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Abstract
Java has been increasingly used in programming for real-time systems. However, some of Java’s features such as auto-

matic memory management and dynamic compilation are harmful to time predictability. If these problems are not solved

properly then it can fundamentally limit the usage of Java for real-time systems, especially for hard real-time systems

that require very high time predictability. In this paper, we propose to exploit multicore computing in order to reduce the

timing unpredictability that is caused by dynamic compilation and adaptive optimization. Our goal is to retain high per-

formance comparable to that of traditional dynamic compilation, while at the same time, obtain better time predictability

for Java virtual machine (JVM). We have studied pre-compilation techniques to utilize another core more efficiently, pre-

optimization on another core (PoAC) scheme to replace the adaptive optimization system (AOS) in Jikes JVM and the

counter based optimization (CBO). Our evaluation reveals that the proposed approaches are able to attain high perfor-

mance while greatly reducing the variation of the execution time for Java applications.

Category: Embedded computing

Keywords: Performance; Reliability; Time predictability; Java virtual machine; Multicore processors; Adaptive

optimizations

I. INTRODUCTION

Following its success and popularity on servers and

desktops domains, recently Java has been increasingly

used in programming for embedded and real-time sys-

tems. However, as Java was not originally designed for

real-time use, some of Java’s attractive features for porta-

bility or performance actually makes Java computing not

time predictable. If these problems are not well solved,

then they can severely limit its usage in the real-time

domain. For instance, dynamic compilation and adaptive

optimization are two techniques to boost the performance

of Java programs but they are generally unpredictable in

terms of the execution time. An unpredictable dynamic

compilation/optimization may cause the real-time tasks

to miss their deadlines. It is certainly unacceptable that in

a real-time system that uses Java, especially in a hard

real-time or safety-critical system, designers will have no

idea about when the compilation/optimization occurs or

how long it takes.
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A simple solution to address this problem is to disable

those features in real-time Java, which has been proposed

in a few earlier studies. For instance, scoped memory [1-

4] which is manually controlled by developers like in C/

C++, was proposed to take the place of automatic mem-

ory management. Instead of dynamic compilation, inter-

pretation or ahead-of-time (AOT) compilation [5-7] is used

to generate native code from Java byte code. Although

this kind of solutions satisfies the restriction of real-time

systems very well, the downside is also obvious. For

instance, the performance is often degraded, the platform

independence and the easiness of development are also

badly compromised.

Another way to attack this problem is to modify those

features in order to make them more time-predictable and

at the same time retaining performance or even achieving

better performance (note that the latter becomes possible

by the exploitation of new architectural features such as

multicore computing which is the focus of this paper). A

series of valuable studies have been done in the field of

memory management. Several deterministic garbage col-

lectors [8-13] were developed and tested. With those col-

lectors, the worst-case time spent on garbage collection

can be bounded. However, no such work has been done

for dynamic compilation and optimization and they are

harmful to time predictability.

The advancement in computer architecture provides new

opportunities to address time predictability problem of Java

computing without compromising on the performance or

even attaining superior single-threaded performance.

Specifically, this paper exploits multicore architecture in

order to improve the time predictability of Java applica-

tions. The multicore architecture has been adopted by

major microprocessor companies such as Intel, AMD,

IBM, and Sun. In addition to its wide usage in desktop and

server markets, the multicore architecture is also increas-

ingly used in embedded micro-controllers. This includes

the dual-core Freescale MPC8641D (Freescale Semicon-

ductor Inc., Austin, TX, USA), the dual-core Broadcom

BCM1255 (Broadcom, Irvine, CA, USA), the dual-core

PMC-Sierra RM9000x2, the quad-core ARM11 MPcore

and the quad-core Broadcom BCM1455. Multicore pro-

cessors are increasingly used in real-time systems due to

their superior performance, lower energy consumption

and better system density. It is expected that real-time

applications will soon use large-scale multicore platforms

with tens or even hundreds of cores per chip [14].

This paper exploits multicore processors to enhance

time predictability of Java applications without compro-

mising on performance. Our approach divides the Java

program and Java virtual machine (JVM) into two parts:

one is time predictable, executing real-time tasks and the

other deals with all the other tasks, such as dynamic com-

pilation, garbage collection and so on. Two cores are used

to separately execute the two parts (This paper focuses on

using dual-core microprocessors for the improvement of

time predictability of Java applications. While our approach

can be applied to general multicore processors with more

than 2 cores by dividing cores into two groups: real-time

group and non-real-time group, the evaluation of our

approach on this general multicore architecture is beyond

the scope of this paper). If all the unpredictable tasks are

removed from the main core and no real-time task has

unbounded dependency on the auxiliary core, then the

time predictability of real-time tasks running on the main

core can be guaranteed.

