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Abstract
Nowadays mobile devices are used for various applications such as making voice/video calls, browsing the Internet, listening to music

etc. The average battery consumption of each of these activities and the length of time a user spends on each one determines the

battery lifetime of a mobile device. Previous methods have provided predictions of battery lifetime using a static battery consumption

rate that does not consider user characteristics. This paper proposes an approach to predict a mobile device’s available battery lifetime

based on usage patterns. Because every user has a different pattern of voice calls, data communication, and video call usage, we can

use such usage patterns for personalized prediction of battery lifetime. Firstly, we define one or more states that affect battery

consumption. Then, we record time-series log data related to battery consumption and the use time of each state. We calculate the

average battery consumption rate for each state and determine the usage pattern based on the time-series data. Finally, we predict the

available battery time based on the average battery consumption rate for each state and the usage pattern. We also present the

experimental trials used to validate our approach in the real world.
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I. INTRODUCTION

As the growth of mobile networks and services has acceler-

ated, battery powered mobile devices (e.g., mobile handsets or

PDAs) have emerged as important tools in our lives [1]. Mobile

devices are used for various applications such as making voice/

video calls, browsing the Internet, playing games etc. The bat-

tery consumption of these activities affects the battery lifetime

of mobile devices. A mobile device that has a short battery life-

time can cause much inconvenience for users and reduce the

device’s usefulness [2, 3]. Mechanisms to provide long and sta-

ble battery life are therefore required. One of the methods to

guarantee a long battery life is to minimize battery consumption

by reducing unnecessary battery usage. 

The key to minimizing battery consumption is accurately

predicting the battery consumption of the various operating
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states of mobile devices. Much work has focused on hardware

or operating system (OS) level predictions [4, 5], model-based

battery life predictions [6], and battery consumption by a CPU

when executing a particular instruction [7-9]; furthermore, bat-

tery lifetime has usually been predicted using a static battery

consumption rate, which the manufacturers of batteries and

mobile devices have determined via experiments. The con-

sumption rate has also been predicted by an arithmetic mean of

the consumed power. However, previous methods have not been

able to predict battery lifetime in terms of user characteristics,

because such methods have not considered usage patterns. That

is, every user has a different mix of voice call, data communica-

tion, and video call usage. If each user has a consistent usage

pattern [10], we can predict battery lifetime on an individual

basis.

In this paper, we propose a method for predicting available

battery lifetime in mobile devices based on the usage patterns of

individual users. We define possible mobile device states based

on the device’s basic functions, e.g., voice call and data commu-

nication. We develop daily (i.e., morning/afternoon/evening/

night) and weekly (i.e., weekday/weekend) user profiles that

reflect each user’s life patterns, i.e., working, resting, and sleep-

ing patterns for both weekdays and weekends. We measure the

battery consumption and time spent in each operational state.

Then, we develop usage patterns based on various modes (e.g.,

sleeping, resting, and working). In our previous work [11], we

did not consider user life patterns for predicting battery lifetime.

Here we present a method for predicting battery lifetime using

usage patterns generated by the probability that a user will

spend a certain time in each operational state for each mode. We

then present the numerical results of a simple use case, which

accurately predicts battery lifetime. We also present an experi-

mental trial used to validate our proposed method in the real

world.

The main contributions of the paper are as follows: 1)

Because the proposed method presents real-time predicted bat-

tery lifetime in terms of an on-line analysis based on usage pat-

terns rather than an off-line analysis, this method is more useful

to users than previous ones. 2) The proposed method enables

effective battery usage by reducing useless battery consumption

and detects abnormal battery usage by comparing operating

times between normal and abnormal states.

The organization of this paper is as follows. Section II

describes previous work for predicting battery lifetime and

mobile applications for battery management. Section III defines

the problem and describes our approach. Section IV presents

our experimental trials with real log data from smartphones.

Finally, we draw conclusions and suggest future work in Sec-

tion V. 

