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Abstract
Increase in the number of older people due to demographic changes poses great challenges to the social healthcare sys-

tems both in the Western and as well as in the Eastern countries. Support for older people by formal care givers leads to

enormous temporal and personal efforts. Therefore, one of the most important goals is to increase the efficiency and

effectiveness of today’s care. This can be achieved by the use of assistive technologies. These technologies are able to

increase the safety of patients or to reduce the time needed for tasks that do not relate to direct interaction between the

care giver and the patient. Motivated by this goal, this contribution focuses on applications of acoustic technologies to

support users and care givers in ambient assisted living (AAL) scenarios. Acoustic sensors are small, unobtrusive and

can be added to already existing care or living environments easily. The information gathered by the acoustic sensors can

be analyzed to calculate the position of the user by localization and the context by detection and classification of acoustic

events in the captured acoustic signal. By doing this, possibly dangerous situations like falls, screams or an increased

amount of coughs can be detected and appropriate actions can be initialized by an intelligent autonomous system for the

acoustic monitoring of older persons. The proposed system is able to reduce the false alarm rate compared to other exist-

ing and commercially available approaches that basically rely only on the acoustic level. This is due to the fact that it

explicitly distinguishes between the various acoustic events and provides information on the type of emergency that has

taken place. Furthermore, the position of the acoustic event can be determined as contextual information by the system

that uses only the acoustic signal. By this, the position of the user is known even if she or he does not wear a localization

device such as a radio-frequency identification (RFID) tag.

Category: Smart and intelligent computing

Keywords: Acoustic monitoring; Localization; Acoustic event detection and classification; Ambient assisted living

I. INTRODUCTION

The demographic changes lead to a continuous growth

in the percentage of older people in today’s societies [1,

2]. On the one hand, such people explicitly desire to live

independently in their own homes as long as possible. On
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the other hand, they have special needs due to decreasing

mental and physical capabilities, such as declining strength,

first mild cognitive impairment (MCI), visual or hearing

impairments [3-6]. Nowadays, it is commonly accepted

that the resulting problems of our care systems will not be

solvable without the support of technology [7]. Examples

for such assistive technologies range from reminder sys-

tems [8], medical assistance and tele-healthcare systems

[9], personal emergency response systems, social robot-

ics and safe human robot collaboration [10], to human-

computer interfaces for older persons or people with spe-

cial needs [8].

Assistive technology usually incorporates application

dependent sensors, such as vital sensors, cameras or

microphones. Recently, mobile devices have gained inter-

est in the research community due to the availability of

various sensors and communication interfaces. However,

recent studies have shown that people prefer non-obtru-

sive sensors, such as microphones, over camera surveil-

lance. Microphones can be easily integrated into the

existing living environments in combination with appro-

priate signal processing strategies [6, 11-13]. It is advan-

tageous to construct an ambient monitoring system that is

able to support older persons without being noticed by

the end-user. This excludes the use of wearable technol-

ogy, such as smart-phones or bracelets.

We focus on the development of an acoustic monitor-

ing system for social care applications. In nursing homes,

possibly dangerous situations will be automatically detected

by such systems [14-17]. In contrast to the currently

available systems - which detect only an increased acous-

tic sound level, and using this, will trigger alarms e.g., in

case of a thunder, the proposed system analyzes the sig-

nal and the context to lead to a more accurate detection of

possibly dangerous situations.

Besides the ambient character of microphones in mon-

itoring applications, they can also be used for the user

interaction with technical systems. According to [8, 18],

if the recognition rate is sufficiently high then, the inter-

action via speech or sound is natural and convenient. This

kind of interaction is also preferred by older users as it

was shown in recent studies [12]. A basic example is to

turn on lights to enlighten a pathway for the physically

impaired by just a clap of hands. With an increased com-

putational power and deeper integration of sensors and

electronic devices also more complex tasks such as giv-

ing speech commands to a technical systems, e.g., in

smart homes to switch on lights, open doors or to control

multimedia devices, as well as system adaptability based

on the context recognition and individual user prefer-

ences becomes possible.

The remainder of this contribution is organized as fol-

lows: Section II gives an overview of the proposed system;

Section III describes the incorporated signal processing

strategies, i.e., signal pre-processing and analysis to obtain

a robust audio signal representation, the acoustic event

detection and classification stage as well as an acoustic

localization and tracking of users. Together with a descrip-

tion of experiments the system is evaluated and its perfor-

mance is discussed in Section IV and Section V concludes

the paper.

