms (each reflecting one of the two greedy objectives).

The rest of this paper is organized as follows. Section II pro-

vides a relevant background and introduces the model of contin-

uous temporal queries assumed in this paper. Section III

presents the proposed accuracy metric and load shedding algo-

rithm. Section IV presents the experiments and discusses the

results. Section V reviews related work. Section VI concludes

this paper and suggests future work.

II. CONTINUOUS TEMPORAL QUERIES OVER DATA
STREAMS

We characterize continuous temporal queries by their support

for temporal functions and predicates. These queries can be

seen as a hybrid of traditional continuous queries over data

streams [1] and temporal queries over temporal databases [4]. In

this section, we first summarize the models of these two base

query types and then introduce and motivate the model of the

hybrid query type.

A. Continuous Queries Over Data Streams

A data stream is an unbounded sequence of tuples, and typi-

cal queries on data streams run continuously for an indefinitely

long time period [1, 2]. We assume that each tuple arriving from

a data stream is timestamped. Additionally, we assume that all

tuples arrive in an increasing order of their timestamp and that

tuples in a window are maintained in an increasing order of

their timestamps.

In many cases, only tuples bounded by a window on a data

stream are of interest at any given time [2]. A window may be

tuple-based or time -- based depending on whether its size is the

number of tuples or the window time span. The solutions pre-

sented in this paper --the proposed accuracy metric and the load

shedding algorithm- work well with either window model.

An example continuous query is shown below, considering a

wireless sensor network in which sensors are mounted on

weather boards to collect timestamped topology information

along with humidity, temperature, etc. [21]

Example 1. Continuous Query

Assume a query that monitors humidity values in the past 15

minutes and continuously outputs, at every minute, humidity

values and their associated timestamp values if it finds that the

humidity exceeds 75%. This query can be expressed as follows

using the Continuous Query Language (CQL) syntax [22].

SELECT S.humidity, S.timestamp

FROM Stream S RANGE 15 MINUTE SLIDES 1 MINUTE

WHERE S.humidity > 75;

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 294-304

http://dx.doi.org/10.5626/JCSE.2011.5.4.294 296 Mohammed Al-Kateb and Byung Suk Lee

In this query syntax, RANGE specifies the window size and

SLIDES specifies the sliding window interval.

B. Temporal Queries Over Temporal Databases

Time is a ubiquitous aspect in almost all real-world phenom-

ena that many real-world applications deal with data whose val-

ues may change over time. All these applications thus have

intrinsic needs to model time, and it has motivated the database

community to undertake an extensive study of temporal data

management for relational databases [4], semi-structured data-

bases (e.g., XML [23]), and data streams [24].

Temporal databases make it possible for the user to store the

history of data and to retrieve this history through temporal que-

ries. The importance of such capabilities has become evident

with significant commercial interests ensuring that major

DBMS products [25, 26] are currently supporting temporal data

management as core features.

Two time dimensions are of interest in the handling of tem-

poral data -- valid time interval and transaction time interval

[4]. The former is the time interval during which the stored fact

is true in reality. The latter is the time interval during which the

fact is present in the database. A temporal database can support

the former only (called a valid-time database), the latter only

(called a transaction-time database), or both (called a bitempo-

ral database). In this paper we consider a valid-time database.

In addition, temporal databases can support either attribute or

tuple timestamping depending on whether the time interval is

associated with individual attributes or with the entire tuple of

all attributes [4]. In this paper we consider tuple timestamping.

Temporal databases can be queried using Temporal SQL

(TSQL) [27], which is essentially SQL that has been extended

with temporal predicates and functions. The correct evaluation

of temporal predicates and functions demands temporal tuples

to be coalesced first. As already mentioned, coalescing is a fun-

damental operation in any temporal data model, and is essential

to temporal query processing since queries evaluated on uncoa-

lesced data may generate incorrect answers [5, 6] (see the exam-

ple below).

Example 2. Importance of Coalescing

Consider the temporal table Employee in Table 1, where for

simplicity only Andy's employment history records are shown.

The second tuple reflects a change of his salary and the third

tuple reflects a change of his department.

Suppose the manager wants to know which employees

worked for the R&D Department for more than six consecutive

years. The query can be expressed as follows in TSQL [27].

SELECT E.NAME, VALID (E)

FROM Employee E (Name, Department) as E

WHERE CAST (VALID (E) AS INTERVAL YEAR) > 6;

In this syntax, E(Name, Department) specifies coalescing

over Name and Department, VALID(E) returns the valid time

interval of tuples in the result, and the CAST clause converts

the valid time interval to the specified granularity, i.e., year. The

query returns a pairs of values: Name and the interval during

which the values of the coalescing attributes stay the same. With

coalescing, the first two tuples in Table 1 (both of Andy in R&D)

are merged because their valid time intervals are adjacent to

each other. The merged time interval, [2001, 2008], is greater

than six years, and so Andy is in the query result. Without coa-

lescing, in contrast, Andy cannot be in the query result because

the time interval of neither the first nor the second tuple alone is

greater than six years.