II. RELATED WORK

Many mobile devices provide battery lifetime prediction via

hardware and OS support as an integral component of power

management systems. Advanced Power Management (APM)

[4] has been widely used in power management for computer

systems. The Advanced Configuration and Power Interface

(ACPI) [5] recently proposed by Intel, Microsoft and Toshiba is

an advanced version of APM. ACPI defines power configura-

tion and management functions between a Basic Input Output

System (BIOS) and the OS. In particular, it uses the remaining

battery capacity and present rate of battery drain to predict the

remaining battery life. Currently, ACPI is used in power man-

agement for desktops and laptops. The SBS Forum [12] has

proposed a smart battery system, which is a specification for

determining accurate battery readings; it allows the OS to per-

form power management operations based on estimated run

times. This system predicts battery lifetime given a user-speci-

fied rate or rolling average over a fixed interval. Such simple

approaches consider only a very short discharge history and are

therefore inaccurate.

Another area of related research is model-based battery life

prediction. Given the discharge profile of the entire lifetime of

the battery, a well-designed battery model can provide a highly

accurate battery life prediction. One such accurate model,

described in [6], uses the low-level electrochemical phenome-

non of battery discharge. This model is commonly used as a

simulator to verify other battery models.

Moreover, Tiwari et al. [7, 9] and Saputra et al. [8] have

studied power consumption characteristics at the processor

instruction level. Combining these characteristics with battery

models, one can estimate battery consumption. Model-based

methods have limitations that make them unsuitable for online,

dynamic and adaptive battery life prediction, such as situations

where there is a need for a large number of parameters and there

is a high computation cost (especially for simulation models).

Our proposed method focuses on predicting battery lifetime

based on the empirical usage patterns of each user, and no

model-driven approach is needed.

Krintz et al. [3] proposed application-level prediction of bat-

tery dissipation by investigating the degree to which battery dis-

sipation, as induced by program execution, can be measured by

application-level software tools and predicted by a compiler and

runtime system. They presented a black-box approach in which

they attempted to observe the dissipation characteristics at the

application-level. However, they did not consider the effect of

usage patterns at the individual user level. Thus, while this

method focuses on applications, our method focuses on a user’s

behavioral operating states and reflects the user’s characteris-

tics, taking a more user-centric approach.

Recently, Zhang et al. [13] proposed PowerBooter, an auto-

mated power model construction technique that uses built-in

battery voltage sensors and knowledge of battery discharge

behavior to monitor power consumption while explicitly con-

trolling the power management and activity states of individual

components. They also presented PowerTutor, which is an

Android application for power management and activity state

introspection based on a tool that uses the model generated by

PowerBooter for online power estimation. This proposed

method is highly related to our work but we mainly focused on

using user characteristics for power estimation.

III. PROPOSED METHOD

In this section, we present our method for predicting battery

lifetime based on usage patterns. We firstly present a problem
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definition. We then describe our proposed method for solving

the problem.

A. Problem Definition

In order to define the problem in this paper, we also assume

that a mobile device has n possible states. Firstly, we present the

following symbolic notations and formulae: 

(1)

(2)

where Bi is the average battery consumption rate of the ith state,

and pi is the use time rate of the ith state, which is determined to

satisfy  pi = 1. Because each user has a different vector, ,

according to the usage pattern, this vector is defined for the

symbol that represents their usage pattern. 

We can formulate our problem as follows.

Problem Formulation: Determine the average battery

consumption rate vector  and the usage pattern vector  to

minimize the Mean Square Error (MSE) of a predictor 

, (3)

where  is an estimator from our prediction method and θ is the

true values measured from users. We predict the available

battery lifetime based on usage patterns using the following

formula.

(4)

where T is the available time predicted by usage patterns, and V

is the total battery capacity. Because each user has a different

, every user’s battery has a different remaining lifetime.

Previous approaches cannot represent a user’s personal

characteristics, because they do not consider usage patterns.

B. Solution

In this section, we describe a solution to the problem defined

in Section III-A. The hypothesis we present in this paper is that

the most accurate prediction of a mobile device’s battery

lifetime is based on usage patterns and minimization of the

prediction error. When a mobile device is turned on, a battery

monitoring application begins collecting data on the operating

time and battery consumption of each state based on a

timestamp. This time-series data is used to measure the average

battery consumption rate ( ) and usage patterns ( ). Finally,

the application provides a prediction of battery lifetime based

on these two vectors. Firstly, we collect the time-series data for

each state. To this end, we append the time and battery level to a

log file after entering and exiting the state. The symbol for the

log data is the vector = ( ), where  is a

vector of the jth log data,  is the time-series data of the jth log

data, D1 is a state of the mobile device, D2 is battery consumption,

D
3
 is use time, and D

4
 is a timestamp. Next, we calculate the

average battery consumption rate and the usage pattern using

time-series log data. As defined in Section IIIA, we assume that

a mobile device has n possible states and the log file has m

entries. We denote the total battery consumption by the vector

= (b1, ..., bn). The value of this vector is the total battery

consumption of the ith state via the sum of the second element

of each log entry for which the state is i. We also denote the use

time by the vector = (t1, ..., tn). The value of this vector is the

use time of the ith state via the sum of the third element of each

log entry for which the state is i. Thus,

(5)

(6)

where . We define the average battery consumption rate

and usage pattern for each user using Equations (5) and (6).