Notation: Vectors and matrices are printed in boldface

while scalars are printed in italic. k, n and l are the dis-

crete time, frequency, and block index, respectively. The

superscript * denotes the complex conjugation.

II. SYSTEM OVERVIEW

The system architecture adapted from [11] uses acous-

tic input and output for situation analysis and interaction

with the user and it is schematically shown in Fig. 1. In

general, the proposed system is built on a modular struc-

ture of models and signal processing strategies to serve

for acoustic monitoring, emergency detection and classi-

fication and for appropriate user interaction. The system

utilizes various sources of information that are either

gathered before hand or they are automatically estimated

during system operation. This includes the information

about the acoustic environment, e.g., the position of the

user, reverberation times and the damping of walls and

ceilings, information about the current acoustic context,

e.g. the presence and kind of noise sources, as well as the

information on the individual user himself. Especially the

latter is of high importance for the adjustment of the sys-

tem’s functionality according to the individual needs and

demands of the user. Firstly, this is true for the monitor-

ing use-case, where most of the responsibility lies on the

formal care givers and secondly, for an assistance use-

case, where for instance the personal audiogram of the

user can be utilized to account for the individual hearing

loss during human-machine interaction and cooperation [6].

The more information about the user, the environment

and the context is available, the more accurate the acous-

tic model becomes and the better the system supports the

Fig. 1. Schematic structure of the emergency monitoring system.



Journal of Computing Science and Engineering, Vol. 6, No. 1, March 2012, pp. 40-50

http://dx.doi.org/10.5626/JCSE.2012.6.1.40 42 Stefan Goetze et al.

user as well as the formal care givers. The acoustic model

also yields the signal processing methods for audio pre-

processing, acoustic event detection and classification,

acoustic localization and tracking. They will be described

in detail in the subsequent sections.

Then, a reasoning model is constructed relying on inter-

action rules that have been defined in close cooperation

with the user as well as additional information about the

desired application and use-case. This model is the core

element in the system architecture. It has several input

and output modalities to interact with the user or care

institutions and it interprets the data according to the

desired use-case. A suitable reasoning model for short-

and long-term monitoring of the health status of a person

and emergency detection was proposed in [16]. The

detected events were treated as instantaneous mid-level

representations of context under the assumption that sin-

gle events do not sufficiently describe a certain situation.

By taking temporal aspects and repetitions of events into

account, i.e. by defining short- and long-term models for

event propagation and by deriving suitable application-

dependent parameters, high-level contextual information

became accessible. Thus it allows for a more accurate

interpretation of the situation. Due to the modular struc-

ture of the reasoning model, an adaption to other applica-

tions and use-cases is also possible.

The prediction of the reasoning model (e.g., the deci-

sion if an emergency occurred) is then transferred to the

care institution or the nurses’ room (e.g., as an emer-

gency call) or to the users via an output controller. This

controller manages the actual presentation of information

to the user if the user lives in his/her own flat. Depending

on the expected quality of the acoustic communication,

the output controller initializes the information presenta-

tion in an acoustic way or by means of other modalities if

the potential acoustic presentation is not suitable for the

user in the given context. In this case, text messages on a

screen or ambient light can be chosen for human-com-

puter interaction.

For the evaluation of the signal processing strategies

described in the following an apartment was equipped

with several ambient microphones in the ceiling and two

spherical arrays inside a floor lamp as depicted in Fig. 2.

Fig. 2a shows the positions of the ceiling microphones

(crosses), of the spherical arrays (circles) as well as the

position of the user (triangle). Fig. 2b shows a schematic

of the 8-channel spherical microphone array built inside a

floor lamp. Both the microphone arrays were used for the

signal enhancement as well as position estimation of

acoustic sources for the purpose of acoustic monitoring.