C. Continuous Temporal Queries Over Data Streams

As already mentioned, we see the continuous temporal

stream query model as a hybrid of the continuous stream query

model and the temporal database query model. What this entails

in the temporal representation of tuples is that, when a new

tuple, si, is added to a window, we model the valid time interval

of its preceding tuple, si-1, as (ti-1, ti), where ti-1 and ti are the

timestamps of si-1 and si, respectively. Moreover, inherited from

temporal database queries, continuous temporal stream queries

output not only the values of the coalesced attributes but also

their valid time intervals. As mentioned in Section II-B, the cor-

rect evaluation of temporal predicates and functions in a contin-

uous temporal query requires that value-equivalent tuples with

adjacent time intervals should be merged before a query can be

evaluated for them.

In this paper, we consider continuous temporal selection que-

ries (see Example 3 below) as the query type. A temporal selec-

tion query is adequate enough for our purpose of studying the

effect of load shedding. Besides, we believe queries of this type

are useful in a wide range of stream applications.

Example 3. Temporal Continuous Selection Query

In the application assumed in Example 1, consider another

query for monitoring the stream of sensor readings across

arriving temporal tuples. Every minute, the query processor

outputs the humidity value and the associated time interval if it

finds that the value has been the same for 3 consecutive minutes

or longer. This query can be expressed as follows using the syn-

tax borrowed from CQL [22] and TSQL [27].

SELECT S.humidity, VALID (S)

FROM Stream (humidity) as S RANGE 15 MINUTE

SLIDES 1 MINUTE

WHERE CAST (VALID (S) AS INTERVAL MINUTE) >= 3;

III. COALESCENCE-AWARE LOAD SHEDDING

As mentioned in Section I, making load shedding coales-

cence-aware requires a new accuracy metric and a new load-

shedding algorithm because the existing ones do not work with

coalescing. In this section, we propose a new accuracy metric in

Section III-B and a new algorithm in Section III-C.

Table 1. Andy’s employment records

Name Department Salary Start End

Andy R&D 100 k 2001 2004

Andy R&D 120 k 2004 2008

Andy Sales 120 k 2008 Now

Load Shedding for Temporal Queries over Data Streams

Mohammed Al-Kateb and Byung Suk Lee 297 http://jcse.kiise.org

A. Preliminaries

Definition 3.1 Coalesced tuple. A coalesced tuple CTi is

defined as a pair of an attribute value and a time interval of the

coalesced tuple (Fig. 1).

Definition 3.2 Exact query result. An exact result of a contin-

uous temporal query, denoted as E, is defined as a sequence of

exact coalesced tuples CT1, CT2, ...CTn (Fig. 2).

Definition 3.3 Approximate query result. An approximate

result of a continuous temporal query, denoted as A, is defined

as a sequence A1, A2, .. .An where Ai is the set of approximate

coalesced tuples CTij resulting from the exact coalesced tuple

CTi due to load shedding (Fig. 3).

Property l. Bounding Property on Approximate Coalesced

Tuples

As a result of load shedding, an exact coalesced tuple CTi

reduces to zero or more approximate coalesced tuples in Ai ∈ A

such that the attribute values of all the approximate coalesced

tuples are the same as that of CTi and the time interval of every

approximate coalesced tuple is contained in that of CTi.

Proof: This property can be proved through a case analysis.

As a result of load shedding, one and only one of the following

four cases can happen to CTi.
■ Case 1: CTi is retained without any alteration. This case hap-

pens when none of the tuples coalesced in CTi is dropped.
■ Case 2: An exact coalesced tuple disappears in its entirety.

This case occurs when a tuple not coalesced with its adjacent

tuples in the exact result is dropped.
■ Case 3: An exact coalesced tuple is decreased in its interval.

This case occurs when a tuple which is either the first or the

last of the tuples coalesced in the exact result is dropped.
■ Case 4: An exact coalesced tuple is split into two approximate

coalesced tuples of shorter intervals. This case occurs when a

tuple in the middle of the tuples coalesced in the exact result is

dropped.

It is obvious in all four cases that the bounding property

holds.

B. Accuracy Metric

Since the result of a continuous temporal query consists of

both the values of coalesced attributes and their associated valid

time intervals (recall Definitions 3.2 and 3.3), an accuracy met-

ric for this class of queries should take both into account. In this

regard, we propose an accuracy metric based on the concept of

the Jaccard coefficient [19] and the concept of PQI interval

orders [20].

The Jaccard coefficient, J (Dx, Dy), measures the similarity

between two data sets, Dx and Dy, and is defined as the ratio

between the cardinality of their intersection and the cardinality

of their union.

(1)

We use the Jaccard coefficients to compare the coalesced

attribute values between the exact and the approximate query

result, that is, between E ≡ CT1, ..., CTn and A ≡ A1, ..., An .

Note that there may be more than one coalesced tuple in Ai for

each CTi in E (recall Definitions 3.2, 3.3, and Property 1). We

thus need to apply Equation 1 to multisets. That is,

 = (2)

where and are the multiset intersection and union opera-

tors, respectively (Let f(D1, x) and f(D2, x) be the multiplicity of

〈 〉

〈 〉

J Dx, Dy()
Dx Dy

Dx Dy

--------------------=

∪

∪

〈 〉 〈 〉

J E, A()
E + A

E + A

min Ei , Ai()
i:CT

i
E∈∑

max Ei , Ai()
i:CT

i
E∈∑

---= =

∪

∪

min 1, Ai()
i:CT

i
E∈∑

max 1, Ai()
i:CT

i
E∈∑

+

∪

+∪

CT1, CT2, and CT3 are coalesced tuples.

Fig. 1. An example of coalesced tuples.

