
Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010, Pages 189-206.

Task-Level Dynamic Voltage Scaling for Embedded

System Design: Recent Theoretical Results

Taewhan Kim

School of Electrical Engineering and Computer Science

Seoul National University, Seoul, Korea

tkim@ssl.snu.ac.kr

Received 7 June 2010; Accepted 23 July 2010

It is generally accepted that dynamic voltage scaling (DVS) is one of the most effective
techniques of energy minimization for real-time applications in embedded system design. The
effectiveness comes from the fact that the amount of energy consumption is quadractically
proportional to the voltage applied to the processor. The penalty is the execution delay, which
is linearly and inversely proportional to the voltage. According to the granularity of tasks to
which voltage scaling is applied, the DVS problem is divided into two subproblems: inter-task
DVS problem, in which the determination of the voltage is carried out on a task-by-task basis
and the voltage assigned to the task is unchanged during the whole execution of the task, and
intra-task DVS problem, in which the operating voltage of a task is dynamically adjusted
according to the execution behavior to reflect the changes of the required number of cycles to
finish the task before the deadline. Frequent voltage transitions may cause an adverse effect on
energy minimization due to the increase of the overhead of transition time and energy. In
addition, DVS needs to be carefully applied so that the dynamically varying chip temperature
should not exceed a certain threshold because a drastic increase of chip temperature is highly
likely to cause system function failure. This paper reviews representative works on the
theoretical solutions to DVS problems regarding inter-task DVS, intra-task DVS, voltage
transition, and thermal-aware DVS.

Categories and Subject Descriptors: Design [Special-purpose and Application-based Systems]:

General Terms: Design Methodology

Additional Key Words and Phrases: Dynamic Voltage Scaling, Power Management, Task
Scheduling

1. INTRODUCTION

Over the past decades there have been enormous efforts to minimize the energy

consumption of CMOS circuit systems. Dynamic voltage scaling (DVS), involving

Copyright(c)2010 by The Korean Institute of Information Scientists and Engineers (KIISE).

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Permission to

post author-prepared versions of the work on author's personal web pages or on the noncommercial

servers of their employer is granted without fee provided that the KIISE citation and notice of the

copyright are included. Copyrights for components of this work owned by authors other than

KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.

Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or email

office@kiise.org. The Office must receive a signed hard copy of the Copyright form.

190 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

dynamic adjustments of the supply voltage and the corresponding operating clock

frequency, has emerged as one of the most effective energy minimization techniques.

A one to one correspondence between the supply voltage and the clock frequency in

CMOS circuits imposes an inherent constraint to DVS techniques to ensure that

voltage adjustments do not violate the target system's timing constraint.

Many previous works have focused on hard real-time systems with multiple tasks.

Their primary concern is to assign a proper operating voltage to each task while

satisfying each task's timing constraint. In these techniques, determination of the

voltage is carried out on a task-by-task basis and the voltage assigned to the task is

unchanged during the whole execution of the task, which is referred to as inter-task

voltage scheduling. Yao et al. [Yao et al. 1995] proposed an optimal inter-task voltage

scheduling algorithm for independent tasks in which a task is characterized by its

arrival time, deadline, and required CPU cycles. The proposed scheduling technique

computes the speed of execution at any given time (and thus automatically determines

each task's starting and ending times) so that the total energy consumption is

minimized. Although they formulated the problem without the constraint that the

task should be assigned to a single operating voltage, by the convexity of the power

function each task is given only one ‘middle’ voltage that is proved to be optimal. This

is because of the underlying assumption that the speed of any specific time is

constant, which is not true since the required number of processor cycles, on which

the calculation of the speed may vary depending on the behavior of the task. That

means, the proposed inter-task scheduling technique is optimal only if each task

execution follows the worst-case execution path. Leaving the same assumption

untouched, many works in the literature have tried to formulate new inter-task

scheduling problems considering other issues. Some instances of such issues include

tasks with dependency relations [Schmitz et al. 2002; Zhang et al. 2002; Varatkar and

Marculescu 2003; Gorji-Ara et al. 2004; Andrei et al. 2004], discretely variable voltage

processors [Kwon and Kim 2005; Gorji-Ara et al. 2004], multi-processor environments

[Schmitz et al. 2002; Zhang et al. 2002; Varatkar and Marculescu 2003; Gorji-Ara et

al. 2004; Andrei et al. 2004], voltage transition overheads [Andrei et al. 2004]. It has

been reported [Shin and Kim 2006] that the voltage transition overheads are not

trivial in terms of energy and delay, and should be taken into account in DVS as well.

On the other hand, a number of studies of other direction (e.g., [Shin et al. 2001;

Seo et al. 2004; Seo et al. 2006]) have added a new dimension to the voltage

scheduling problem, by considering energy saving opportunities within the task

boundaries. In their approach, the operating voltage of the task is dynamically

adjusted according to the execution behavior to accurately reflect the changes of the

required number of cycles to finish the task before the deadline, which is referred to

as intra-task voltage scheduling. Shin et al. [Shin et al. 2001] proposed a remaining

worst-case path-based algorithm which achieves the best granularity by executing the

basic blocks with possibly different operating voltages. To obtain tight operating

points that lead to a minimum energy consumption, the algorithm updates the

remaining path length as soon as the execution deviates from the previous remaining

worst-case path. More recently, a profile-based optimal intra-task voltage scheduling

technique was presented in [Seo et al. 2004; Seo et al. 2006]. It shows the best energy

Task-Level Dynamic Voltage Scaling for Embedded System Design 191

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

savings by incorporating the task's execution profile into the calculation of the

operating voltages. This algorithm is proved to be optimal in that when the task is

executed repeatedly or periodically, it achieves a minimum average energy

consumption. A recent work [Seo et al. 2005] attempts to solve the inter-task and

intra-task DVS problems simultaneously so as not to miss the energy saving

opportunity at each granularity of inter-task and intra-task DVS.