III. SIGNAL ANALYSIS

Humans have an astonishing ability to detect the posi-

tion as well as the meaning of an acoustic source, partly

relying on the information of their two ears. Therefore,

the technical position detection of acoustic sources [19,

20], also relies on spatial information obtained from mul-

tiple microphones. Thus, the following subsections will

present the acoustic signal processing strategies that are

needed for the estimation of the position and meaning of

an acoustic event for the determination of the acoustic

context. The first step (cf. Section III-A) is an audio seg-

mentation process which determines the parts of the sig-

nal that contain speech or other acoustic events. In the

next step irrelevant background noise which is always

present in real-world recordings is removed from the sig-

nal (cf. Section III-B). Then the signal is processed by the

event detection and classification unit (cf. Section III-C

and Section III-D). It determines which events are

present in the signal and if a possibly dangerous situation

may have occurred and whether an alarm should be

raised or not. The position of the event is determined in

parallel by multi-microphone position estimation and

tracking system (cf. Section III-E) which serves as the

context information for the detection and classification unit.

Furthermore, multiple microphones allow multi-channel

noise reduction schemes [21] and they are used for the

separation of acoustic events from the background noise in

Section III-B.

A. Audio Segmentation

For high-performance event monitoring applications,

accurate signal segmentation mechanisms are of high

importance. By this, the system is enabled to distinguish

between the events of interest and all other acoustic signals

such as, separation of speech utterances from non-speech

in the acoustic stream. These methods determine the

temporal location of events of interest (acoustic foreground)

in a continuous audio stream and thereby, reduce the

computational overhead in the later processing stages.

They also provide information about the acoustic background

and this is considered to be one of the strongest sources

Fig. 2. (a) Positions of ceiling microphones and user positions.
(b) Schematic of a spherical microphone array ambiently built in
a floor lamp.
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of errors in real life monitoring applications. In order to

reliably distinguish between the foreground and background

acoustic objects, several methods, known as voice activity

detection (VAD) algorithms have been proposed. The

suitability of VAD algorithms, assume an acoustic signal

to consist of solely speech and noise, for monitoring

applications was evaluated in [16] using real office and

living-room recordings. Following the findings that were

presented, we use the long-term spectral divergence VAD

method proposed by Ramirez et al. [22] in our system to

obtain the labels for event presence and background

noise. Then, this information can be used to initialize and

trigger later processing stages as it will be described in

the following subsections. 

Depending on the application scenario, ethical and

privacy issues may have to be considered as well. Therefore,

the speech activity detection (SAD) methods can be used

for audio signal segmentation [23]. In contrast to VAD

algorithms, SADs contain a specific model for speech,

thus they allow reliable identification of privacy related

speech content in a continuous audio signal. On one

hand, SADs may lead to a further increased end-user

acceptance of monitoring applications due to privacy

protection functionality when they are utilized in a complex

system. On the other hand, for health and security related

monitoring applications, SADs may corrupt the performance

of the event detection and classification methods, since

valuable, emergency indicating speech information (keywords,

crying and shouts for help) from speech segments can not

be identified any more.

B. Acoustic Foreground-Background Separation

The output of a microphone is an amplitude-time sig-

nal. Usually, this signal is corrupted by the background

noise if recorded in real environments. This noise is a dis-

turbance for the classifier and it usually decreases the

classification performances of state-of-the-art classifiers,

e.g. using features like Mel-frequency cepstral coeffi-

cients (MFCCs). In contrast, humans are less sensitive to

the background noise disturbances [24]. Thus, in a pre-

processing step, denoising algorithms are suggested [25].

In this paper, a foreground/background separation is applied

that uses a probabilistic noise mask on the so-called coch-

leogram craw [g, l] as proposed in [17]. A cochleogram is a

psychophysiologically motivated spectro-temporal repre-

sentation of an acoustic signal. For this purpose, the time

signal from the microphone is filtered by a gammatone

filterbank [26]. In this contribution, the filterbank con-

sists of G = 93 gammatone filters. The center frequencies

range from 20 Hz to 8,000 Hz. They are distributed in

2.85 equivalent rectangular bandwidth (ERB) distances

that are around 1,000 Hz. The phase is neglected by tak-

ing the logarithm of the magnitude of the filters. The time

resolution is 5 ms per frame.

For the separation of the foreground and background, a

dynamically adapting background model

(1)

for every time frame l is implemented. The background

model of the past is adopted to develop a prediction of the

current background, pbg[g, l]:

pbg[g, l] = πg · cbg[l − 1], (2)

Where, g represents a gammatone filter and

(3)

is a filter for smoothing over neighboring gammatone fil-

ter bands. For reasons of energy conservation, it has to

fulfill:

(4)

The shapes of the filters π are axially symmetrical except

for the marginal g. They are only non-zero for four neigh-

boring gammatone bands. The filterbank is plotted in Fig. 3.