E is an exact query result.

Fig. 2. An example of an exact query result.

A is an approximate query result.

Fig. 3. An example of an approximate query result.

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 294-304

http://dx.doi.org/10.5626/JCSE.2011.5.4.294 298 Mohammed Al-Kateb and Byung Suk Lee

an element x in the multisets D1 and D2, respectively. Then, f(D1

�D2, x) and f(D1 D2, x) are defined as min{f(D1, x), f(D2, x)},

and max{f(D1, x), f(D2, x)}, respectively). Note |Ei| equals 1

since it is a singleton set. The numerator term min(1, |Ai|)

equals 0 only if the exact coalesced tuple disappears as a result

of load shedding (case 2 in the proof of Property 1) but other-

wise will always equals 1.

Equation 2 considers only the coalesced attribute values, and

so it should be modified to consider the interval similarity factor

as well. For this purpose, we adopt PQI interval orders used to

compare intervals [20, 28]. In this scheme, given two intervals x

and y, the similarity between them is defined as the length of

their interval intersection () divided by the length of their

interval union ().

(3)

(See Appendix for more information about PQI interval

orders.)

We use the PQI interval orders to compare an exact coa-

lesced time interval with the set of approximate coalesced time

intervals derived from it. Let Ii and Iij be the coalesced intervals

of CTi and CTij, respectively. We know from Property 1 that Iij is

a subinterval of Ii for every j. Hence, the interval similarity for a

given exact coalesced tuple is computed as follows.

(4)

Equation 4 essentially computes the interval reduction ratio

of the exact coalesced tuple CTi due to load shedding. Its value

equals 1 only if CTi is retained intact as a result of load shedding

(the case 1 in the proof of Property 1), but otherwise is always

less than 1. In the proposed accuracy metric, we use this ratio to

scale the intersection term of CTi in Equation 2.

(5)

Note that min(1, |Ai|) equals either 0 or 1 and that if min(1,

|Ai|) = 0 (i.e., the case 2) then PQI (CTi, Ai) = 0. Hence, Equa-

tion 5 can be further simplified as follows.

(6)

This accuracy metric has the nice property of limiting the

computed accuracy to a maximum of 1.0 (i.e., 100%) and

allowing for intuitive interpretations as illustrated in the follow-

ing example.

Example 4. Proposed Accuracy Metric.

As shown in Fig. 4, consider an exact result (E) – resulting

from coalescing five actual tuples – and five possible approxi-

mate results (A1, A2, A3, A4, A5) – each resulting from drop-

ping one of the five actual tuple. Using Equation 6, the

accuracy of each approximate result is calculated as follows.

We see that the resulting accuracy is the lowest in A3, where

the third tuple, <83, [7, 10)> is dropped. In this case, it intro-

duces a temporal gap between the second and the fourth tuples

(which are coalesced with the third tuple in the exact result).

This causes an extra attribute value (hence we get a 2 in the

denominator) and a missing part of the exact temporal interval

(hence we get 6/9 in the numerator) in the approximate result.

On the other hand, the highest accuracy is achieved in either

A2, where the second tuple is dropped, or in A4 where the fourth

tuple is dropped. The reason is that dropping either tuple causes

only the missing part of the exact temporal interval (as in A3)

and neither has an extra attribute value (as in A3) nor is miss-

ing the entire interval (as in A1 and A5).

C. Coalescence-Aware Load Shedding Algorithm

The problem of coalescence-aware load shedding can be

stated formally as follows.

Problem definition: Given the memory M (of size |M| tuples)

and a continuous temporal query which specifies coalescing

tuples in a window WS (of size |WS| tuples) over a data stream

S, we discard |WS| − |M| tuples from the |WS| tuples with the

+

∪

+∪

.

∪

.

∪

PQI x, y()
x . y

x . y
--------------=

∪

∪

PQI CTi, Ai()
j:CTij Ai∈

∑ Iij

Ii

-----------------------------=

ACC E, A()
min 1, Ai() PQI CTi, Ai()×

i:CT
i

E∈∑

max 1, Ai()
i:CT

i
E∈∑

---=

ACC E, A()
 PQI CTi, Ai()

i:CT
i

E∈∑

max 1, Ai()
i:CT

i
E∈∑

---=

ACC E, A1()

0

4 1–

13 4–

13 4–

16 13–

16 13–
----------------+ +

1 1 1+ +
--

0 1 1+ +

1 1 1+ +

2

3
---= = =

ACC E, A2()

4 1–

4 1–

13 7–

13 4–

16 13–

16 13–
----------------+ +

1 1 1+ +
--

0
6

9
--- 1+ +

1 1 1+ +

2.6

3
-------= = =

ACC E, A3()

4 1–

4 1–

7 4–() 13 10–()+

13 4–
--

16 13–

16 13–
----------------+ +

1 2 1+ +
---=

1
6

9
--- 1+ +

1 2 1+ +

2.6

4
-------= =

ACC E, A4()

4 1–

4 1–

10 4–

13 4–

16 13–

16 13–
----------------+ +

1 1 1+ +
--

1
6

9
--- 1+ +

1 1 1+ +

2.6

3
-------= = =

ACC E, A5()

4 1–

4 1–

13 4–

13 4–
------------- 0

0

16 13–
----------------+ +

1 1 1+ +

1 1 0+ +

1 1 1+ +

2

3
---= = =

E is the exact query result whereas A1 through A5 are approximate query results.