Accurately obtaining the worst-case execution time

(WCET) of tasks that run on JVMs is a challenging task,

if not impossible, especially when dynamic compilation

and adaptive optimizations are enabled. In this work, in

order to improve the time predictability of dynamic com-

pilation and optimizations (rather than developing a state-

of-the-art WCET analyzer for JVMs), we make the fol-

lowing assumptions: 1) the fraction of WCET caused by

JVM (by disabling the dynamic compilation and optimi-

zations) can be statically bounded, which are supported

by current WCET analysis techniques [15]; 2) there is no

cache interference between the different cores in the stud-

ied multicore platform; 3) garbage collection is disabled

in JVM.

In this paper, we first try to isolate dynamic compilation

and move it to the auxiliary core, where baseline compi-

lation and dynamic hot-spot-based optimizations are to

be performed. As we find that the auxiliary core may not

be fully utilized, we migrate pre-compilation to that core

in order to further improve the performance. Experimen-

tal results show that our approaches efficiently reduce the

number of interruptions. This leads to enhanced time pre-

dictability. Using pre-compilation can achieve even better

results. Then, we move on to the adaptive optimization

system (AOS). This is the key to high performance but it

is very sensitive to timing and can cause large execution

time variations. We study the impact of AOS sampling

intervals and this is the source of its sensitivity to the exe-

cution time. After this, we develop the pre-optimization

on another core (PoAC) scheme to replace the original

AOS. Our experiments show that PoAC greatly reduces

time variation that is caused by the AOS. Finally, we

compare PoAC with another approach that replaces AOS

and it is able to reduce the execution time variations,

which is counter based optimization (CBO). Experimen-

tal results indicate that PoAC outperforms CBO and

PoAC is a better choice for real-time Java applications.

The rest of this paper is organized as follows. Section

II describes our multicore approaches to enhance time

predictability of Java applications which includes normal

compilation/optimization on the auxiliary core and PcAC/

PoAC schemes. Section III presents our evaluation meth-

odology and Section IV gives the experimental results.

We discuss related work in Section V. Finally, Section VI

concludes this paper and provides future research direction.
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II. EXPLOITING MULTICORES FOR REAL-
TIME JAVA COMPUTING

We first apply multicore techniques on dynamic com-

pilation/optimization, as they are the key for the achieve-

ment of high performance on JVMs and also an important

source of unpredictability at run-time. Our approach is

depicted in Fig. 1. On a single processor, dynamic compi-

lation and optimization have to interrupt the executing

tasks and cause unpredictable interference. We attempt to

remove dynamic compilation and optimization from the

main core and use the auxiliary core for them. As a result,

there is no more unpredictable interruption to the main

core and the time constraints can be guaranteed.

A. Pre-compilation on Another Core (PcAC)

As shown in Fig. 1 on a single-core system, just-in-

time (JIT) compilation is invoked by the application

thread whenever it invokes an uncompiled method and

the JIT compilation runs on the caller thread as a function

call. The application thread has to wait until the JIT com-

pilation is done. These compilation interruptions are gen-

erally unpredictable. Thus, the JIT compilation cannot be

used in real-time systems. One approach for the elimina-

tion of such interruptions is AOT compilation. An AOT

compiler compiles all the methods that are used before

the Java application is deployed. As a result, the flexibil-

ity of Java is limited. Moreover, an AOT compiler misses

the opportunity to perform dynamic optimization and it

has a great potential to improve the performance based on

the run-time information.

In this paper, we propose an alternative approach -

PcAC. With an extra core (i.e., the auxiliary core), we can

compile Java byte code AOT before its first execution but

dynamically at run-time. The objective of the PcAC

scheme is to eliminate the compilation interruptions as

the AOT compiler does, while at the same time, main-

taining the flexibility of the Java language and the possi-

bility of future optimization.

The key issue of the PcAC scheme is the need to pre-

compile Java byte code before the deadlines. In the case,

where we have the WCETs needed to compile each Java

byte code section (usually a Java method) along with the

call graph information, we can accurately generate the

list of methods that are to be pre-compiled and their

worst-case compilation times. However, in general such

WCET information is not available. So, we have to use

some heuristics in order to reduce the compilation inter-

ruptions as much as possible.