Recently, as the power density on a processor increases very rapidly, managing or

controlling thermal profiles become another hot issue in DVS. Thus, in addition to

minimizing energy consumption by DVS, the peak temperature caused by the task

execution should be controlled via the execution scheduling of tasks and DVS to the

task. The problems addressed are divided into a number of cases: DVS for minimizing

total execution time under peak temperature constraint [Zhang and Chatha 2007];

task scheduling and DVS for minimizing peak temperature under deadline constraint

[Jayaseelan and Mitra 2008]; distributing idle times between the executions of tasks

with DVS for minimizing dynamic and leakage energy including the temperature

induced leakage under deadline constraint [Bao et al. 2010]; thermal-constrained

energy optimization using DVS and energy-constrained thermal optimization using

DVS under deadline constraint in multiprocessor systems [Liu et al. 2007].

In this paper, we survey and describe, in a theoretical aspect, state-of-art techniques

of dynamic voltage scaling (DVS) problems, which include: (1) inter-task DVS problem,

(2) intra-task DVS problem, (3) integrated inter-task and intra-task DVS problem, (4)

transition-aware DVS problem, and (5) thermal-aware DVS problem. (The preliminary

version of this work can be found in [Kim 2006].) The scope of this survey is confined

to single processor DVS.

2. INTRA-TASK DVS TECHNIQUES

The amount of energy dissipation for the execution of a task is

(1)

where Ntot is the total number of instruction cycles executed for a task. Thus, the

intra-task voltage scheduling problem is to assign a proper voltage to each basic block

of the task so that the energy consumption in Eq. (1) is minimized.

The relationship between clock frequency and voltage in CMOS circuits is

(2)

where VT is the threshold voltage and α is the velocity saturation index. If the value

of VT is small enough, the expression is reduced to .

Since the clock frequency determines the voltage, the scheduling problem can be

stated as:

(Intra-Task DVS Problem) The intra-task voltage scheduling problem for a task's

CFG (control flow graph) is to determine the clock frequency for each node (i.e., basic

block) of the CFG so that the total energy by the task is minimized while satisfying the

timing constraint of the task.

The key problem to solve is to determine what clock frequency should be set to the

E VDD

2
∝ Ntot×

fCLK VDD VT–()
α

/VDD∝

fCLK VDD

α 1–
∝

192 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

entry point of each basic block so that the overall energy consumption of the task is

minimized. Existing intra-task DVS techniques can be classified according to the way

of determining the lowest clock frequency to be set at the entry point of each basic

block.

1. (RWCEP based DVS): This technique [Shin et al. 2001] uses the lowest clock

frequency by which the remaining WCEP (worst case execution path) can be

completed within the deadline of the task.

2. (RACEP based DVS): This technique [Shin and Kim 2001] uses the lowest clock

frequency by which the remaining ACEP (average case execution path) can be

completed within the deadline of the task.

3. (ROCEP based DVS): This technique [Seo et al. 2006] uses the lowest clock

frequency by which the remaining OCEP (energy-optimal case execution path)

can be completed within the deadline of the task.

For example, consider a simple hard real-time task with deadline of 100 ms and

three basic blocks. Its control flow graph is shown in Figure 1(a) where the number

inside each node indicates the number of execution cycles of the block and the number

assigned to each arc indicates the probability that the control flow follows the edge.

Figure 1. Example showing the calculations of clock frequency in basic block_0.

Task-Level Dynamic Voltage Scaling for Embedded System Design 193

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

If DVS technique is not used, the speed for the task should be set tightly to (length

of the critical path)/(remaining time to deadline)=[(2+8)107 cycles]/(100·10−3 s)=1 GHz.

(See Figure 1(a).) If DVS technique follows the worst case execution path, the speed

of block_2 will be set to (length of the (RWCEP from block_2)/(remaining time to

deadline)=[1·107 cycles]/(80·10−3 s)=125 MHz. (See Figure 1(b).) On the other hand, if

DVS technique follows the average case execution path, the speed is set to (length of

the (RACEP from block_0)/(remaining time to deadline)=[(2+1)·107 cycles]/(100·10−3 s)

=300 MHz. (See Figure 1(c).) Finally, if DVS follows energy-optimal execution path,

the speed to be set in block_0 is calculated based on the probabilities of its succeeding

basic blocks. Here, the speed is 573 MHz. See Figure 1(d).) In summary, we can see

that the ROCEP based DVS technique outperforms the others because the clock speed

used at each basic block always leads to the total energy consumption which is

optimal on the average.

The work in [Seo et al. 2006] contains the detailed procedure of energy-optimal

speed calculation of basic blocks. Here, we give a summary of the speed calculation.