Fig. 4. An example of load shedding.

Load Shedding for Temporal Queries over Data Streams

Mohammed Al-Kateb and Byung Suk Lee 299 http://jcse.kiise.org

objective of maximizing the accuracy of the query output

subject to the constraint that |M| < |WS|.

Finding an optimal solution would require holding all |WS|

tuples in memory to decide on the optimal load shedding deci-

sion, but the available memory can hold only |M| tuples (as |M|

< |WS|). Even if it were possible (which it is not), it would be

computationally intractable to find from O () possible sub-

sets an optimal subset of tuples to discard. This problem is

harder than the NP-hard nonlinear binary integer programming

problem, as there is no well-formed functional form for com-

puting the accuracy for a given set of binary integer assign-

ments (e.g., 1 for retaining a tuple and 0 for discarding a tuple).

So, we propose a greedy algorithm, which takes a quadratic run-

ning time in the worst case and consumes a linear amount of

storage space.

The proposed algorithm decides which tuple to drop from

memory upon the arrival of each new tuple from the input data

stream. The algorithm uses a greedy strategy based on two

objectives for achieving value similarity (Equation 2) and inter-

val similarity (Equation 4).

Objective 1. Dropping a tuple may introduce an extraneous

tuple in an approximate result if it causes a temporal gap

between tuples that are coalesced in the exact result. Let

denote the number of such extraneous tuples resulting from

dropping a tuple sj. Note that is 1 in the case 4 in the proof of

Property 1 and is 0 in other cases. Evidently, we want to mini-

mize the number of extraneous tuples, and, thus, we set the first

objective to drop a tuple with the smallest (i.e., = 0) first. A

tie is broken by random choice.

Objective 2. Dropping a tuple may also cause either all or

part of the time interval of an exact coalesced tuple to be miss-

ing in the approximate result. Let be the ratio of the length

of the time interval missing due to the dropping of sj over the

length of the time interval of the exact coalesced tuple. Note

that is 0 in the case 1 in the proof of Property 1, is 1 in the

case 2, and is bounded between 0 and 1 in other cases. Then, the

second objective is to drop a tuple with the smallest first in

order to reduce these missing intervals. Like Objective 1, a tie is

broken by random choice.

There are different ways to combine and in the objec-

tive function of the greedy algorithm. The sum of them is used

here (It can be a weighted sum if we want to give a bias in favor

of either objective.). We believe summation is better than a

product, as the resulting value is always greater than 0. The

product gives 0 when or is 0.

For example, Table 2 shows the values of and for each

of the five actual tuples in Example 4. It shows that the tuples

that have a minimum value of + are s2 and s4. The algo-

rithm thus decides to drop either s2 or s4. Recall the conclusion

in Example 4 that the highest accuracy is achieved in either A2,

where s2 is dropped, or in A4 where s4 is dropped. This demon-

strates how the accuracy metric introduced in Section III-B is

reflected in our proposed load shedding algorithm.

Algorithm 1 outlines the steps of load shedding using the

combined objective function. Upon the arrival of a new tuple si

(Line 1), if the memory M is not full yet, si is added to WS (Line

4), but otherwise a tuple sm which gives a minimum value of

+ among all sj ∈ M∪{si} is found (Lines 7-14) and dropped

from the window (Line 16).

It is easy to see that the running-time complexity is O(|M|2),

since the algorithm scans the |M|+1 tuples in M∪{si} [15] lin-

early and, for each tuple, the computation of and takes

O(|M|) time in the worst case scenario. The complexity is lower

in practice, as computing and involves only those tuples

coalesced to form the same exact tuple. The storage space com-

plexity is O(|M|), as it suffices to have enough memory to hold

the |M|+1 tuples and two numbers current_min and m.

In the experiments presented in Section IV, we use two addi-

tional algorithms, called coalescence-aware load shedding (CALS)-

V and CALS-I. CALS-V is the CALS algorithm reduced to

consider only the value similarity (hence using only), and

CALS-I is that considering only the interval similarity (hence

using only).

IV. PERFORMANCE STUDY

We conducted experiments to study the performance of the

proposed load shedding algorithm. The main objective of the

experiments was to observe the effectiveness of the proposed

CALS algorithm. Additionally, we compare CALS with two

WS

M

δ sj

+

δ sj

+

δ sj

+

ρ sj

 –

ρ sj

 –

ρ sj

 –

δ sj

+
ρ sj

 –

δ sj

+
ρ sj

 –

δ sj

+
ρ sj

 –

Algorithm 1. Coalescing-aware load shedding (CALS)

Inputs: S //input data stream

WS //set of tuples currently stored in window on stream S

M //set of tuples that can be stored in memory

1: for each new tuple si arriving in the input stream S do

2: if |WS| < |M| then

3: //memory is not full

4: insert si into WS;

5: else

6: //memory is full

7: current_min := ∞;

8: for each sj ∈ M∪{si} do

9: compute + and ;

10: if + < current_min then

11: current_min := + ;

12: m := j;

13: end if

14: end for

15: end if

16: remove sm from M∪{si};

17: end for

δ sj

+
ρ sj

 –

δ sj

+

ρ sj

 –

δ sj

+
ρ sj

 –

δ sj

+
ρ sj

 –

δ sj

+
ρ sj

 –

δ sj

+
ρ sj

 –

δ sj

+
ρ sj

 –

δ sj

+

ρ sj

 –Table 2. and for tuples in Example 4.