1) Call Graph Guided PcAC

Our first heuristic is based on the call graph informa-

tion. The call graph of Java applications can be generated

from static analysis with the Java byte code. Pre-compila-

tion is performed by a thread that is specially designed

and pinned on the second core. This is called the guided

pre-compilation thread (GPCT). It generates the list of

methods that to be pre-compiled based on the call graph

of the currently executing Java application. Breadth-first

search is used to traverse the call graph to build the

method list. Fig. 2 shows a call graph and the list of

methods that are to be pre-compiled.

2) Profiling Guided PcAC

Another heuristic is to profile Java applications and get

the list of methods in their exact execution order. Profil-

ing has to be used to get the method invocation list. As

shown in Fig. 3, GPCT reads profiling data from previous

execution and pre-compile methods which follow that

order.

3) Other Heuristics

There can also be other heuristics besides the ones that

are described above. For example, the size of a method

can be considered as a factor to order the pre-compila-

tion. As we can obtain a larger number of methods com-

piled if small methods are compiled first, which often

Fig. 1. Dynamic compilation/optimization on single-core and
multicore processors.

Fig. 2. Call graph guided pre-compliation on another core
(PcAC).
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take less time. Another possible heuristic is to use the

depth-first search (DFS) instead of the breadth-first search.

The DFS works better when there are only a few branches

in the methods. In this case, the possible execution path

in the call graph is basically depth-first. However, these

heuristics are not safe in hard real-time systems. The

WCETs of JVM and Java programs are needed for the

PcAC scheme to satisfy time constraints. Moreover with

such information, the PcAC scheme can make even better

decision about which method to be pre-compiled and

when to perform that.

B. PoAC

Dynamic optimization in JVMs usually runs as a back-

ground thread other than the application threads. In sin-

gle-core systems, this background optimization thread

does not pause the application threads, but it shares the

processor under a given scheduling scheme. Therefore,

the application thread is slowed down while performing

optimization. For real-time tasks, deadlines may be missed

due to the interruptions that are caused by optimization.

By migrating the optimization thread to another core (i.e.,

the auxiliary core), we can avoid processor sharing with

real-time tasks.

However, the unpredictability in JVMs cannot be elim-

inated by a simple removal of the optimization thread

from the main core. The major issue is that the AOS is

unpredictable and it is not suitable for real-time systems.

As the AOS introduces interruptions into the normal exe-

cution to take samples and identify hot-spots of the given

Java programs. During the execution time, these interrup-

tions make the AOS very sensitive to even very slight

variation. If a method is delayed only slightly during exe-

cution then, the samples that are taken by the AOS may

report another method as being hot. Even a very small

timing interference, usually from the architecture (e.g.,

cache misses) or operating system, can be magnified by

the AOS. Thus it impacts the final execution time. By

simply disabling the AOS is one way for maintaining

time predictability, but this result in a significant perfor-

mance loss. In the remainder of this section, we address

this problem by adopting multicore techniques. 

We first evaluated the impact of AOS interrupt inter-

vals on the execution time. Usually, the interval is chosen

based on the balance between interrupt overheads and the

accuracy of identifying hot-spots. But in real-time sys-

tems, the impact on time predictability also needs to be

considered. We performed sensitivity study while varying

the interval from 20 ms to 40 ms and 80 ms. The experi-

mental results show that all the intervals cause a large

execution time variation.

Then we implement the PoAC scheme as shown in

Fig. 4. The profiler collects two kinds of run-time data

during profiling executions: hot methods and hot call

edges. Hot methods, together with the advices indicating

which optimization level should be used, are stored for

the PoAC thread. Moreover, hot call edge information is

collected for the inliner of the pre-optimization thread.

With PoAC, the adaptive optimization system is now dis-

abled on the main core, as well as all adaptive controller

tasks, such as the sampling thread, the call edge listener

and so on. This brings out two good side effects: First, the

overheads of these adaptive controllers can now be

avoided. Second, time predictability on the main core is

improved by the reduction of thread switches that are

caused by them. Nevertheless, there are also other over-

heads that are involved. First of all, profiling takes some

extra time but it is a one-time overhead. Another overhead

is the time to set up and start an auxiliary core. It slows

down the booting stage of the Java Virtual Machine.

However, this overhead is predictable as it is constant for

all Java applications.

III. EVALUATION METHODOLOGY

We implement and evaluate our multicore approaches

based on Jikes RVM 2.9.3 [16]. This is a fully functional

JVM with open source code. We extend it in order to run

and evaluate our approaches. The main extensions include

the following: 1) binding Java threads to a fixed core; 2)

Fig. 3. Profiling guided pre-compliation on another core (PcAC).