A task τ is represented with its CFG G
τ
=(V, A), where V is the set of basic blocks in

the task and A is the set of directed edges which impose precedence relations between

basic blocks. (For example, see Figure 2(a).) The set of immediate successor basic

blocks of any is denoted by succ(bi). Each basic block bi is annotated with its

non-zero number of execution cycles ni and each arc (bi, bj) is given a probability pj

that the execution follows the arc.

Given a task's CFG and its execution profile that offers the probabilities, we execute

each basic block bi at a speed of δi/(remaining time) and adjust the supply voltage

accordingly, where δi is defined as:

(3)

The corresponding average energy consumption is proved to be optimal and

expressed as [Seo et al. 2006]:

(4)

where C is a system-dependent constant, and δ0 is the δ value of the top basic block

b0 and called energy-optimal path length of the task. One interesting interpretation of

Eq. (4) is that it can be considered as the energy consumed in the execution of δ0
cycles at a speed of δ0/deadline. Note that δ0/deadline is the initial speed of the task.

For example, consider a real-time task τsimple shown in Figure 2(a). Figure 2(b)

shows the procedure of calculating each δi value according to Eq. (3). Once we have

performed the calculation, the operating speed of basic block bi is simply obtained by

dividing δi by the remaining time to deadline. For example, suppose that deadline=10

(unit time) and the execution follows the path (b0, b2, b3, b5, b6, b8). Then, the

corresponding speed/ending time changes as follows:

bi V∈

δi=

ni, if succ bi()=0

ni

bj∀ succ bi()∈

∑ pjδj
3

3

, + otherwise

⎩
⎪
⎨
⎪
⎧

Eintra= C
δ0

relative() deadline
--⋅⎝ ⎠

⎛ ⎞
2

δ0⋅

194 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

Speed: 2.93 > 3.24 > 3.14 > 3.14 > 2.26 > 2.26

Ending Time: 2.05 > 3.29 > 3.92 > 4.24 > 7.78 > 10

In Figure 2(b), the thick, dotted, and regular arrows respectively indicate the increase,

decrease and no change of the processor speed, and the basic blocks with changed

operating speed are marked with gray-color.

3. INTER-TASK DVS

The most DVS works belong to the inter-task DVS. The inter-task DVS problem can

be stated as:

(Inter-Task DVS Problem) Given an instance of tasks with deadlines and voltages,

find a feasible task-level schedule and task-level voltage allocation to tasks that

minimizes the total energy consumption while satisfying the deadline constraints of

tasks.

Table I summarizes the current status of the energy-optimal works for the

constrained cases of inter-task DVS problems. Note that in addition to the voltage, the

amount of energy consumption is affected by the switched capacitance of the task. The

value of capacitance is determined according to the execution characteristics of the

task: If the task requires hardware components with high switched capacitance, such

as multipliers, for execution, the capacitance value will be large, and vice versa.

Consequently, to reduce the total energy consumed by tasks, it is desirable to execute

the tasks with low switched capacitance using high supply voltages while the tasks

with high switched capacitance using low supply voltages. The unsolved case is that

of continuous voltages with nonuniform capacitance of tasks. The work by Kwon et al.

Figure 2. (a) CFG of a task τsimple; (b) calculation of δ values.

Task-Level Dynamic Voltage Scaling for Embedded System Design 195

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

[Kwon and Kim 2005] for uniform capacitance case actually makes use of the optimal-

work by Ishihara et al. [Ishihara and Yasuura 1998] and Yao et al. [Yao et al. 1995].

The work by Kwon et al. [Kwon and Kim 2005] for nonuniform capacitance case uses

a linear programming (LP) formulation. Here, we show the algorithm of Kwon et al.

[Kwon and Kim 2005] for uniform capacitance case.

Table I. Summary of intra-task DVS techniques.

Voltage Tasks optimal?/ref.

cont.

voltage

single task Yes/trivial

multiple

tasks

uniform cap. Yes/Yao et al. [Yao et al. 1995]

nonuniform cap. unknown

disc.

voltage

single task Yes/Ishihara et al. [Ishihara and Yasuura 1998]

multiple

tasks

uniform cap. Yes/Kwon et al. [Kwon and Kim 2005]

nonuniform cap. Yes/Kwon et al. [Kwon and Kim 2005]

Figure 3. An example illustrating the transformation of continuously variable voltage allocation

into discontinuously variable voltage allocation. (a) A continuously variable voltage allocation for

tasks; (b) a discontinuously variable voltage allocation derived from (a).

196 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

The procedure starts from the results of the possibly invalid voltage allocation with

the feasible task schedule obtained from Yao et al.'s algorithm [Yao et al. 1995], and

transforms it into that of valid voltage allocation with a feasible schedule. More

precisely, the schedule of tasks during transformation, but change the voltages so that

they are all valid. Then, the question is what and how the valid supply voltages are

selected and used. A valid voltage for each (scheduled) task is determined by

performing the following three steps: (Step 1: Merge time intervals) All the scheduled

time intervals that were allotted to execute the task are merged into one; (Step 2:

Voltage reallocation) The invalid supply voltage is replaced with a set of valid

voltages. (Step 3: Split time interval) The merged time interval is then split into the

original time intervals.