(7)

(8)

where Bi is the average battery consumption rate of the ith state,

and pi is the use time rate of the ith state, which is determined to

satisfy  pi = 1. This usage pattern represents not only the

past usage pattern, but also the probability of spending the same

amount of time in each state in the future [10]. 

The graph of Fig. 1 plots the time-series data related to the

battery power and the time spent in each state. The graph plots

the time-series data collected by the data collector in terms of

time and remaining battery capacity. In particular, the dotted

lines indicate the power consumption and use time of the bat-

tery when the user is only using voice communication with the

liquid crystal display (LCD) in the “OFF” state. With an arith-

metic mean of all the samples of the time-series data in each

state, the average power consumption rate per state can be

obtained by using Equation (9): 

(9)

where αi is the average power consumption rate (mA/sec) in the
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Fig. 1. Linear approximation of the duration of voice call. dotted line:
voice call, solid line: waiting, Bn: nth battery consumption rate of nth voice
call, tn: nth duration of nth voice call.
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state, Bj is the power consumption amount (mA) for the jth voice

communication, and tj is the call duration of the jth voice

communication or the use time (sec). The usage pattern of each

user can be determined as a numerical value based on their use

time rate (vecpi) in each state, because the rate is different for

each user. There are numerous methods for calculating the use

time rate per state. The simplest method is to divide the use time

in each state by the sum of the use time in all states, based on

the time-series data collected by the data collector. Another

method to calculate the use time rate per state is to predict

future data based on past time-series data, for example, the

Autoregressive Model (AR) [14] or the Holt-Winters model [15].

Although the usage pattern is also based on past time-series

data, weight factors can be adjusted so that recent data have

more weight. In future work, we will apply these forecasting

methods to calculate usage patterns. We have described how to

determine the usage pattern vector  of each user by recording

the time spent in each state. However, the life patterns of most

users differ according to the day or week, e.g., working, resting

and sleeping (a day) and weekday and weekend (a week). In

addition, users have variable life patterns, e.g., vacations or

business trips. We consider user life patterns for predicting

battery lifetime. We divide each day and week into several

modes based on a user’s life patterns. If a mobile device has n

possible states and a user defines l modes, we define the usage

pattern vector with Equation (10).

= ( ..., ), (i = 1, ..., l), (10)

where  is the usage pattern of the ith mode, and  is the use

time rate of the jth state of the ith mode, which is determined to

satisfy  = 1. If we predict the battery lifetime of the ith

mode, we use the vector .

Fig. 2 shows a block diagram of our system for predicting

battery lifetime based on usage patterns. The mobile device

includes a mobile operating system, state detector, data manager,

battery consumption calculator, usage pattern analyzer, and

lifetime predictor. In general, a battery’s power consumption is

affected by usage patterns that include the operational modes of

voice communication, data communication, active LCD, video

communication, short message service, running application

programs, music listening and standby. Among these operational

modes, those of voice communication, data communication, and

active LCD have the largest influence on battery consumption.

The state detector detects the operational state by collecting call

status, WiFi and 3G status, and screen status from the mobile

operating system or middleware. It then provides this information

to the data manager, which creates and stores real-time data on

battery and use time in each state. The battery consumption

calculator, based on the real-time data created by the data

manager, calculates an average battery and use time rate for

each state. The usage pattern analyzer determines a usage

pattern distribution, which represents the time spent in each

state. The lifetime predictor, based on the average power

consumption rate and the usage pattern, predicts the available

battery lifetime.

IV. EVALUATION

In this section, we evaluate our proposed method using real

usage patterns from smartphones.

A. Overview

To evaluate the proposed method, we present one case study

for which there were good prediction results. Firstly, we assume

that a mobile device has n possible states and r users are using

it. We define two symbols that represent the usage patterns of

each user.