A probabilistic mask is generated by the difference

between the cochleogram craw[g,l] as in (5) and the pre-

dicted background pbg[g, l],

(5)

Where,  is a weighting factor to equalize the dif-

ferent bandwidths of the gammatone filters and  is

used to extract the background:

(6)

Where, β is a factor to define the degree of influence

between the current cochleogram  and prediction

. The foreground energy due to the mask is,

(7)

cbg l[ ] cbg 1,l[ ],...,cbg G,l[ ][ ]T=

πg πg,0,...,πg,G[ ]=

πg,i

i=1

G

∑ 1.=

ρ g,l[ ] 2^
craw g,l[ ] pbg g,l[ ]–

γ g( )
--------------------------------------------⎝ ⎠
⎛ ⎞

6

–=

γ g( )
p g,l[ ]

cbg g,l[ ] 1 β–( ) p g,l[ ] craw g,l[ ]⋅  +(⋅=

1 p g,l[ ]–( ) p g,l[ ]⋅ ) β pbg g,l[ ],⋅+

craw g,l[ ]
pbg g,l[ ]

cfg mask– g,l[ ] 1 p g,l[ ]–( ) craw g,l[ ]⋅=

Fig. 3. The shapes of filters πg. For better visibility, π40 is highlighted.
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To respect the dynamic adaption of the background

and to conserve the total energy, only the foreground

energy that exceeds the background energy is considered:

  (8)

The background model has to be initialized. Hence, the

first Tinit = 25 frames (representing 125 ms) after the ini-

tialization of the algorithm are averaged:

(9)

In Fig. 4a-c, the raw cochleogram, the background and

the foreground of a cough are plotted. It can be clearly

seen that the background noise is removed from the coch-

leogram by the previously described method.

C. Feature Extraction

In order to extract the noise robust features, eight ori-

ented edge detectors [27] are applied to a cochleogram.

The eight orientations  are defined as:

{(1,0), (1,1), (0,1), (−1,1), (−1,0), 

(−1,−1), (0,−1), (1,−1)}. (10)

Hence, edges in 45o steps are considered. The edges

are detected by the derivatives ∆
v
 in the cochleograms.

Instead of using only the derivatives of adjacent spectro-

temporal points like the proposed in [27], smoothed

derivatives over longer spectro-temporal distances are

adopted here:

(11)

In Equation (11),  denotes a spectro-tempo-

ral point. A binary edge map, Y
v
[χ] is generated by find-

ing out the local maxima of the derivatives

(12)

Where,  is a threshold of the value of the α th (=

80%) percentile of positive derivatives. In order to make

 robust to small spectro-temporal shifts, the binary

edge points have to be spread. This is done by filtering

 by a two dimensional Gaussian filter with diagonal

covariance matrix (standard deviation [σg = 2, σl = 3])

yielding to a feature matrix . Exemplarily, this is

shown for a cough in Fig. 4d.

D. Event Detection and Classification

cfg g,l[ ] cfg mask– g,l[ ]
∞d– B⎩

⎨
⎧

=
cfg mask– g,l[ ]∀ cbg g,l[ ]>

otherwise.

cbg g,0[ ] 1
T init

------- craw g,l[ ]
l=1

T
init

∑=

v δg,δl( )=

v ∈

∆v χ[ ] cfg χ i v⋅+[ ] cfg χ i 1–( ) v⋅–[ ],–
i=1

3

∑=

χ g,l( )=

Yv χ[ ] 1

0⎩
⎨
⎧

=
if ∆v χ[ ] max ∆v χ v–[ ],∆v χ v+[ ],τα{ }>

otherwise

τα

Yv χ[ ]

Yv χ[ ]

Ỹv χ[ ]

Fig. 4. Outputs of preprocessing and feature extraction stages of a human cough. (a) A raw cochleogram craw. (b) A background model cbg.
(c) A foreground model cfg. (d) A feature model Yv[χ] for v = (-1, 0) (horizontal step) includes Gaussian spreading of edges. All panels show
energy of gammatone bands over time. The first 180 ms used for the subsequent classification step are marked by white, vertical lines.
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The detection of an acoustic event, i.e. the awareness

of an acoustic element that differs from the background

noise, is accomplished by comparing the energy of the

predicted foreground  to the background .