For example, suppose that we have three voltages 7.0V, 5.0V, and 3.0V available for

use and their corresponding clock speeds are 70 MHZ, 50 MHZ, and 30 MHZ,

respectively. Then, for each scheduled task with the ideal voltage in Figure 3(a), the

three steps are applied. Figure 4 shows the results of three steps for task J1. Initially,

J1 is scheduled to be executed in two time intervals [0,3] and [8,9] with the voltage

being 3.75V, as shown in Figure 4(a). (According to the results in [Yao et al. 1995]

each task always uses the same voltage.) Consequently, in Step 1 the time intervals

are merged into [0,4] as shown in Figure 4(b). The supply voltage in Step 2 is then

Figure 4. The three steps of voltage allocation procedure [Kwon and Kim 2005] for task J1 in Figure

3. (a) An initial schedule in Figure 3(a); (b) the result after merging time intervals; (c) the result

after voltage reallocation; (d) the result after splitting the time interval.

Task-Level Dynamic Voltage Scaling for Embedded System Design 197

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

updated. To do this, we make use of Ishihara and Yasuura's results [Ishihara and

Yasuura 1998]: For a given ideal (optimal) voltage for a task, the valid (optimal)

voltage allocation is to use the two immediately neighboring valid voltages to the ideal

voltage. (For details on how to find the time point at which the clock speed changes,

see [Ishihara and Yasuura 1998].) Figure 4(c) shows the result of voltage reallocation

where two voltages 3.0V and 5.0V are used because the ideal voltage (=3.75V) is in

between 3.0V and 5.0V, and no other valid voltages are in the interval. Finally, in

Step 3 we restore the time intervals while preserving the voltage reallocation obtained

in Step 2, as shown in Figure 4(d). By repeating these three steps for J2, J3, and J4

in Figure 3(a), a voltage allocation for all tasks with a feasible schedule is obtained,

as shown in Figure 3(b). Note that because we used only a number of discrete

voltages, the energy consumption, which is 279J, increases from that in Figure 3(a),

which is 276J. However, according to [Kwon and Kim 2005], the amount of the

increase is minimal.

4. INTEGRATION OF INTRA-TASK DVS

The combined problem of the inter- and intra-task DVS problems can be described as:

(Combined DVS Problem) Given an instance of tasks with deadlines and voltages,

find a feasible task-level schedule and task-level voltage allocation to tasks that

minimizes the total energy consumption while satisfying the deadline constraints of

tasks.

There are two optimal results in the literature related to the combined DVS

problem: (i) an optimal inter-task DVS scheme [Yao et al. 1995] that determines the

operating voltage of each task assuming the worst-case execution path and (ii) an

optimal intra-task DVS scheme [Seo et al. 2006] that determines the operating

voltage of each basic block in a single task. From the analysis of the procedures of (i)

and (ii), the work in [Seo et al. 2005] found that an energy-optimal integration of (i)

and (ii) is possible with a slight modification of the procedures. The proposed

integrated DVS approach is a two-step method:

(1) Statically determine energy-optimal starting and ending times (si and ei) for each

task τi.

(2) Execute τi within [si, ei] while varying the processor speed according to the voltage

scales obtained by an existing optimal intra-task DVS scheme.

The key concern is to develop a new inter-task scheduling algorithm that finds

starting and ending times (si and ei) for each task, which leads to a minimum value

of total energy consumption when an optimal intra-task scheme is applied to the

tasks. For the further details on the optimal algorithm, it can be referred to the work

in [Seo et al. 2005].

5. TRANSITION-AWARE DVS

During the execution of tasks, three types of transition overhead are encountered for

each voltage transition: transition cycle, transition interval and transition energy.

198 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

A transition cycle (denoted as Δn) is the number of instruction cycles of the transition

code itself. We assume that the energy for executing the transition instruction varies

depending on the voltages in transition.

A transition interval (denoted as Δt) is the time taken during the voltage transition,

which is not constant. Note that in the current commercial designs, the Phase-Locked

Loop that is used to set the clock frequency requires a fixed amount of time to lock

on a new frequency. This locking time is known to be independent of the source and

target frequencies, and is typically much smaller than the time it takes for the voltage

to change [Analog-Device 2010]. Therefore, it is desirable to assume that the

transition interval Δt is not a fixed value. A reasonable assumption for the variable

voltage processor is that the transition interval is proportional to the difference

between the starting and ending transition voltages [Texas-Instruments 2010].

A transition energy (denoted as ΔE) is the amount of energy consumed during the

transition interval by the systems. The value of ΔE may vary depending on the

starting and ending voltage levels. The DVS problem with the additional consideration

of transition energy is even more difficult to solve because the generalized model of

the transition energy for various systems/processors is hard to obtain and even a

simplified version of the problem with the assumption that the transition energy is a

constant looks a non-trivial task to solve. Let ΔE(vi→vj)
 denote the energy dissipated by

the transition of voltage from vi to vj. We assume that the processor has a set V, called

voltage set, of voltages available to use, i.e., V ={v1, v2, …, vM} (v1 < v2 < … < vM). In

addition, we assume that the values of ΔE(vi→vj)
, vi, vj∈V have already been given, and

the values are stored in a table, called transition-energy table. Furthermore, we

reasonably assume that ΔE(vi→vj)
 < ΔE(vi→vj')

 if |vi − vj| < |vi − vj'|.