(11)

(12)

(13)

where  is the usage pattern of the kth user,  is the fraction

of operating time that the kth user spent in the ith state, and Rk is

the average battery consumption rate of the kth user considering

the usage pattern. In other words,  represents the probability

that the kth user will spend a certain amount of time in the ith

state, because we assume that the usage pattern will be

consistent with the user’s history. Table 1 lists a total of eight

states that are defined under the three operational modes of active

LCD, voice communication, and data communication.

In Table 1, “ON” indicates an operational mode of the mobile

device, and “OFF” indicates a non-operational mode of the

mobile device. State S0 occurs when a user is using voice

communication (e.g., calling) and data communication at the

same time with the LCD in the “ON” state. This is not the

current state but a potential future state. In this state, the LCD,

voice communication and data communication all affect battery

consumption. State S1 occurs when the user is only using voice

communication with the LCD in the “ON” state. State S1 is

activated from the starting point of the voice communication. In

this state, both the LCD and voice communication affect power

consumption. State S2 occurs when the user is only using data

communication with the LCD in the “ON” state. State S2 is

activated from the starting point of data communication. In this

state, both the LCD and data communication affect power

consumption. State S3 occurs when the user is not using either

voice communication or data communication. Only the LCD is

in the “ON” state. This corresponds to the standby state when a

call is incoming or when the user slides up or flips up the

mobile device. In this state, only the LCD affects power
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Fig. 2. Block diagram of our prediction method.
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consumption. State S4 occurs when the user is using voice

communication and data communication at the same time with

the LCD in the “OFF” state. This is not the current state but a

potential future state. In this state, both voice communication

and data communication affect power consumption. State S5

occurs when the user is only using voice communication with

the LCD in the “OFF” state. This occurs after the user has

started voice communication and a certain amount of time has

elapsed. In this state, voice communication affects power

consumption. State S6 occurs when the user is only using data

communication with the LCD in the “OFF” state. This is not the

current state but a potential future state.. In this state, data

communication affects power consumption. State S7 occurs

when the user is not using either voice communication or data

communication with the LCD in the “OFF” state. This corresponds

to the standby state when there is no incoming call, when the

mobile phone has been slid down or flipped down, or when the

mobile phone has simply timed out. In this state, periodic

connection with a base station affects power consumption. The

problem can be simplified by reducing the number of possible

states to minimize the complexity. The bottom row of Table 1

shows the simplified possible states of a mobile device. We

merge states S3 and S7 to form state SS0. In this state, a user is

not using either voice or data communication and periodic

connection with a base station and waiting for calls affect power

consumption. We also merge states S1 and S5 to form state SS1.

In this state, a user is only using voice communication and this

affects power consumption. Finally, we define the state S2 as

state SS2. In this state, data communication affects power

consumption.

Fig. 3 shows a state transition diagram of a mobile device

after simplifying the possible states. Initially, a mobile device

starts from SS1 with the power on and waits to receive a call.

When a user starts data communication, the current state is

changed to SS3, and when they finish, the current state returns

to SS1. When the user starts a voice call, the state is changed to

SS2, and when they finish, the state returns to SS1. Based on

these states and state transitions, we will show how we can pre-

dict the battery lifetime if the average battery consumption rate

and usage patterns are known by monitoring data from real

smartphones.

B. Experimental Trials

In this section, we present our experimental trials for predict-

ing battery lifetime by collecting real data from an Android

smart phone, which is one kind of mobile device. In this experi-

ment, we show that users have different usage patterns and our

method provides better prediction results than static prediction

methods in terms of personalization. Currently, we are still col-

Table 1. Possible states of a mobile device

S0 S1 S2 S3 S4 S5 S6 S7

LCD ON ON ON ON OFF OFF OFF OFF

VOICE ON ON OFF OFF ON ON OFF OFF

DATA ON OFF ON OFF ON OFF ON OFF

STATE - VOICE

(SS1)

DATA

(SS2)

WAITING

(SS0)

- VOICE

(SS1)

- WAITING

 (SS0)

LCD: liquid crystal display.

Fig. 3. Simplified state transition diagram of a mobile device.
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lecting a large volume of battery usage data from various partic-

ipants. We present our experimental setup and ongoing work.