If the ratio is higher than a defined threshold and stays

above that threshold for a certain time (rise time) then,

the beginning of an event is marked as depicted in Fig. 5.

If the energy ratio drops again under the threshold (and

stays below it for a time called as fall time) then, the end

is marked. The rise and fall times are supposed to avoid

the separation of a single event due to small fluctuations.

In the classification state, models for acoustic events

are compared to classify the objects. Prior to this, the

models have to be trained on the basis of training data.

For a small amount of training data, there is a risk of

over-learning models. Thus, the model complexity, i.e.

the number of learned parameters, has to be kept small.

Hence, an approach that can be regarded as a 1-nearest-

neighbor algorithm [28] is proposed. For distance measure

between a cochleogram  and a model centroid

of class s, the city block distance (L1-Norm) is

applied:

, (13)

Where, each class s consists of  centroids. The cen-

troids are indexed by λ. For the difference calculation in

Equation (13),  and  must have the same

dimensionality. Thus, only the first 36 frames (180 ms) of

a detected event are considered (cf. white lines in Fig. 4).

The class membership sc of  is estimated by

finding out the centroid with the nearest distance to it:

(14)

In order to learn centroids, k-means clustering [29] is

used. Each class, s is learned separately from the others

from labeled training data belonging to s. The feature

 is extracted from every date and it is processed in

the k-means algorithm. The k-means algorithm is initial-

ized by k-means++ [30]. The cluster centers of k-means

are the centroids .

E. Localization and Tracking of Acoustic
Sources

The position of the user is important information for

the reasoning and recognition system. By the exploitation

of the position information it is possible, e.g., to switch

on the appropriate lamp or to open the proper door by

voice or sound commands, i.e. the lamp or door closest to

the user. Furthermore, the position information is also

highly desired if the activities of daily living (ADL) of

the user should be automatically evaluated.

Acoustic position estimation is usually done by, firstly

estimating the direction of arrival (DOA) of an incoming

sound for several microphone pairs and secondly by com-

bining the different DOA estimates of several microphone

pairs to obtain a two-dimensional or three-dimensional

position, e.g. by means of triangulation. For an overview

of different DOA estimation algorithms the reader is

referred to [20, 31]. For this contribution we calculate a

manipulated general cross-correlation (GCC) of the micro-

phone pairs. A spectral whitening of the input spectra is

achieved by the so called phase-transform (GCC-PHAT).

Regarding the characteristic of a delta-impulse one attempts

to emphasize the displacement of the DOA encoding sig-

nal peak in the GCC by the phase-transform. This

approach was first mentioned by Knapp and Carter [19].

The GCC-PHAT cross correlation is calculated by,

(15)

(16)

Where,  is the GCC-PHAT,  is the

phase-transformed cross power spectral density (CPSD)

between the microphones, i and j and IDFT{·} is the

inverse discrete Fourier transform. In the estimation of

 in Equation (16) the phase-transform is included

by the denominator . With the determina-

tion of the relevant peak position in GCC-PHAT one can

calculate the DOA ϕ0 by,

(17)

In Equation (17), κij denotes the peak position, fs is the

sampling frequency, dij is the distance between the micro-

phones, and c is the sound velocity, respectively. Prob-

lems can occur during the estimation by the additional

disturbing noise or interfering reverberation that results

in a decrease in the detection rate.

If the system provides personalized assistance in the

cfg g,l[ ] cbg g,l[ ]

cfg g,l[ ]
µv,s ,λ χ[ ]

ds ,λ Ỹv χ[ ] µv,s ,λ χ[ ]–
χ,v
∑=

Λs

Ỹv χ[ ] µv,s ,λ χ[ ]

Ỹv χ[ ]

sc arg min
s

min
λ

ds ,λ( )=

Ỹv χ[ ]

µv,s,λ χ[ ]

rij

PHAT
k[ ] IDFT φ i j

PHAT
n[ ]{ },=

φ ij

PHAT
n[ ] x i

*
n[ ] x j n[ ]⋅

x i

*
n[ ] x j n[ ]⋅

--------------------------------,=

rij

PHAT
k[ ] φ ij

PHAT
n[ ]