(Transition energy aware DVS problem) Given a fixed schedule of tasks, and

voltage set V and the associated transition-energy table, assign the voltages to the tasks

so that the total energy consumption for the execution of tasks, together with the energy

consumed by the voltage transitions, is minimized.

Unfortunately, most of the DVS methods never take into account the minimization

of the amount of energy consumed during the voltage transition. To our knowledge,

Mochocki, Hu, and Quan [Mochocki et al. 2002] and Shin and Kim [Shin and Kim

2006] addressed the DVS problem with the consideration of transition overheads and

discrete voltages. The work in [Mochocki et al. 2002] put the primary emphasis on the

consideration of transition intervals by modifying the optimal scheduling algorithm in

[Yao et al. 1995] together with a simple treatment on both the transition energy and

discrete voltages. On the other hand, the work in [Shin and Kim 2006] attempted the

limitation of the work in [Mochocki et al. 2002] in that it tries to solve the problem

optimally for a constrained case. We review the work by [Shin and Kim 2006] here.

The key contribution of the work is the network formulation of the problem. Here, we

show the procedure of single task case only. It was naturally extended to the cases of

multiple tasks.

Suppose an instance of TE-VA has a task τ1 with the schedule interval [tstart, tend]

and R cycles to be executed, If the overheads of voltage transition are not taken into

account, an optimal result can be obtained by using the voltage assignment technique

Task-Level Dynamic Voltage Scaling for Embedded System Design 199

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

in [Ishihara and Yasuura 1998], i.e., the optimal voltage assignment is to use the two

voltages in V that are the immediate neighbors to the (ideal) voltage corresponding to

the lowest possible clock speed which results in an execution of task τ1, exactly

starting at time tstart and ending at time tend; (The ideal voltage can be obtained

according to the voltage and delay (clock speed) relation [Ishihara and Yasuura 1998].

Lemma 1 For an instance of the transition-aware DVS problem with a single task, an

energy-optimal voltage assignment uses at most two voltages for the execution of task.

(The proof described below becomes the foundation of the proposed network

formulation.)

proof. Suppose there is an optimal voltage assignment VA which uses more than two

voltages for the execution of the task during the scheduled interval of [tstart, tend]. Let

v1, …, vK (K > 2) be the sequence of voltages applied to the task, starting from tstart
to tend, by the optimal voltage assignment, and let [tstart +Δt, t2−Δt/2], [t2+Δt/2, t3−Δt/

2], …, [Δt/2+tr, tend−Δt] be the corresponding execution intervals. (See Figure 5(a) for

an example.) Note that the length of the actual execution interval, not including the

transition interval, is TL=tend−tstart−(r+1)Δt. Since the voltages before and after the

execution of the task are 0V, transition interval Δt is required from 0V to v1 at the

beginning (i.e., [tstart+Δt, t2−Δt/2]) and from vr to 0V at the end (i.e., [Δt/2+tr, tend−Δt])

Also, a transition interval is required between the two consecutive execution intervals

Figure 5. Transition intervals and actual execution intervals for an example of voltage assignment

using more than two voltages and voltage assignment using two voltages.

200 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

(e.g., Δt around time ti in [ti−1+Δt/2, ti−Δt/2] and [ti+Δt/2, ti+1−Δt/2]).

Now, consider another voltage assignment VA' which uses two voltages for the

actual execution length of TL' =tend − tstart − 3Δt. (See Figure 5(b).) Let v'1 and v'2 be

the two voltages which lead to a minimum total energy consumption except the

transition energy. (Note that the two voltages can be obtained by applying the

technique in [Ishihara and Yasuura 1998] to the task of R cycles with an execution

interval of length TL.) Then, we want to compare the amount of energy consumptions

excluding the transition energy used in VA and VA' , and compare the amounts of

transition energy used in VA and VA'.

Obviously, we can see that max{v1, …, vr} ≥ max{v'1, v'2} since the execution

interval for VA is shorter than that for VA' due to more transition intervals in VA than

that of VA' . This means that the transition energy from 0V at the start to eventually

max{v1, …, vr} is greater than that from 0V to max{v'1, v'2} by the assumption ΔE(vi→vj)

< ΔE(vi→vj')
 if |vi − vj| < |vi − vj'|. Thus, the total transition energy for VA is greater

than that for VA' . On the other hand, since from the fact that v'1 and v'2 are the

voltages of optimal voltage assignment with time length of T'L, and T'L < TL, the total

energy consumption without transition energy for VA' is less than that for VA. Thus,

the assumption that VA is optimal is false.

