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This paper presents a compression scheme for mesh geometry, which is suitable for mobile
graphics. The main focus is to enable real-time decoding of compressed vertex positions while
providing reasonable compression ratios. Our scheme is based on local quantization of vertex
positions with mesh partitioning. To prevent visual seams along the partitioning boundaries, we
constrain the locally quantized cells of all mesh partitions to have the same size and aligned
local axes. We propose a mesh partitioning algorithm to minimize the size of locally quantized
cells, which relates to the distortion of a restored mesh. Vertex coordinates are stored in main
memory and transmitted to graphics hardware for rendering in the quantized form, saving
memory space and system bus bandwidth. Decoding operation is combined with model geometry
transformation, and the only overhead to restore vertex positions is one matrix multiplication
for each mesh partition. In our experiments, a 32-bit floating point vertex coordinate is
quantized into an 8-bit integer, which is the smallest data size supported in a mobile graphics
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library. With this setting, the distortions of the restored meshes are comparable to 11-bit global
quantization of vertex coordinates. We also apply the proposed approach to compression of
vertex attributes, such as vertex normals and texture coordinates, and show that gains similar
to vertex geometry can be obtained through local quantization with mesh partitioning.

Categories and Subject Descriptors: Computer Graphics [Modeling]: Mesh Compression

General Terms: Mesh compression, Geometry encoding

Additional Key Words and Phrases: Mobile graphics, Local quantization, Mesh partitioning

1. INTRODUCTION

Recent mobile devices, such as mobile phones, PDAs, and hand-held game players,

are equipped with quite decent features of computing power, storage, graphics, and

network. Especially, for mobile graphics, API standards such as OpenGL ES and JSR-

184 have been proposed [Pulli et al. 2005], and the graphics performance has been

drastically improved with development of mobile GPUs. With these advances, 3D

graphics is becoming more popular in mobile applications of games, user interfaces,

screen savers, map services, etc. This trend invokes increasing demands for various

graphics techniques that reflect unique characteristics of mobile devices. 

Despite the recent improvements of mobile hardware, compared to desktop PC

graphics, mobile graphics is still constrained by limited resources of low computing

powers, small amounts of memory, and low bandwidths. In addition, while mobile

devices are usually powered by batteries, battery technology has not caught up with

the energy requirement of 3D graphics processing.

Data compression can provide an excellent solution to help overcome these

limitations. Obviously, compressed graphics data enable us to better utilize storage

space and network bandwidth. Furthermore, by decoding compressed data on-the-fly

on graphics hardware [Ström and Akenine-Möller 2005], we can reduce memory

access and data transmission through the system bus, which saves power consumption.

However, to be suitable for mobile graphics, a compression technique should be simple

enough not to impose a big overhead on the low computing power.

In this paper, we propose a simple and effective compression technique for mesh

geometry, which can be used for mobile graphics in practice. The main design

objective is real-time on-the-fly decoding of vertex positions on graphics hardware.

Such property enables the compressed form to be used for both storing the vertex

positions of a mesh in main memory and transmitting to graphics hardware for

rendering. As a result, main memory space and system bus bandwidth required for

mesh geometry can be reduced in a rendering system.

To fulfill the objective with reasonable compression ratios, we use local quantization

of vertex positions with mesh partitioning. With local quantization, vertex positions

can be restored independently from each other by simple transformations, and

compression rate-distortion can be controlled by manipulating the local bounding

cubes through mesh partitioning. However, straightforward local quantization that

processes each mesh partition separately suffers from visual seams along the

partitioning boundaries of the restored mesh. To prevent the problem, we quantize all

mesh partitions in a coherent way to have the same-sized and axis-aligned quantized

cells. Then, the distortion of the restored mesh relates with the size of the quantized
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cells and we propose a mesh partitioning algorithm to minimize the size.