φ ij

PHAT
n[ ]

x i

*
n[ ] x j n[ ]⋅

ϕ0 arccos
κ ij c⋅
fs di j⋅
------------⎝ ⎠
⎛ ⎞ .=

Fig. 5. Scheme of event detection. An event is marked (solid,
vertical lines) by thresholding (dash-dotted, horizontal line) the
energy ratio between the foreground and background (solid
graph). The threshold has to be exceeded for at last the rise time
respectively falls time (dashed, vertical lines).
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multiuser case then, a speaker separation is required to

distinguish between the residents (e.g., male/female). The

fundamental frequency (pitch) of the human voice is an

important property in the human speech production to

distinguish between speakers, i.e. female speakers usu-

ally have higher voices than male speakers. Several algo-

rithms have been developed to estimate the pitch from the

speech signals; for further details refer to the literature,

e.g. [32].

In order to emphasize the pitch as a distinct peak from

the disturbed input signal we use a cepstrum transforma-

tion [33]. Hence, the logarithm of the absolute value of

the spectrum x[n] is inverse Fourier transformed:

(18)

In Equation (18), CEP[k] denotes the cepstrum and

ε = e−6 is a regularization factor to prevent too small val-

ues while calculating the logarithm. This transformation

causes an additive representation of the signal compo-

nents as depicted in Fig. 6 rather than the superimposed

spectrum [33]. Thus, the so-called quefrency [34] for a

dominant peak can be interpreted as a pitch. A reasonable

pitch range begins at 50 Hz (low male voice) and reaches

up to 500 Hz (high children voice) [35].

IV. EXPERIMENTS AND RESULTS

This section presents the experimental evaluation of

the proposed monitoring system. The experimental setup

for the detection and classification of the acoustic events

is described in Section IV-A and the results for an acous-

tic localization and tracking are shown in Section IV-B.

A. Acoustic Event Detection

A database of different sounds was recorded by using a

cardioid microphone with some distance from the acous-

tic sources. The database consisted of four classes:

(hands) clapping, coughing, knocking, and phone ring-

ing. For clapping, coughing and knocking, seven persons

were asked to generate these events separated and in

silence. Knocking was done on a wooden table either by

using a flat hand, fist or knuckles. This decision was left

to the participant. For each of these classes, 54 events

were collected, where the contribution of each person dif-

fered. For phone ringing, a phone with an old fashioned

ring tone was recorded nine times. Each class was sepa-

rated into nine equally sized subsets to enable a nine-fold

cross validation [29] and this was performed for evalua-

tion. Three types of features were used for training and

classification. It will be evaluated in the following: 1) we

used the pure foreground cochleogram as described in

Section III-B, 2) the smoothed edge features as described

in Section III-C, and 3) standard 39-dimensional MFCCs.

The window length of the MFCCs was 25 ms using 10

ms hop-time. The 0th coefficient and the derivatives of

the first and second order (∆ and ∆∆) were included to

form 39-dimensional feature vectors per frame. In order

to compare the results with the standard classifiers, also a

Gaussian mixture model (GMM) [28, 29] using MFCC

features is tested. Here, in contrast to the mentioned k-

means classifier, each frame is processed separately as a

feature vector. The likelihood for an event is the multipli-

cation of the likelihoods of each frame of an event. Only

the classification stage is evaluated without the investigation

of the detection accuracy.

The results of the feature/classifier combinations are

CEP k[ ] IDFT log10 x n[ ] ε+( ){ } .=

Fig. 6. Short-time cepstrum, with signal to noise ratio (SNR) = 0
dB and reverberation time T60 = 550 ms. The peak at 0.0072
second corresponds to a pitch of = 138 Hz (male). Preceding
decline encodes the impulse response (IR) of the environment.

Fig. 7. Mean accuracy and standard deviation of feature/classifier
combinations over the number of centroids/mixtures for the
nine-fold cross validation. The feature/classifiers are the proposed
Gaussian spreaded edge features with k-means (Edge, squares),
pure foreground cochleograms (CGRAM) with k-means (circles),
Mel-frequency cepstral coefficients (MFCCs) with k-means (MFCC,
upward-pointing triangles) and MFCCs with Gaussian mixture
model (GMM) (GMM/MFCC, downward-pointing triangles, dashed
line).
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shown in Fig. 7. The mean accuracies and standard devia-

tions of the nine trials of the cross validation are plotted

over a number of centroids/mixture components 

( ). The accuracies are best for  = 1. This is

probably an effect of the small training database. If more

centroids are generated by the k-means then, it becomes

more sensitive to the outliers. Only for  = 1, stable

results with standard deviation less than 5% are calcu-

lated, i.e. for a small database the k-means algorithm can

be replaced by just calculating the mean of the features.