Fig. 4. Implementation of the pre-optimization on another core
(PoAC) scheme.
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isolating the compiler, optimizer and pre-compiler from

the application threads; 3) providing a prioritized fully

preemptive scheduler; 4) building communication chan-

nels between the two cores involved.

We also implement a CBO mechanism on the Jikes

RVM. This is a replacement of the AOS. Our CBO uses

invocation counters for Java methods and injects counter

update code sections into method prologues. We expect

the CBO to remove the sensitivity of AOS and thus reduce

the execution time variation. Experiments are conducted

in order to compare the PoAC and the CBO and also to

analyze their advantages and disadvantages.

We use the SPEC JVM98 benchmark suite [17] to eval-

uate our implementation. For our baseline compilation

and pre-compilation, both the input size and the iteration

number of benchmarks are set to the minimal, as compi-

lation occurs only during the first time a method is

invoked. Larger input sizes and iteration numbers are

used to evaluate optimization on the auxiliary core as

dynamic optimizer needs time to detect program hot

spots. All the benchmarks run on a dual-core Intel x86

PC with 2 GB memory, with two Pentium 4 processors

running at 3.4 GHz. The operating system used is Linux

with kernel 2.6.24-SMP.

Although both the Jikes RVM and the SPEC JVM98

are not designed for real-time purposes, we can still get

time predictability results by counting the compilation/

optimization interruption numbers, as well as measuring

time variation of different executions. Execution time

variation is defined as the standard deviation of the exe-

cution times for each benchmark with different inputs.

Even for the same input, the execution time still varies

due to the factors such as different adaptive optimization

strategies, cache hits/misses, external interferences from

the operating system or other threads, etc. Thus, we also

measure this variation of the execution time by running

the benchmark programs multiple times and then, by cal-

culating their standard deviations of execution times.

IV. EXPERIMENTAL RESULTS

A. Impact of Dynamic Compilation and
Optimization

We first run the benchmarks on a single core to see

how dynamic compilation affects the performance of

Java applications. Fig. 5 shows the percentage of the total

execution time that the baseline compilation takes. The

results are obtained with the smallest input and the bench-

marks are executed only once. This is because baseline

compilation is only performed at the first occurrences of

the methods. We observe that the compilation time varies

from 2% to 16% of the total execution time for different

benchmarks. This amount of time is usually unpredictable

and this is unacceptable in real-time systems.

Fig. 6 shows the percentage of time that is used by the

optimization in the total execution time for all the 8

benchmarks. The results shown are the maximum values

among 9 groups of experiments and they are performed

with three input sizes (1, 10, 100) and three iteration

numbers (1, 10, 100). We can see that 5% to 15% of the

total execution time is used to optimize the hot methods,

during which all the real-time tasks that share the proces-

sor have to wait. This leads to greater time variation and

less predictability.

B. Reducing Interruptions with PcAC

The objective of applying pre-compilation on another

core is to avoid interruptions on the main core. They are

caused by dynamic compilation. However, it is very diffi-

cult to eliminate all these interruptions due to the com-

plexity of Java programs. With the different inputs, some

pre-compiled methods may not be always executed. In

some other cases, methods are called before the comple-

tion of compiling by the pre-compiler. As a result, some

interruptions still occur on the main core. In this case,

what the pre-compilation can do is to reduce the number

Fig. 5. Percentage of baseline compilation in the total execution
time.

Fig. 6. Percentage of time used by optimization in the total
execution time.
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of interruptions to the maximum. Fig. 7 shows the nor-

malized number of interruption under our call graph

guided PcAC scheme and they are normalized to the

number of interruptions in the single core case. We find

out that the pre-compilation can reduce interruptions by

about 20% on an average. The result in Fig. 7 is not quite

satisfying. In order to study the best results that can be

achieved, the profile-guided pre-compilation is performed.

The result is listed in Fig. 8. As much as 70% of compila-

tion interrupts are eliminated. 

C. Timing Sensitivity of AOS

We vary the interrupt interval from 20 ms (default value

of Jikes RVM) to 40 ms and 80 ms. Fig. 9 shows the exe-

cution time when the interval is 40 ms, normalized to the

case when the interval is 20 ms Where, x axis shows the

input size and the iteration number of benchmarks. Fig. 10

shows the results when the interval is 80 ms. As we can

see in these two figures, performance gets worse when

the total execution time is relatively short (i.e., with a

small input size and/or a small iteration number). This is

due to the AOS which cannot correctly identify the hot-

spots with a small number of interruptions. But for a

large input and a large iteration number, even long inter-

vals can get enough samples to identify hot-spots and

then perform the needed proper optimizations. In these

cases, performance is better due to the reduction in the

interrupt overheads.