The setting of our experiments is to quantize a 32-bit floating point vertex

coordinate into an 8-bit integer, which is the smallest data size supported in a mobile

graphics library. Local quantization incurs encoding overhead for bounding cube

information and duplicated vertices. However, experimental results show that the

data reduction ratios are still over 70%. The distortions of the restored meshes are

comparable to 11-bit global quantization of vertex coordinates, which is close to 12-bit

global quantization that is considered enough for representing the geometry of

moderate-sized meshes in mesh compression [Alliez and Gotsman 2005; Peng et al.

2005]. These results imply that we can achieve the accuracy of 11-bit global

quantization, which is little worse than 12-bit global quantization conventionally used

in mesh compression experiments [Alliez and Gotsman 2005; Peng et al. 2005], with

8-bit integer representation of vertex coordinates, which can be efficiently processed

by mobile graphics APIs.

In addition to positions, we apply our compression technique to other vertex

attributes, such as normals and texture coordinates. Experimental results demonstrate

that our technique can produce satisfactory results for encoding the attributes.

The remainder of this paper is organized as follows. In Sec. 2, we review the related

work. Sec. 3 introduces the basic idea of our technique. Sec. 4 and Sec. 5 explain the

encoding and decoding processes, respectively. We give experimental results not only

for geometry in Sec. 6 but also for other vertex attributes in Sec. 7. Finally, we have

conclusion and discussion in Sec. 8.

2. RELATED WORK

Mesh compression has been an active research area in graphics and excellent techni-

ques have been developed for connectivity and geometry encoding. A comprehensive

review of mesh compression techniques, which is not within the scope of this paper,

can be found in excellent survey papers [Alliez and Gotsman 2005; Peng et al. 2005].

Although previous mesh compression algorithms offer good performance in compre-

ssion ratio, their encoding and decoding processes are rather complicated and can

impose much overhead on the relatively low computing power of mobile hardware.

More importantly, most of them sequentially traverse mesh elements for encoding,

which prohibits parallel decoding of encoded elements on graphics hardware. Con-

sequently, previous algorithms cannot be directly adopted for mesh compression on

mobile devices.

Calver [Calver 2002] described the basic principles for various quantization methods

of vertex geometry which allow real-time decoding with programmable vertex shaders.

He mentioned that local quantization can be used for vertex geometry to obtain better

compression rate-distortion. However, he presented no solution for the problem of

visual seams and no specific technique to partition a given mesh for local quanti-

zation.

Purnomo et al. [Purnomo et al. 2005] refine the idea of Calver and allocate different

numbers of bits for the components of vertex attributes, such as positions, normals,

and texture coordinates, to minimize the image-space error. At rendering time,

compressed vertex data, which have been packed into fixed 96 bits, are transmitted
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to a programmable vertex shader and restored on-the-fly. However, in terms of vertex

geometry compression, their technique uses global quantization, which provides worse

compression rate-distortion than local quantization.

In contrast to [Calver 2002], in this paper, we provide effective solutions to handle

visual seams and mesh partitioning for local quantization. Compared to [Purnomo et

al. 2005], in addition to the difference of using local quantization, our technique

requires no programmable vertex shader because the decoding operation can be

incorporated into the standard geometry transformation, which makes it applicable to

a wide range of mobile graphics platforms. 

3. BASIC IDEA

In this paper, we only consider compression of mesh geometry. We assume that mesh

connectivity is represented in an adequate form (e.g., triangle strips), which is sup-

ported in mobile graphics API standards, such as JSR-184 [Pulli et al. 2005].

To restore vertex geometry in real time on a mobile device, a compression algorithm

should satisfy the following properties;

− The decoding process is simple enough for real-time performance.

− The decoding operations of vertex positions have no dependency among each other

to allow parallel processing.

−Encoded data are represented in a fixed-size format, which matches with the data

channel size between CPU and graphics hardware.

A simple solution to satisfy these requirements is the quantization of vertex

positions. Original vertex positions, represented by 32-bit floating point numbers, can

be encoded with fewer bits by truncating least significant bits. We can easily restore

the original positions from the quantized ones by simple additions and multiplications.