Tuple

s1 0 1

s2 0 1/3

s3 1 1/3

s4 0 1/3

s5 0 1

δ sj

+
ρ sj

 –

δ sj

+
ρ sj

 –

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 294-304

http://dx.doi.org/10.5626/JCSE.2011.5.4.294 300 Mohammed Al-Kateb and Byung Suk Lee

partially coalescence-aware algorithms, CALS-V and CALS-I,

to observe how each of the two complementary greedy objec-

tives affects the performance individually. We use the random

load shedding (RAND) algorithm as the baseline approach

(Under this random load shedding mechanism, tuples are dis-

carded randomly such that each tuple has the same probability

of being discarded from (or, equivalently, retained in) mem-

ory.). As anticipated, the experiment results show that CALS

achieved the highest accuracy, RAND achieved the lowest, and

CALS-V and CALS-I are in between.

The experiments were conducted using Matlab (Release

R2010b) on a 64-bit machine with 4.00 GB internal main mem-

ory. We use the Matlab array/matrix data type to implement the

window data structure.

A. Experiment Setup

1) Control Parameters: We identified two key parameters

influencing the accuracy ofs load shedding algorithms signifi-

cantly: memory ratio and coalescing probability. The coalesc-

ing probability is the expected probability that a tuple in the

input stream is coalesced with its preceding tuple upon arrival.

The memory ratio is the ratio of available memory size over the

specified window size, that is, the number of tuples that can be

actually stored in the memory divided by the number of tuples

that are supposed to be stored in the memory. In our experi-

ments we set the window size to 500 tuples and vary the ratio

from 50% to 90%. A natural expectation with these two param-

eters is that the benefit of coalescence-awareness will be more

visible in the resulting accuracy when the coalescing probability

is higher or the memory ratio is lower. In addition, we consid-

ered the threshold for time interval selection, which in our

experiments is the lower bound on the selection interval speci-

fied in the query (see the selection query in Example 3). The

experiment results, however, show that the influence of this

parameter value on the accuracy is insignificant.

2) Data Sets: We use five synthetic data sets simulating

streams with the coalescing probabilities 10%, 30%, 50%, 70%,

and 90%, respectively. The timestamp value, ti, of each tuple in

the data sets is selected randomly from within the next 10 incre-

ments of time (i.e., within [ti, ti + 10)). (The particular length of

the time unit and the size of the increment, whether constant or

varying, are irrelevant for these experiments.) The real data sets

contain weather measurement data collected from sensors

deployed throughout the Intel Berkeley Research Lab to gather

timestamped topology information along with humidity, tem-

perature, light intensity, and voltage values. In order to make

cases with different coalescing probabilities, we performed coa-

lescing on different coalescing attributes such as humidity, volt-

age, and light intensity. The resulting coalescing probabilities

are approximately 29% (for humidity), 64% (for voltage), and

86% (for light intensity).

B. Experiment Results

For each algorithm, we measured the achieved accuracy as

an average of the accuracies measured using each data set. The

results are presented in two stages in this section. The first stage

focuses on comparing CALS with RAND to see the effect of

coalescence-awareness on the accuracy. The second stage

focuses on examining the individual effects of the two partially

coalescence-aware greedy objectives.

1) The Effect of Coalescence-Awareness: Figs. 5 and 6 show

the accuracies achieved by CALS and RAND using the syn-

thetic and real data sets, respectively. Both graphs show that

CALS outperforms RAND in the entire range of coalescing

probabilities and memory ratios. Furthermore, it clearly shows

that the performance advantage of coalescence-awareness

increases as the coalescing probability increases and as the

available memory size decreases, approaching an order of mag-

nitude as they approach the largest coalescing probability (i.e.,

90%) and the lowest memory ratio (i.e., 50%) used in the exper-

iments. In addition, as the figures show, there is little difference

in the accuracy for varying the interval selection threshold

Fig. 5. Accuracies achieved by coalescence-aware load shedding (CALS)
and random load shedding (RAND) on synthetic data sets.

Load Shedding for Temporal Queries over Data Streams

Mohammed Al-Kateb and Byung Suk Lee 301 http://jcse.kiise.org

value. This indicates that, while the load shedding produces

more tuples of shorter coalesced intervals, the relative differ-

ence between the sets of tuples selected in the case of exact and

approximate query results does not change much for different

threshold values.

2) The Effects of the Two Greedy Bbjectives: Figs. 7 and 8

show the accuracies achieved by all four algorithms (i.e.,

CALS, CALS-V, CALS-I, RAND) for varying coalescing prob-

abilities and memory ratios, respectively. As expected, the accu-

racies of CALS-V and CALS-I are bounded between the

accuracy of CALS (upper bound) and the accuracy of RAND

(lower bound).

In addition, we see that their performance is very close to

each other regardless of the memory ratio. This is evident from

the fact that the memory size determines the number of tuples to

be dropped, and it has equitable effects on the proposed accu- racy under both greedy objectives.

Fig. 6. Accuracies achieved by coalescence-aware load shedding (CALS)
and random load shedding (RAND) on real data sets.

Fig. 7. Accuracies achieved by coalescence-aware load shedding (CALS),
CALS-V, CALS-I, and random load shedding (RAND) on synthetic data sets.