Unlike performance, time predictability depends more

on the different benchmark behaviors. As shown in Fig. 11,

only db, which is a small benchmark, repeatedly executes

Fig. 7. Normalized dynamic compilation interruptions by the
call graph based pre-compliation on another core (PcAC), with
respect to the single-core scheme.

Fig. 8. Normalized dynamic compilation interruptions of the
profiling pre-compliation on another core (PcAC), with respect to
the single-core scheme.

Fig. 9. Execution time when the interval is 40 ms, normalized to
the case when the interval is 20 ms.

Fig. 10. Execution time when the interval is 80 ms, normalized
to the case when the interval is 20 ms.

Fig. 11. Standard deviation of the execution times, normalized
to the case when the interval is 20 ms.
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several methods. It has a smaller time variation when the

interval increases. It is obvious that the inaccurate hot-

spot detection makes the AOS even more sensitive. As a

result, the time predictability gets worse.

We also test the timing sensitivity of the AOS with dif-

ferent inputs. In order to obtain various inputs for the

SPEC JVM98 benchmarks, we change the order of the

three input files for each benchmark. With this design, we

get 5 groups of results, each with a unique input, but all

of them take very similar execution times. The results are

shown in Figs. 12 and 13. They are similar to Figs. 9-11.

Therefore, it is hard to simply tune the AOS to obtain bet-

ter time predictability and other approaches are also

needed.

D. Results of the PoAC Scheme

Due to great timing sensitivity of the AOS to external

interferences and different inputs, as shown in the previ-

ous section, a predictable JVM should not use the AOS to

detect and optimize hot-spots in Java applications. There-

fore, we propose the PoAC scheme the aim at better pre-

dictability without the degradation of the performance.

1) Time Variation of PoAC

We measure the execution time variation by running

benchmarks multiple times and by calculating the stan-

dard deviation of their execution times. The smaller the

variation is better is the time predictability. We test the

original JVM with the AOS as our baseline scheme

(denoted by BASE) and also our PoAC scheme. For both

BASE and PoAC schemes, we run the benchmarks five

times with the same inputs. Execution time variation

results are shown in Fig. 14, where x axis denotes the

input size and the iteration number of each group of

benchmarks. We can see a significant reduction in the

time variation in Fig. 14, especially for short executions.

The execution time variation from 1 × 1 to 10 × 10 is

quite small or even zero. As the PoAC scheme eliminates

the unpredictability of the adaptive sampling mechanism,

now all the optimizations take places at nearly the same

time and also complete at about the same time. However,

execution time variation still exists when the execution

time gets larger. This is due to the interferences of other

background processes on the experimental platform and

they cannot be completely removed. In our future work,

we plan to perform the experiments on a simulator where

these interferences can be avoided. Then, the time pre-

dictability of the PoAC scheme can be accurately evaluated.

Our experiments also show that for a given input, the

PoAC scheme works well on the reduction of the execu-

tion time variation. We apply 5 different inputs to the

benchmarks and run them under both BASE and PoAC

schemes for 30 iterations and the results of execution

time variation are shown in Fig. 15. This indicates that

the standard deviation of PoAC scheme is just 40-50% on

average as compared to the BASE scheme. However, the

time variation cannot be eliminated completely, as differ-

ent inputs are given to the programs. The reason that the

PoAC still works well with different inputs is that it dis-

ables the AOS in Jikes RVM and this is very sensitive to

Fig. 12. Average execution time of different intervals with 5
inputs.

Fig. 13. Standard deviation of execution times of different
intervals with 5 inputs.

Fig. 14. Standard deviation of execution times by the pre-
optimization on another core (PoAC) normalized to the BASE
scheme.
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the variation of the execution time. AOS brings some

non-linear dynamics into the whole system. Thus, even a

very tiny interference from the architecture, hardware

interrupts or OS processes will be magnified by the AOS

and it can affect the total execution time of the program.

With the PoAC, the sensitive of the AOS is avoided. So,

the JVM can operate in a more predictable manner.

2) Performance Impacts of the PoAC Scheme

With the PoAC, unpredictability caused by the AOS

can be avoided. But it is important not to compromise on

the performance. In order to evaluate the performance

impact of the PoAC, we set up 9 groups of experiments

with 3 input sizes and 3 iteration numbers. With this set-

ting, we can observe the trend of the performance impact

with different execution times. The baseline scheme is a

single core JVM with adaptive optimization. The experi-

mental results are varied for different benchmarks. One

observation is that 8 benchmarks in SPEC JVM98 can be

classified in to two groups, with similar results in each

group, as shown in Figs. 16 and 17, respectively.