In addition, there is no dependency among quantized vertex positions. In compression

of irregular meshes with reasonable sizes, 12-bit global quantization is assumed to

introduce no strong visual artifacts and used as a preprocessing step before geometry

encoding [Alliez and Gotsman 2005; Peng et al. 2005]. However, the use of 12-bit

quantized positions can cause unnecessary bitwise operations or waste of bandwidth

because most graphics APIs support only fixed-sized data channels (e.g., 8, 16, and 32

Figure 1. Comparison between global and local quantization results with 8 bits. (a) Global quanti-

zation; (b) local quantization with 128 partitions.
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bits). On the other hand, if we globally quantize vertex positions with 8 bits, we may

have severe distortions of mesh geometry (see Figure 1(a)).

To resolve such a problem, Calver [Calver 2002] described a local quantization

method, which can take full advantage of graphics hardware. A mesh is divided into

several sub-meshes and each sub-mesh is independently quantized. Then, the

distortion of the restored mesh is reduced because the size of a bounding cube, which

is the range of quantization, decreases. As a result, 8-bit local quantization of mesh

geometry can provide better accuracy for restored vertex positions than global quanti-

zation (see Figure 9(b)). However, in this case, the restored mesh contains a critical

problem, i.e., visual seams along the sub-mesh boundaries, as shown in Figure 2(b).

Calver [Calver 2002] did not provide any solution to handle the problem.

The main cause of the visual seam problem is that shared boundary vertices of sub-

meshes should be encoded more than once. Sub-meshes are disjoint subsets of mesh

faces and a boundary vertex of a sub-mesh also belongs to one or more other sub-

meshes, except at the mesh boundary. When sub-meshes are separately encoded, a

boundary vertex v shared among k sub-meshes is encoded k times, once for each sub-

mesh, with different local quantization. At decoding time, a restored vertex position

is the center of a quantized cell. The restored positions of v in the k sub-meshes do

Figure 2. (a) Rendering of a horse model. (b) and (c) show zoom-ins of the red rectangle in (a); (b)

visual seams from straightforward local quantization; (c) visual seams have been resolved by our

method.

Figure 3. (a) A black vertex shared by two sub-meshes is restored onto the green and red positions

due to the difference of locally quantized cells. (b) The restored positions from two sub-meshes have

become the same due to the alignment of locally quantized cells.



212 Jongseok Lee et al.

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

not match each other if the corresponding locally quantized cells of the sub-meshes

are not aligned. See Figure 3(a) for illustration.

The basic idea of our solution for the visual seam problem is to align the locally

quantized cells of sub-meshes sharing boundary vertices. As illustrated in Figure 3(b),

if the locally quantized cells are aligned, the restored positions of a shared vertex will

be the same among the sub-meshes. This constraint of aligned quantized cells should

hold for every pair of sub-meshes sharing a boundary vertex. Consequently, the

constraint propagates through the adjacency of sub-meshes, and the locally quantized

cells of all sub-meshes should have the same size and aligned axes. In this paper, we

use the largest bounding cube of sub-meshes to determine the cell size and axes of the

aligned local quantization, which is then applied to all sub-meshes. Figure 2(c) shows

that the rendering result from our local quantization method does not contain any

visual seams.

4. ENCODING PROCESS

The encoding process consists of two parts; mesh partitioning, which divides an input

mesh into several sub-meshes, and local quantization of vertex positions, which uses

the mesh partitioning result.

4.1 Mesh Partitioning

With quantization of vertex positions, the distortion of a restored mesh from the

original is dominated by the size of quantized cells. As described in Sec. 3, in our

approach, the size of locally quantized cells is determined by the largest bounding

cube of mesh partitions. Hence, to minimize the distortion, the largest bounding cube

should be made as small as possible.

We adapt the mesh partitioning framework based on Lloyd's algorithm [Lloyd

1982], which has been successfully used for mesh segmentation [Sander et al. 2003;

Choe et al. 2006]. After initial partitioning has been obtained with a given number of

partitions, the partitioning result is iteratively updated by repeating two steps; seed

re-computation and region growing. In the seed re-computation step, the seed triangles

are repositioned at the centers of partitions for the next update. In the region growing

step, faces are added to partitions in the increasing order of distances from the

nearest seed faces.