The GMM does not show this high dependency on the

number of means as it processes the frames separately.

Instead of the maximal 48 features per class as for the k-

means, the GMM can revert to over 2,000 feature vectors

(for phone ringing less). For the case  = 1, the edge fea-

tures outperform the others. Even the GMM/MFCC com-

bination is worth, but it is only 1%. Moreover, it is

insignificant for this small database. The performance of

other k-means classified features lie more than 5% under

the edge based k-means classifier. In summary, Fig. 7

shows that a recognition rate of >90% can be achieved by

GMM based approaches and for  < 4 which also uses

the computationally extremely simple Edge feature.

Thus, a classification of everyday acoustic events is pos-

sible even under realistic acoustic conditions.

B. Localization and Tracking

For the evaluation of the localization sub-system, a

combined pitch and DOA estimation algorithm is used

Λ
Λs Λ s∀= Λ

Λ

Λ

Λ

Fig. 8. Accuracy rates and standard deviation for two concurrent speaker (male/female) in terms of direction of arrival (DOA, left) and
pitch (right) estimation. SNR: signal to noise ratio.
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based on a harmonic sieve filtering of the CPSD that

includes the concept of the cepstrum and GCC-PHAT

calculation [36]. Recently, the improvements to this com-

bined algorithm were proposed [37]. The setup was cho-

sen to correspond to the room that is depicted in Fig. 2.

Eight signal to noise ratios (SNRs) that ranges from 25

dB to -10 dB and eight reverberation times that ranges

from 0 ms (no reverberation) to 500 ms (corresponding to

common office environment) were simulated. An SNR of

25 dB implies that there was hardly any noise that was

perceived by human listeners and at an SNR of -10 dB

hardly any signal can be perceived (e.g. as in a quickly

driving car). Furthermore, real reverberation measure-

ments where used for additional evaluations. SNR is

adjusted by additional spectrally speech shaped, diffuse

noise that is uncorrelated to the desired signal. A six

channel line array with 22 cm distance between each

microphone was adopted. As a valuation standard the

accuracy rate of all the estimations was calculated, toler-

ating a deviation of 10o and 10 Hz, respectively, i.e. if the

direction estimate was within a tolerance of ±10 degrees

and the pitch estimate to distinguish between the speakers

was within a tolerance of ±10 Hz then, the estimate was

considered to be correct.

Two concurrent speakers (male/female) were present

and they had to be tracked.

In Fig. 8 the results for different scenarios are depicted.

Fig. 8a show the accuracy rates for the different reverber-

ation times T60 for a clean speech. The results are quite

good without any exception for any room reverberation

time and for both speakers as well for the direction esti-

mate (left panels) as for the pitch estimate (right panels).

Results for a scenario with varying SNR but without

reverberation are shown in Fig. 8b. Especially the pitch

estimation declines with lower SNR down to 40% for -10

dB SNR. However, it should be noted that common SNR

which is to be expected in a household or a care environ-

ment is >10 dB. Fig. 8c again shows the results for the

different SNR values. This time, real measured room

impulse responses (RIRs) with reverberation of about

T60 ≈ 550 ms instead of simulated ones are used. These

data show a particular impact to the DOA estimation

when compared to the Fig. 8b. The results show that the

reliable results can be expected even under moderately

high reverberation up to the noise levels of 5-10 dB SNR

(~70% accuracy) which is sufficient for the envisaged

household and care scenarios.

V. CONCLUSION

An acoustic monitoring system for an ambient assisted

living scenario includes technologies that are to determine

the user’s activity by means of an acoustic event detec-

tion and classification. Localization of the user was also

described in this contribution. The system combined strate-

gies for signal segmentation, background noise reduction,

event detection and classification as well as acoustic

source position estimation and tracking to lead to a prac-

tically applicable overall system. The system was evalu-

ated under acoustically realistic conditions including

disturbances such as ambient noise and reverberation. It

was shown that as well the position of the user as contex-

tual information for the emergency monitoring system as

well as acoustic events can be reliably detected.
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