From Lemma 1, the solution space for a single task can be confined to the solutions

which only use at most two voltages in V. The remaining issue is to give, for an given

execution interval for the task, a technique of finding the two (optimal) voltages and

their execution intervals. According to [Shin and Kim 2006]: A network N(V, A) is

constructed for a task with R instruction cycles, execution interval [tstart, tend], voltage

set V and transition energy table where V is the set of nodes and A is the set of arcs

between two nodes. Note that Lemma 1 tells there is always an optimal voltage

assignment which uses two voltages only. (See the upper figure in Figure 6.) If we

know the two voltages used, then the two actual execution intervals can be computed

accordingly using the speed and voltage relation [Ishihara and Yasuura 1998; Kwon

and Kim 2005]. For each of the two execution intervals, |V| nodes are arranged

vertically, each node representing a unique voltage in V. Then two additional nodes

are included in V. One is start-node, placing at the front of N(V, A) and the other is

end-node at the end. (See the lower figure in Figure 6.) We insert arcs from the nodes

in the first column to those in the second column, from the start-node to the nodes in

the first column, and from the nodes in the second column to the end-node. (See the

lower figure in Figure 6.) We then assign weight to each arc. The weight of an arc

from the start-node to a node labelled as vi in the first column indicates ΔE(0V→vi)
, and

the weight of an arc from a node labelled as vi to the end-node indicates ΔE(vi→0V). The

weight of an arc from a node labelled as vi to a node labelled as vj represents the total

sum of the (minimal) energy consumed by the execution of the task (i.e., E1(v1)+E2(v2)

in Figure 6) and the transition energy ΔEvi→vj1
.

Then, from the network N(V, A), a shortest path can be found from the start-node

to the end-node. The cost of the shortest path is exactly equivalent to the total amount

of energy consumption including the transition energy for the execution of the task.

the procedure [Shin and Kim 2006] performs the two steps: (Step 1) Construct

Task-Level Dynamic Voltage Scaling for Embedded System Design 201

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

network N(V, A) for the task; (Step 2) Find a shortest path (SP) on N(V, A).

6. TEMPERATURE-AWARE DVS

As the power density on a chip increases rapidly, controlling or minimizing the

increase of temperature is one of the most important design factors to be considered

in the course of task execution, because it increases circuit delay, in particular

spatially unbalanced delays on a chip, causing system function failure. Furthermore,

the leakage power increases exponential as the temperature increases.

(Processor thermal model) Most of the temperature-aware DVS works (e.g., [Liu

et al. 2007; Jayaseelan and Mitra 2008; Zhang and Chatha 2007; Bao et al. 2010] use,

as the thermal model, the lumped RC model similar to that in [Skadron et al. 2002]

to capture the heat transfer phenomena as shown in Figure 7. (For the additional

models, see the references [Rao et al. 2006; Martin et al. 2002; Pillai and Shin 2001;

Xie et al. 2005].) In the figure, T, C, and R, represent the processor's die temperature,

the thermal capacitance of the die, and the thermal resistance, respectively. Tamb
indicates the ambient temperature and P(t) the power consumption of the processor

at current time t. For the given values of Tamb, C, and R, the relation between die

temperature T and power consumption P(t) can be expressed as:

. (5)

In the following, we introduce two fundamental problems on the temperature-aware

R C
dT

dt

⋅ ⋅ + T R– P⋅ = Tamb

Figure 6. The construction of network for modeling an instance of the TE-VA problem with a single

task.

202 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

voltage scaling and their solutions.

(Temperature-constrained DVS problem for performance optimization) Given

an execution schedule of tasks and peak temperature constraint Tmax, determine the

voltages to be applied to tasks, if needed, inserting sleep time intervals between task

executions so that the completion time of all tasks is minimized while satisfying the

peak temperature constraint.

One notable work on the temperature-constrained DVS problem is done by [Zhang

and Chatha 2007] in which it showed the NP-hardness of the problem when a set of

discrete voltages is assumed to be used. The optimal formulation is followed by

introducing two types of variables defined below.

A. Suppose there are n tasks τ1, τ2, …, τn that should be executed in that order. Each

task can be assigned to a voltage among m discrete voltages v1, …, vm. Let xi,j (1

≤i≤n, 1≤j≤m) denote a variable having a value of 0 or 1 such that xi,j=1 if τi is

executed with vj, and xi,j=0 if τi is executed with a voltage other than vj. Thus,

when exe_t(τi, vj) denotes the time spent on executing task τi on vj, the total

execution time spent on executing all tasks is Σi=1,…, n Σj=1,…,m xi,j·exe_t(τi, vj).

B. In addition, there are total of n+1 idle intervals, one for each of two consecutive

task executions, one before τ1, and one after τn. The time length of each idle

interval will be upper-bounded by tmax_sleep: the value of tmax_sleep is the time that

is minimally required to cool down Tmax to Tamb. We discretize [0, tmaxsleep
], so that

q sub-intervals of equal length are formed i.e., [t0, t1, t2, …, ti, …, tq] where

ti=i· (tmaxsleep
/q), i=0, …, q. (q is a user defined value.) Now, let variable yi,j (1≤i≤

n, 1≤j≤q) be such that yi,j=1 if the time spent on idle state right after τi is tj. Then,

the total idle time spent during the execution of tasks is Σi=1,…, n+1 Σj=0,…, q yi,j· tj.

Thus, the formulation is expressed as:

minimize D = xi,j· exe_t(τi, vj) + yi,j· tj (6)

such that

xi,j=1, yi,j=1, ∈{1,…, n}; (7)

i 1=

n

∑

j 1=

n

∑

i 1=

n

∑

j 0=

q

∑

j 1=

m

∑

j 0=

q

∑ i∀

Figure 7. Processor heat transfer model.