The first group of benchmarks shows good perfor-

mance improvement for most of the configurations. As

depicted in Fig. 16, only the left end of the x axis show

worse performance compared to the baseline scheme.

From 1 × 50 to 100 × 10, these 4 benchmarks have better

performance with PoAC and this indicates that the profil-

ing information is beneficial for these benchmarks. The

reason for decreased performance on the left end is that

execution time is too short to benefit from PoAC and the

constant overheads mentioned in Section I are relatively

significant. On the other hand, at the right end (i.e., with

the largest number of inputs and iterations), the perfor-

mance degrades. Particularly, for mtrt, we find out that its

performance actually becomes worse than that of the

baseline scheme. One possible reason is that with very

long execution time, information from the profiling is not

accurate as compared to the online adaptive optimizer

used in the baseline scheme. This leads to worse perfor-

mance. However, in between the two extremes our PoAC

properly optimizes the needed methods, benefits from

removing the adaptive controller and it avoids the warm-

up time to identify hot methods. As a result, the perfor-

mance is improved with the configurations in the middle.

The other group does not work well with the PoAC, as

shown in Fig. 17. This is because profiling information is

not accurate enough to provide proper advices for these

benchmarks and this exhibits different behaviors with

different inputs. The profiling execution under one con-

Fig. 15. Standard deviation of execution times by the pre-
optimization on another core (PoAC) with 5 different inputs
normalized to the BASE scheme.

Fig. 16. Performance impact of execution times for compress,
raytrace, mpegaudio, and mtrt.

Fig. 17. Performance impact execution times for jess, db, javac,
and jack.

Fig. 18. Performance impacts for 5 inputs.
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figuration (100 × 10) cannot be used to accurately predict

the behaviors under other configurations. As a result,

PoAC cannot optimize the hottest methods or optimized

them on a wrong level. It is also possible that the optimi-

zation itself takes too much time and consumes too much

resource and this result in negative impacts to the appli-

cation thread on the main core. However, we cannot con-

clude that the PoAC does not work for these benchmarks.

What it requires is the proper profiling data that is spe-

cially tuned for each of these benchmarks.

We have also evaluated the PoAC with 5 different

inputs. The experimental results are shown in Fig. 18. As

the execution time for this experiment is long enough,

most of the benchmarks get better performance compared

to the baseline AOS on a single core.

E. Comparison of PoAC and CBO

There is another replacement of AOS that may improve

time predictability. This is the CBO scheme. The CBO

injects code that updates counters into Java programs and

then identifies hot methods by using counter values. It

does not rely on the sensitive timer based sampling mech-

anism as the AOS does. Hence, better time predictability

can be expected with the CBO.

We implemented a simple CBO scheme that updates

an invocation counter for each method. The counters are

updated in the prologues of methods, and the optimiza-

tion is triggered when a counter reaches a given thresh-

old. The threshold value of each benchmark is manually

selected. All the hot methods are optimized at level 1, as

there is neither profiling information nor cost/benefit

model that can be used to decide the optimization level.

Like PoAC, CBO performs execution and optimization

on the auxiliary core. However, the injected code that

updates the counters has to run on the main core. The

counters are implemented by using arrays that are

mapped to the method IDs. They are updated in each

method’s prologue.

We evaluated the counter based scheme with 5 differ-

ent inputs and compared its results with those of the

PoAC scheme. As shown in Fig. 19, the variation of the

execution times with the CBO reduces significantly com-

pared to that of AOS, and it is close to the results of

PoAC. This experiment result indicates that CBO is almost

as good as PoAC in terms of raytrace and mpegaudio.

However, he reduction in the execution time variation:

PoAC works better with 6 benchmarks and CBO outper-

forms PoAC for CBO shows the worst performance as

shown in Fig. 20 for all 8 benchmarks compared to both

PoAC and AOS.

The performance problem of CBO is due to the way it

selects hot methods. Those methods that are invoked the

most are not necessarily the ones with the longest execu-

tion times. CBO cannot identify the hot methods as accu-

rately as the sample based on the AOS or profile based

PoAC. Moreover, lack of optimization level estimation

prevents CBO from more aggressive optimizations and

this also wastes time on optimizations for unimportant

methods. Lastly, it is hard to set the optimal threshold

values of counters, as the threshold values changes while

running different Java programs.