Firstly, we implemented a data collecting application for ana-

lyzing user usage patterns. Our application was written in Java

and runs on any Android-based platform. It periodically records

the following information to a log file. Currently, it is scheduled

to store the information every second.
● Timestamp. The timestamp for the date and time of the

measurement.
● Screen status. Whether the screen (LCD) status is in the

“ON” state or “OFF” state.
● WiFi status. Whether the WiFi status is in the “ON” state

or “OFF” state.
● 3G status. Whether the 3G status is in the “ON” state or

“OFF” state.
● Voice call status. Whether the voice call status is in the

“ON” state or “OFF” state.
● Battery status. The remaining battery power, temperature,

voltage, and charging status as reported by the Android

platform.

We also implemented a server system to collect log files

from smart phones. The data collecting application sends the

log file to the server system and then removes it from the smart

phone. When we collect log files, we also collect a device spec-

ification and a device ID by using the phone number. We do not

collect the phone number directly but convert it to a hash value,

which we are not allowed to inversely convert due to privacy

concerns. Firstly, we implemented the application on the project

homepage (Battery Logger Project, http://dpnm.postech.ac.kr/

battery) on February 17, 2011. To obtain users for the study, we

made an announcement that we were seeking anonymous vol-

unteers, using an online bulletin board for our campus, and we

posted online advertisements to social network services such as

Twitter or Facebook to obtain more users outside campus. Over-

all, we collected 40 users from March to April, 2011 (We are

still collecting usage logs for our future work). For this paper,

we used the logs from the 20 users with the longest total

recorded time. The data from these 20 users is 1.5 Gbytes and

1.26 Mbytes per log on average.

Fig. 4 shows a comparison of individual users’ time and bat-

tery consumption for five operational states: 1) waiting, 2)

voice call, 3) data communication via WiFi, 4) data communi-

cation via 3G, and 5) other. From the comparison of time spent

in each state (Fig. 4a), we can see that each user spent a differ-

ent amount of time in each state. The state where a user spent

more time will be used more in the future based on Zipf’s law

Fig. 4. A comparison of individual users’ smartphone usage for five operational states in terms of (a) time spent and (b) battery consumption.
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[10] and users have their own long-term usage patterns. Hence,

we assume that this usage pattern is one of the user’s character-

istics. The ultimate goal of our study is to make an analytic

model of user smartphone usage behavior. Fig. 4b shows the

battery power consumed in each state for individual users and

the differences between the time patterns shown in Fig. 4a. This

chart shows that battery consumption differs in each state. As

shown in Fig. 4a, most users spent more time on average in the

waiting state, but every user had their own usage pattern.

The average battery consumption rates ( ) of each state

based on the collected time-series data are as follows:

= (0.048, 0.252, 0.300, 0.132, 0.271), (14)

If the usage pattern is given as Fig. 4a, we can define  for

User12, User14, and User18 as follows: 

= (15)

where the row and column values represent the usage pattern of

each user and each state, respectively: column 1 is Waiting, col-

umn 2 is voice call, column 3 is WiFi, column 4 is 3G, and col-

umn 5 is other. For example, User12 spent more time in the

WiFi state than other users. User14 spent more time in the 3G

state, and User18 spent more time in the voice call state. To pre-

dict the battery lifetime of users with different usage patterns,

we compare our proposed method with a method based on a

static value derived from the arithmetic mean of all battery con-

sumption rates.

The average battery consumption rate based on the arith-

metic mean is about 0.2006. However, the following are the

average battery consumption rates for each user by our pro-

posed method.

(16)

where the average battery consumption rates of User12, User14,

and User18 are 0.058294, 0.097198, and 0.087325, respec-

tively. From this case study, we can present different battery

consumption rates for each user, based on their usage patterns.

Furthermore, we can adaptively predict the battery lifetime of a

mobile device using dynamic usage patterns.

V. CONCLUDING REMARKS

Predicting the battery lifetime of mobile devices is important

to minimize battery consumption at the application level. In this

paper, we have proposed a prediction model based on usage pat-

terns, such as the battery consumption rate when making voice

calls, using data communication, or waiting for calls. We have

also shown the usefulness of our proposed method through a

case study. 

In future work, we hope to offer a more concrete validation

of this method using log data that we continue to collect from

end users. We will show usage pattern distributions, battery life-

time prediction results for each user, and comparisons with

other prediction methods. We will also develop and deploy a

mobile application to provide personalized battery management

for mobile devices including battery lifetime prediction. Ulti-

mately, we will contribute to personalized power management

for mobile devices.
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