Task-Level Dynamic Voltage Scaling for Embedded System Design 203

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

; (8)

; xi,j={0, 1}; yi,j={0, 1}; (9)

T(t)≤Tmax, 0≤ t≤D; T(t=0)=T(t=D) (10)

in which the last constraint ensures that the temperature at the beginning of the

execution of tasks must be the same at the time when the execution of all task is

completed to support the periodic execution of task set.

The problem can also be optimally formulated using the dynamic programming

(DP) approach that runs in pseudo-polynomial time [Zhang and Chatha 2007]. Let

T1(τi, D) denote the minimum temperature at D which is the time when τi just

finishes the execution, and let T2(τi, D) denote the minimum temperature at D which

is the time just when τi+1 starts execution. Then, the optimal D* is determined by the

smallest value of D such that T2(τn, D)≤Tmax. The recurrence relation can be given as:

T1(τi, D)=minj=1,…,m{T=T2(τi−1, D−exe_t(τi, vj))+ΔT(exe_t(τi, vj))|T≤Tmax};

T2(τi, D)=minj=0,…, q{T =T1(τi, D−tj)+ΔT(tj, vsleep)|T≤Tmax}

where vsleep is the voltage at idle state. (The derivation of termination cases can be

easily obtained.)

The time complexity of the DP algorithm is polynomial in terms of n, q, and DUB

where DUB is a large number that surely exceeds D*. The work in [Zhang and Chatha

2007] also proposes a fully polynomial time approximation scheme (FPTAS).

(Time constrained DVS problem for peak temperature minimization) Given

a set of tasks and time constraint Dmax, determine the schedule of tasks and voltages

to be applied to tasks so that the peak temperature is minimized while satisfying the

time constraint.

The work in [Jayaseelan and Mitra 2008] showed that the problem is NP-hard even

when the voltage to each task is given and proposed a greedy heuristic which

R C
dT

dt

⋅ ⋅ +T R– P⋅ =Tamb

T T
max

≤

Figure 8. Two different idle time allocations. Distributing idle times, as shown in (b), between task

executions can reduce the temperature induced leakage power.

204 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

attempts to schedule tasks such that a cold task is put right after a hot task and a

hot task right after a cold task. The heuristic is further exploited repeatedly to

gradually find the voltages to tasks so that the peak temperature is minimized.

For a give task sequence, the voltage assignment under Dmax constraint for minimizing

peak temperature can be formulated in pseudo-polynomial time [Jayaseelan and

Mitra 2008], which is similar to the DP algorithm shown earlier.

Unfortunately, the work does not address the allocation of idle states between task

executions. The work in [Bao et al. 2010] proposes a solution to the idle allocation

problem in which the objective is to minimize the total power including the

temperature induced leakage power while meeting Dmax constraint. For example,

Figure 8 ([Bao et al. 2010]) shows two different idle allocations for a sequence of five

tasks τ1, …, τ5 with predefined DVS. Clearly, Figure 8(b) will lead to less power

consumption than that in Figure 8(a). Figure 9 ([Bao et al. 2010]) shows how the

temperature changes as the voltages and idle times are allocated in a sequence like

that in Figure 8(b).

7. CONCLUSIONS

In this paper, we described the current status of the research works on dynamic

voltage scaling (DVS) in view of the optimality of energy minimization. The DVS

problems we covered in the paper were (1) inter-task DVS problem, (2) intra-task

DVS problem, (3) integrated inter-task and intra-task DVS problem, (4) transition-

aware DVS problem, and (5) thermal-aware DVS problem. It should be mentioned

that, except the techniques described in the paper, there are many other effective

DVS techniques which are targeted under other DVS constraints or environments

such as fixed priority scheduling, jitter constraint, soft deadline, and multiprocessor

systems.

Figure 9. The changes of temperature as the processor alternates task execution with DVS and idle

state, like that in Figure 8(b). Task executions heat up the die while idle states cool down the die.

Task-Level Dynamic Voltage Scaling for Embedded System Design 205

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

ACKNOWLEDGEMENT

This work was supported by Basic Science Research Program through National

Research Foundation (NRF) grant funded by the Korea Ministry of Education, Science

and Technology (No. 2009-0091236).

REFERENCES

ANALOG-DEVICE. 2010. Analog dialogue. http://www.analog.com/library/analogDialogue/archives/

30-3/single_chip.html.

ANDREI, A., SCHMITZ, M., ELES, P., PENG, Z., AND AL-HASHIMI, B. M. 2004. Overhead-conscious

voltage selection for dynamic and leakage energy reduction of time-constrained systems. In

Proceedings of Design Automation and Test in Europe. IEEE, 518−523.

BAO, M., ANDREI, A., ELES, P., AND PENG, Z. 2010. Temperature-aware idle time distribution for

energy optimization with dynamic voltage scaling. In Proceedings of Design Automation and

Test in European. IEEE.

GORJI-ARA, B., CHOU, P., BAGHERZADEH, N., RESHADI, M., AND JENSEN, D. 2004. Fast and

efficient voltage scheduling by evolutionary slack distribution. In Proceedings of Asia-South

Pacific Design Automation Conference. IEEE, 659−662.

ISHIHARA, T. AND YASUURA, H. 1998. Voltage scheduling problem for dynamically variable voltage

processors. In Proceedings of International Symposium on Low-Power Electronics and Design.

ACM, 197−202.