Besides the performance issue, the code injection per-

formed by the CBO has also a potential risk that may

worsen time predictability in real-time Java computing.

Compared to PoAC that leaves original Java code

unchanged, CBO inserts counter update code into every

method of a Java program. The access to a counter which

is stored in an array in the heap may interfere with other

data accesses in the original Java program. This may

introduce unexpected cache stalls on the main core. In

other words, injected counter update code makes it more

complicated to predict the behavior of the original Java

program. To summarize, CBO is able to reduce the exe-

cution time variation like PoAC by eliminating unpre-

dictability that is caused by the AOS in JVMs but it is not

suitable for real-time Java computing. This is due to its

performance problem and increased complexity of timing

analysis.

Fig. 19. Standard deviations of pre-optimization on another
core (PoAC) and counter based optimization (CBO) with 5 inputs,
normalized to the BASE scheme.

Fig. 20. Execution times of the pre-optimization on another
core (PoAC) and the counter based optimization (CBO) schemes
with 5 inputs, normalized to the BASE scheme.
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V. RELATED WORK

Most of the researches on real-time Java computing

have focused on the improvement in the time predictabil-

ity of garbage collection. The first idea is to remove the

unpredictable garbage collection (GC) from real-time

Java system. That is why scoped memory and immortal

memory section are defined in the real-time specification

for Java (RTSJ) [1]. In this case, the objects in real-time

threads are managed by programmers instead of JVMs.

The developers take care of the memory areas that are

used for real-time tasks and they leave the other part to

GC. The GC thread holds lower priority than real-time

threads. Thus it cannot interfere with them. Time predict-

ability is guaranteed but flexibility is lost in development.

Most of the implementations of RTSJ support this kind of

technique bypassing GC. Besides, researchers made

efforts to improve the efficiency of this scoped memory

[4]. Corsaro and Schmidt [18] presented another imple-

mentation called as jRate [2]. They presented an informal

introduction to the semantics of the scoped management

rules of the RTSJ. It also provided a group of design pat-

terns which can be applied to achieve higher efficiency of

the scoped memory. [3] provided a complete programming

model of scoped memory model in order to simplify the

memory analysis that has to be done by developers.

Bypassing GC is proved easy to apply to the existing

JVMs and it brings a small overhead to the runtime mem-

ory management. But it is of limited use due to the great

difficulty it has brought to the developers. Without the

GC feature, programmers have to pay much more atten-

tion to the objects in real-time tasks in order to avoid

memory error. Although the scoped memory idea may be

a good solution to small short-term projects, real-time GC

is definitely necessary for future real-time Java systems.

Researchers have also studied how to design time-pre-

dictable garbage collectors. The incremental copying col-

lector [19] is the first attempt for such real-time GCs. In

this work, the memory mutator operation leads to GC

operation. Hence, GC is predictable and the worst case is

that every read or allocation invokes a certain mount of

collection operations. It is not very efficient but it provides

a way to implement real-time GC. Network-basedGC

was then developed by many other researchers, such as

[12] and [13] in the Jamaica VM. The basic idea is the

same but the overhead of allocation detection and unnec-

essary collection is significantly reduced. Even hardware

can be used to assist GC efficiency and reduce WCET

bounds, as it is presented in [20].

A number of studies have also tried to exploit the mul-

tiprocessor in order to improve the time predictability of

Java garbage collection. The first concurrent GC imple-

mentation for the multiprocessors was presented by [21].

This applied the algorithm in [22] on a 64-processor

machine. It greatly reduced the pause time of GC to a

millisecond level. After this, various kinds of concurrent

GC algorithms and implementations were presented by

researchers to further improve the efficiency. Xian and

Xiong [23] showed that their technique can effectively

reduce the memory amount that was used by concurrent

real-time GC. Sapphire [24] implemented a copying col-

lector for Java with low overheads and a short pause

time. Pizlo et al. [25] proposed two lock-free concurrent

GC algorithms CHICKEN and CLOVER that have the

pause time in the order of microseconds and compared

them with another algorithm STOPLESS [26]. Although

these algorithms are designed for and implemented by

C\#, it is easy to adapt them to Java as they are similar in

many aspects.

Besides all the above software approaches a hardware

implementation of JVM called as a Java processor is also

presented as a solution for real-time systems. Basically, a

Java processor is a stack based processor and it directly

executes Java bytecode (JBC). In the Java processors,

method and stack caches take the places of instruction

and data caches respectively. It is possible that Java pro-

cessors are designed to be deterministic in terms of the

execution time. Komodo [27] is an early implementation

of a Java processor that provides main Java features and

supports real-time tasks. [28] continued working on the

Komodo processor with advanced scheduling and event-

handling algorithms. SHAP [29] is another Java proces-

sor that is specifically designed for real-time systems. It

implements fast context switching and concurrent GC.