Fig. 8. Accuracies achieved by coalescence-aware load shedding (CALS),
CALS-V, CALS-I, and random load shedding (RAND) on real data set.

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 294-304

http://dx.doi.org/10.5626/JCSE.2011.5.4.294 302 Mohammed Al-Kateb and Byung Suk Lee

We also see that the performance of CALS-V changes little

as the coalescing probability increases while CALS-I starts

degrading as it increases beyond around 50%. Our reasoning is

that CALS-V aims at deciding which tuples to retain that would

otherwise cause time gaps (hence extraneous tuples) and so has

little dependency on the coalescing probability itself, while in

CALS-I it is more likely that tuples influencing the accuracy

more (even if they have the shortest time interval) are dropped

as the coalescing probability increases.

V. RELATED WORK

There are two separate aspects to the related works we look

at: load shedding from a data stream and temporal coalescing

over data streams.

A. Load Shedding from a Data Stream

The most common accuracy metric assumed in the research

literature for load shedding over data streams is the size of

approximate query result [10-16]. A few other existing studies,

specific to aggregation queries, assume the accuracy metric of

the relative error between approximate and actual aggregate

values [17, 18]. For both of these accuracy metrics, the accom-

panying algorithms are generally categorized as random load

shedding (i.e., drop tuples randomly, as in [17, 29]) or semantic

load shedding (i.e., drop tuples based on their relative impor-

tance, as in [11]).

For maximizing the size of an approximate result (known as

the max-subset), Das et al. [11] proposed two heuristics for

dropping tuples from window-join input streams. The first heu-

ristic sets the priority of a tuple being retained in memory based

on the probability that a counterpart joining tuple arrives from

the other data stream. The second heuristic favors a tuple based

on its own remaining lifetime. Kang et al. [14] proposed a cost-

based load shedding mechanism for evaluating window stream

joins by adjusting the size of the sliding windows to maximize

the number of produced tuples. Ayad and Naughton [10] pro-

posed techniques for optimizing the execution of conjunctive

continuous queries under limited computational resources by

placing random drop boxes throughout the query plan to maxi-

mize the plan throughput. Xie et al. [16] presented a stochastic

load shedding mechanism for maximizing the number of result

tuples in stream joins by exploiting the statistical properties of

the input streams. Gedik et al. [12] proposed a load shedding

approach for stream joins that adapts to stream rate and time

correlation changes in order to increase the number of output

tuples produced by a join query. Then, Gedik et al. [13] further

addressed the problem of multiple-way joins over windowed

data streams and proposed a window segmentation approach for

maximizing the query output rate. Tatbul and Zdonik [15] pro-

posed a load shedding operator that models a data stream as a

sequence of logical windows and either drops or retains the

entire window depending on the definition and characteristics

of the window operator. For minimizing the relative error for

aggregation queries, Babcock et al. [17] proposed a random

sampling techniques for optimum placement of load shedding

operators in aggregation query plans, measuring the resulting

accuracy as the relative deviation between estimated and actual

aggregate values. Law and Zaniolo [18] proposed a Bayesian

load shedding approach for aggregation stream queries with the

objective of obtaining an accurate estimate of the aggregation

answer with minimal time and space overheads.

In contrast to all this existing work, we address a rather novel

query model for data streams under which a query result is com-

posed of both attribute values and the valid time interval of each

value. Therefore, all the existing load shedding accuracy met-

rics and algorithms are not applicable to our research problem.

B. Temporal Coalescing Over Data Streams

Barga et al. [30] proposed to employ temporal coalescing in

view of complex event processing over data streams, so that

two events are represented as a single event if their valid-time

intervals overlap. Zaniolo [31] examined how temporal coalesc-

ing can be expressed for a sequence of events using OLAP

functions and Kleene-closure constructs. Kramer and Seeger

[32] introduced coalescing as a physical operator for compact-

ing the representation of a data stream by merging tuples with

identical values and consecutive timestamps into a single tuple.

Recently, we studied coalescing for a windowed temporal query

processing over data streams and addressed the problems of

updating a window’s extent and optimally selecting between

eager and lazy coalescing for concurrent temporal queries [7].

While all this existing work is pertinent to temporal coalesc-

ing over data streams, none of them addresses it from the view-

point of memory being insufficient to retain all tuples. To the

best of our knowledge, our work is unique in this regard.

VI. CONCLUSION

This paper addressed the problem of load shedding from a

window for continuous temporal queries over data streams

when memory is limited. The key challenges come from the

fact that tuples need to be coalesced for temporal query process-

ing and that this fact makes existing load-shedding algorithms

and the accuracy metric used by them inapplicable. Thus, we

proposed a new accuracy metric and a new algorithm that can

handle coalescing challenges well. The accuracy metric com-

bines a value similarity metric based on Jaccard coefficients and

an interval similarity metric based on PQI interval orders. The

algorithm takes a greedy approach in which our greedy strategy

combines two objectives, each objective aims to maximize one

of the two types of similarity. The algorithm takes polynomial

running time and linear memory space, and the accuracy it

achieves is far higher than that achieved by the baseline random

load-shedding algorithm. Also, the two objectives combined

into the greedy strategy make about equal contributions to the

achieved accuracy.