JAYASEELAN, R. AND MITRA, T. 2008. Temperature aware task sequencing and voltage scaling. In

Proceedings of International Conference on Computer-Aided Design. IEEE, 618−623.

KIM, T. 2006. Application driven low-power techniques using dynamic voltage scaling. In

Proceedings of International Conference on Embedded and Real-Time Computing Systems

and Application. IEEE, 199−206.

KWON, W. C. AND KIM, T. 2005. Optimal voltage allocation techniques for dynamically variable

voltage processors. ACM Transactions on Embedded Computing Systems 4, 1 (Feb.), 211−230.

LIU, Y., YANG, H., DICK, R., WANG, H., AND SHANG, L. 2007. Thermal vs energy optimization for

dvfsenabled processors in embedded systems. In Proceedings of International Symposium on

Quality Electronic Designs. IEEE, 204−209.

MARTIN, S., FLAUTNER, K., MUDGE, T., AND BLAAUW, D. 2002. Combined dynamic voltage scaling

and adaptive body biasing for low power microprocessor under dynamic workloads. In

Proceedings of International Conference on Computer Aided Design. IEEE, 721−725.

MOCHOCKI, B., HU, X. S., AND QUAN, G. 2002. A realistic variable voltage scheduling model for

real-time applications. In Proceedings of International Conference on Computer-Aided Design.

ACM/IEEE, 726−731.

PILLAI, P. AND SHIN, K. G. 2001. Real-time dynamic voltage scaling for low-power embedded

operating systems. In Proceedings of Symposium on Operating Systems Principles. ACM, 89−

102.

RAO, R., VRUDHULA, S., CHAKRABARTI, C., AND CHANG, N. 2006. An optimal analytical processor

speed control with thermal constraint. In Proceedings of International Conference on

Computer Aided Design. IEEE, 292−297.

SCHMITZ, M. T., AL-HASHIMI, B. M., AND ELES, P. 2002. Energy-efficient mapping and scheduling

for dvs enabled distributed embedded systems. In Proceedings of Design Automation and Test

in Europe. IEEE, 514−521.

SEO, J., KIM, T., AND CHUNG, K. 2004. Profile-based optimal intra-task voltage scheduling for hard

real-time applications. In Proceedings of Design Automation Conference. ACM/IEEE, 87−92.

SEO, J., KIM, T., AND DUTT, N. D. 2005. Optimal integration of intra and inter task dynamic

voltage scaling for hard real-time applications. In Proceedings of International Conference on

Computer-Aided Design. ACM/IEEE, 450−455.

SEO, J., KIM, T., AND LEE, J. 2006. Optimal intra-task dynamic voltage scaling and its practical

206 Taewhan Kim

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

extensions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

25, 1 (Jan.), 47−57.

SHIN, D. AND KIM, J. 2001. A profile-based energy-efficient intra-task voltage scheduling algorithm

for hard real-time applications. In Proceedings of International Symposium on Low-Power

Electronics and Design. ACM, 271−274.

SHIN, D., KIM, J., AND LEE, S. 2001. Intra-task voltage scheduling for low-energy hard real-time

applications. IEEE Design and Test of Computers 18, 2 (Mar.), 20−30.

SHIN, J. AND KIM, T. 2006. Technique for transition energy-aware dynamic voltage assignment.

IEEE Transactions on Integrated Circuits and Systems II 53, 9 (Sept.), 956−960.

SKADRON, K., ABDELZAHER, T., AND STAN, M. R. 2002. Control-theoretic techniques and thermal

remodeling for accurate and localized dynamic thermal management. In Proceedings of

International Symposium on High Performance Computer Architecture. IEEE, 17−28.

TEXAS-INSTRUMENTS. 2010. Power management. http://focus.ti.com/analog/docs.

VARATKAR, G. AND MARCULESCU, R. 2003. Communication-aware task scheduling and voltage

selection for total systems energy minimization. In Proceedings of International Conference on

Computer-Aided Design. ACM/IEEE, 510−515.

XIE, F., MARTONOSI, M., AND MALIK, S. 2005. Bounds on power saving using runtime dynamic

voltage scaling: an exact algorithm and linear-time heuristic approximation. In Proceedings

of International Symposium on Low Power Electron Design. IEEE, 287−292.

YAO, F., DEMERS, A., AND SHENKER, S. 1995. A scheduling model for reduced cpu energy. In

Proceedings of the 36th Annual Symposium on Foundations of Computer Science. ACM, 374−

377.

ZHANG, S. AND CHATHA, K. S. 2007. Approximation algorithm for the temperature-aware

scheduling problem. In Proceedings of International Conference on Computer-Aided Design.

IEEE, 281−288.

ZHANG, Y., HU, X., AND CHEN, D. Z. 2002. Task scheduling and voltage selection for energy

minimization. In Proceedings of Design Automation Conference. ACM/IEEE, 183−188.

Taewhan Kim received the B.S. degree in computer science and

statistics and the M.S. degree in computer science from Seoul National

University, Korea in 1985 and 1987, respectively, and received the Ph.D.

degree in computer science from the University of Illinois at Urbana-

Champaign in 1993. Currently, he is a professor at the school of electrical

engineering and computer science, Seoul National University, Seoul,

Korea. His research interests are in the area of embedded hardware/

software, computer-aided design of integrated circuits, and combinatorial

optimizations.