JOP [30, 31] is a well engineered Java processor where

WCET can be analyzed. Method caches in JOP simplify

the analysis of WCET as only thread switching can intro-

duce cache misses. Tools for performing WCET analysis

on JOP is provided in [32]. The high-level WCET analy-

sis is based on integer linear programming (ILP) and the

low-level timing model is provided by JOP properties.

Similar works have also been done in [33, 34]. Besides,

Harmon and Klefstad [35] adapted their work of WCET

annotations to Java processors. They made the WCET

analysis interactive to developers in order to encourage

feedbacks.

In addition to software and hardware based techniques

to improve the time predictability of Java computing,

several efforts have been made to accurately estimate the

WCET of Java programs. [36] described a general method

based on the ILP technique that can be applied to Java

programs. [37] provided an implementation of the WCET

analyzer which is based on Java annotations. [38] modi-

fied the Kaffe [39] and Komodo [27] to facilitate WCET

analysis of Java applications that run on the two JVMs. In

these studies, both control flow and data flow are consid-

ered. The works in [40, 41] gave various extensions such

as loop bounds, timing modes and dynamic dispatch

semantics into WCET analysis. [42] then tried to provide

a standard of Java annotations for WCET analysis and

this was based on all the previous works.

Our research in this paper is orthogonal to the above
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mentioned related work. To the best of our knowledge,

our work is first to exploit multicore processors in order

to reduce the unpredictability of dynamic compilation and

adaptive optimization of Java computing while achieving

comparable performance. As multicores are made avail-

able, there is a trend of having more cores in a chip. We

believe that exploiting the concurrent execution on more

than one core can be a promising method to support high-

performance in real-time Java computing.

VI. CONCLUSION

Recently there have been growing interests in using

Java for a wide variety of both soft- and hard-real-time

systems. This is primarily due to Java’s attractive features

such as platform independence, scalability and safety.

Dynamic compilation and adaptive optimization are cru-

cial techniques for the improvement of performance in

Java programs. However, these two features are detri-

mental to time predictability of Java computing. Most of

the real-time Java researches are focused on addressing

the time predictability of garbage collection, while either

ignoring the time unpredictability of dynamic compila-

tion and adaptive optimization or simply disabling them

even if the performance is much degraded. Therefore, it

is important to improve the time predictability or reduce

the time variation of dynamic compilation and adaptive

optimization without significantly affecting the perfor-

mance.

With the widespread usage of multicore computing,

this paper proposes several methods to exploit multicores

for improving time predictability of Java computing while

attaining performance comparable to that with traditional

dynamic compilation and adaptive optimization. Specifi-

cally, the PoAC approach can efficiently eliminate inter-

ruptions due to dynamic compilation. Hence, it can

improve time predictability. With good heuristics and

tight WCET information, we believe most of the run-time

(i.e., after the boot-up stage of JVM) interruptions can be

avoided by PcAC scheme. We also observe that both

smaller execution time variation and higher performance

by migrating optimizations to an auxiliary core. Further-

more, we propose PoAC to replace the AOS, which is

very timing sensitive. This in turn brings a lot of unpre-

dictability to Java computing. Our experimental results

indicate that PoAC is able to greatly reduce the variation

in the execution time, even when subject to different

inputs. At the same time, the performance of PoAC is

competitive with AOS. Moreover, we implement CBO

which also reduces execution time variation, and we

compare it with PoAC. Despite the fact that CBO achieves

a reduction of execution time variation compared to that

of the PoAC, it shows worse performance. It increases

the complexity of timing analysis by injecting code into

programs. To summarize, the PoAC appears to be the best

for real-time Java computing scenarios.

All these studies on time-predictable dynamic compi-

lation/optimization are just the first step towards our final

goal of designing a fully time predictable real-time JVM

that has high-performance and is platform independent.

In our future work, we like to study on the architectural

impacts (such as the number of cores and cache configu-

rations) on the proposed techniques by using an extensive

simulation. While this paper focuses on compilation, it will

be interesting to study on the operating system schedul-

ing to schedule the application threads and compilation/

optimization threads on multicores to ensure time pre-

dictability while improving the utilization of the multiple

cores. Finally, we are interested in using real-time Java

benchmarks and in the integration of our approach with

formal WCET analysis to accurately estimate the worst-

case performance of our approaches.
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>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