For future work, there are several extensions possible. First,

this paper focuses on the limited-memory case, and so the lim-

ited-CPU time case is another problem we could look into. Sec-

ond, this paper considers the temporal selection query, and other

query types like aggregation or join queries are possibilities for

further work. For this, the accuracy metric and the greedy strat-

egy may need to be adapted to the query type. Third, this paper

Load Shedding for Temporal Queries over Data Streams

Mohammed Al-Kateb and Byung Suk Lee 303 http://jcse.kiise.org

considers queries retrieving both the attribute values and their

valid time intervals. Considering special cases, such as a snap-

shot query (retrieving only attribute values) and the valid-time

query (retrieving only valid time intervals) [27], may offer sim-

pler and more efficient solutions. This too could be an interest-

ing study.

ACKNOWLEDGMENTS

The authors would like to thank the members of Intel Berke-

ley Research lab for graciously granting the permission to use

their sensor data sets in the experiments. This research is based

upon work supported by the National Science Foundation under

Grant No. IIS-0415023.

Appendix. PQI Interval Orders

The PQI interval orders are used to compare intervals [28].

In this scheme, each element, x, of a given data set, D, is repre-

sented by an interval through a lower bound function, L(x), and

an upper bound function, U(x), such that ∈ D : L(x) < U(x).

They provide three types of binary relations for interval com-

parison: strict preference, weak preference (or hesitation), and

indifference.

The strict preference relation (denoted as P) models the case

in which the interval of one element precedes the interval of the

other element (i.e., interval intersection of the two elements is

empty) (Fig. 9a). Formally, given two elements x and y, x is said

to be strictly preferred over y if L(x) > U(y). The weak prefer-

ence relation (denoted as Q) is models the case in which the

interval of one element overlaps the interval of the other ele-

ment (i.e., non-empty intersection) (Fig. 9b). Formally, given

two elements x and y, x is said to be weakly preferred over y if

U(x) > U(y) > L(x) > L(y). The indifference relation (denoted as

I) models the case in which the interval of one element contains

the entire interval of the other element (Fig. 9c and 9d). For-

mally, given two elements x and y, x is said to be indifferent

from (i.e., similar to) y if U(x) > U(y) > L(y) > L(x) or U(y) >

U(x) > L(x) > L(y).

The degree of overlap between two intervals can be used as a

measure of the similarity between them [20]. Formally, given

two elements x and y, the similarity between x and y can be

defined as follows.

(7)

This equation is equivalent to Equation 3 in Section III-B.

REFERENCES

1. S. Babu and J. Widom, “Continuous queries over data streams,”

SIGMOD Record, vol. 30, no. 3, pp. 109-120, 2001.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,

“Models and issues in data stream systems,” Proceedings of the

21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, Madison, WI, June 3-5, 2002, pp. 1-16.

3. J. Allen, “Maintaining knowledge about temporal intervals,”

Communications of the ACM, vol. 26, no. 11, pp. 832-843, 1983.

4. A. U. Tansel, Temporal Databases: Theory, Design, and Imple-

mentation, Redwood City, CA: Benjamin/Cummings Publishing

Co., 1993.

5. M. H. Bohlen, R. T. Snodgrass, and M. D. Soo, “Coalescing in

temporal databases,” Proceedings of the 22th International Con-

ference on Very Large Data Bases, Mumbai, India, September 3-

6, 1996, pp. 180-191.

6. C. E. Dyreson, “Temporal coalescing with now, granularity, and

incomplete information,” ACM SIGMOD International Confer-

ence on Management of Data, San Diego, CA, June 9-12, 2003,

pp. 169-180.

7. M. Al-Kateb, S. S. Kunta, and B. S. Lee, “Temporal coalescing

on window extents over data streams,” IEICE Transactions on

Information and Systems, vol. E94-D, no. 3, pp. 489-503, 2011.

8. N. Tatbul, “Load shedding,” Encyclopedia of Database Systems,

L. Liu, Ed., Ney York, NY: Springer, 2009, pp. 1632-1636.

9. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.

Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma, “Query

processing, approximation, and resource management in a data

stream management system,” First Biennial Conference on Inno-

vative Data Systems Research, Asilomar, CA, January 5-8, 2003.

10. A. M. Ayad and J. F. Naughton, “Static optimization of conjunc-

tive queries with sliding windows over infinite streams,” Pro-

ceedings of the ACM SIGMOD International Conference on

Management of Data, Paris, France, June 13-18, 2004, pp. 419-

430.

11. A. Das, J. Gehrke, and M. Riedewald, “Approximate join pro-

cessing over data streams,” ACM SIGMOD International Confer-

ence on Management of Data, San Diego, CA, June 9-12, 2003,

pp. 40-51.

12. B. Gedik, K. L. Wu, P. S. Yu, and L. Liu, “Adaptive load shed-

ding for windowed stream joins,” Proceedings of the 14th ACM

International Conference on Information and Knowledge Man-

agement, Bremen, Germany, October 31-November 5, 2005, pp.

171-178.

13. B. Gedik, K. L. Wu, P. S. Yu, and L. Liu, “A load shedding

framework and optimizations for M-way windowed stream

joins,” Proceedings of the 23rd International Conference on Data

Engineering, Istanbul, Turkey, April 15-20, 2007, pp. 536-545.

14. J. Kang, J. F. Naughton, and S. D. Viglas, “Evaluating window

joins over unbounded streams,” Proceedings of the 19th Interna-

tional Conference on Data Engineering, Bangalore, India, March

5-8, 2003, pp. 341-352.

15. N. Tatbul and S. Zdonik, “Window-aware load shedding for

aggregation queries over data streams,” Proceedings of the 32nd

International Conference on Very Large Data Bases, Seoul,

x∀

max 0, min U x(), U y(){ } max L x(), L y(){ }–{ }{ }

max U x(), U y(){ } min L x(), L y(){ }–

Fig. 9. Example of PQI relations between two intervals x and y.

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 294-304

http://dx.doi.org/10.5626/JCSE.2011.5.4.294 304 Mohammed Al-Kateb and Byung Suk Lee

Korea, 2006, pp. 799-810.

16. J. Xie, J. Yang, and Y. Chen, “On joining and caching stochastic

streams,” ACM SIGMOD International Conference on Manage-

ment of Data, Baltimore, MD, June 14-16, 2005, pp. 359-370.

17. B. Babcock, M. Datar, and R. Motwani, “Load shedding for

aggregation queries over data streams,” Proceedings of the 20th

International Conference on Data Engineering, Boston, MA,

March 30-April 2, 2004, pp. 350-361.

18. Y. N. Law and C. Zaniolo, “Improving the accuracy of continu-

ous aggregates and mining queries on data streams under load

shedding,” International Journal of Business Intelligence and

Data Mining, vol. 3, no. 1, pp. 99-117, 2008.

19. P. Jaccard, “Etude comparative de la distribution orale dans une

portion des alpes et des jura,” Bulletin del la Socit Vaudoise des

Sciences Naturelles, vol. 37, pp. 241-272, 1901.

20. M. Ozturk and A. Tsoukias, “Valued hesitation in intervals com-

parison,” Lecture Notes in Computer Science Vol. 4772: Scal-

able Uncertainty Management (First International Conference,

SUM 2007, Washington,DC, USA, October 10-12, 2007. Pro-

ceedings), H. Prade and V. Subrahmanian, Eds., Heidelberg, Ger-

many: Springer Berlin, 2007, pp. 157-170.

21. “Intel Lab Data,” http://berkeley.intel-research.net/labdata.

22. A. Arasu, S. Babu, and J. Widom, “The CQL continuous query

language: semantic foundations and query execution,” VLDB

Journal, vol. 15, no. 2, pp. 121-142, 2006.

23. F. Wang, C. Zaniolo, and X. Zhou, “Temporal XML? SQL

strikes back!,” Proceedings of the 12th International Symposium

on Temporal Representation and Reasoning, Burlington, VT,

June 23-25, 2005, pp. 47-55.

24. U. Srivastava and J. Widom, “Flexible time management in data

stream systems,” Proceedings of the 23rd ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Sys-

tems, Paris, France, June 14-16, 2004, pp. 263-274.

25. “An Oracle White Paper Sep 2009: Oracle Database 11g Work-

space Manager Overview,” http://www.oracle.com/technetwork/

database/twp-appdev-workspace-manager-11g-128289.pdf.

26. “Teradata,” http://teradata.us/t/database/teradata-temporal/.

27. R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E.

Dyreson, R. Elmasrik, F. Grandik, C. S. Jensen, W. Kafer, N.

Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F. Roddick,

A. Segev, M. D. Soo, and S. M. Sripada, “TSQL2 language

specification,” ACM SIGMOD Record, vol. 23, no. 1, pp. 65-86,

1994.

28. A. Tsoukias and P. Vincke, “A characterization of PQI interval

orders,” Discrete Applied Mathematics, vol. 127, no. 2 SPEC.,

pp. 387-397, 2003.

29. B. Mozafari and C. Zaniolo, “Optimal load shedding with aggre-

gates and mining queries,” Proceedings of the 26th IEEE Inter-

national Conference on Data Engineering, Long Beach, CA,

March 1-6, 2010, pp. 76-88.

30. R. S. Barga, J. Goldstein, M. Ali, and M. Hong, “Consistent

streaming through time: a vision for event stream processing,”

Third Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, January 7-10, 2007, pp. 363-374.

31. C. Zaniolo, “Event-oriented data models and temporal queries in

transaction-time databases,” Proceedings of the 16th Interna-

tional Symposium on Temporal Representation and Reasoning,

Bressanone-Brixen, Italy, July 23-25, 2009, pp. 47-53.

32. J. Kramer and B. Seeger, “A temporal foundation for continuous

queries over data streams,” Proceedings of the 11th Interna-

tional Conference on Management of Data, Athens, Greece,

2005, pp. 70-82.

Mohammed Al-Kateb

Mohammed Al-Kateb received his Ph.D. from the Department of Computer Science, University of Vermont. He received
his BS and MS degrees in Information Systems from Cairo University. His research interests include data streams
processing and temporal data management.

Byung Suk Lee

Byung Suk Lee is Professor of Computer Science at the University of Vermont. His main research interests are database
systems, data stream processing, query processing, and event processing. He held several positions in industry and
academia: previously at Gold Star Electric, Bell Communications Research, Datacom Global Communications, and
University of St. Thomas, and currently at the University of Vermont. He was also a visiting professor at Dartmouth
College and a participating guest at Lawrence Livermore National Laboratory. He served on international conferences
as a program committee member, a publicity chair, a special session organizer, and a workshop organizer, and also on
the review panels of US federal funding agencies. He holds a B.S. degree from Seoul National University, M.S. from KAIST,
and Ph.D. from Stanford University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