For initial partitioning, we use the hierarchical face cluster merging approach

[Garland et al. 2001]. At the beginning, each face is a single partition. We iteratively

merge two neighbor partitions into one until the number of partitions is reduced to

the desired number. To select the merged pair of partitions at each iteration, we use

the cost function defined by

F(Ci, Cj) = max{xij, yij, zij},  (1)

where xij, yij, and zij are respectively the x, y, and z sizes of the axis aligned bounding

cube containing the two partitions, Ci and Cj. By minimizing F(Ci, Cj), we can reduce

the bounding cube sizes of resulting mesh partitions.

For seed-recomputation and region growing, we use L
∞
 metric to define the distance

function. To reposition the seed of a mesh partition, we first compute the center of the
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bounding cube of the partition, which can be considered as the L
∞
 center of the

partition. Although we can use the center as the new seed of the partition, we select

the nearest face to the center as the new seed face because we use the adjacency of

faces in region growing for efficiency. In region growing, the distance of a face f from

the seed face of a partition C is defined by

F( f, C) = max{δx, δy, δz},  (2)

where δx is the maximum of the x-distances of three vertices of f from the center of

the seed face of C. δy and δz are defined similarly.

In mesh segmentation techniques [Sander et al. 2003; Choe et al. 2006], it has been

demonstrated that the result of Lloyd's algorithm partitions a given mesh into almost

equal-sized sub-meshes, where the size is measured in the adopted distance function.

Similarly, with L
∞
 metric, we can expect that the sub-meshes resulting from Lloyd's

algorithm have almost same sizes of bounding cubes because a L
∞
 sphere in 3D is a

cube. As a result, the largest bounding cube of mesh partitions can be made as small

as possible for a given number of partitions. Figure 4 shows examples of the final

partitioning result.

4.2 Local Quantization

In this paper, we use 8-bit quantization for vertex coordinates. The steps for local

quantization can be summarized as follows;

(1) Calculate the bounding cube for each mesh partition and find the largest x, y,

and z bounding cube sizes among all partitions.

(2) Calculate (Cx, Cy, Cz), the x, y, and z sizes of the quantized cell, by dividing the

largest x, y, and z bounding cube sizes by (28−1), respectively.

(3) Quantize all vertex positions by dividing original vertex coordinates by the

quantized cell size (Cx, Cy, Cz) and truncating the fractional values.

(4) For each partition, find the minimum quantized coordinates for the x, y, and z

axes, and keep the values as the offsets (Ox, Oy, Oz). Then, subtract (Ox, Oy, Oz)

from the quantized coordinates of vertices, obtaining the fnal quantized

coordinates (Px, Py, Pz) in the range of [0, 255].

Figure 4. Mesh partitioning results.
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(5) Save the size of the quantized cell, offsets for partitions, and quantized vertex

positions.

Note that for calculating the size of the quantized cell, we use (28−1), instead of 28,

to guarantee that the quantized vertex coordinates after offsetting fall in the range of

[0, 255].

4.3 File Structure

After local quantization, to restore vertex positions, we need the size of the quantized

cell, offsets for partitions, and quantized vertex positions. The size of the quantized

cell is stored only once for a mesh and represented by three 32-bit floating point

numbers. The offsets for a mesh partition correspond to the quantized coordinates of

the origin of the bounding cube of the partition. To represent the offsets, we use 16

to 32-bit integers depending on the mesh size. Since we are using 8-bit local

quantization, a quantized vertex position requires 24 bits, i.e., three 8-bit unsigned

integers. In addition, we should record the number of partitions and the number of

vertices in each partition. These numbers are represented by 16 to 32-bit integers

depending on the mesh size. Figure 5 shows the file structure that contains encoded

mesh geometry.

There are two kinds of storage overhead incurred by encoding with local quanti-

zation. One is the header overhead, which corresponds to the data in the mesh header

and partition headers in Figure 5. The other is the vertex overhead. As mentioned in

Sec. 3, the boundary vertices shared among sub-meshes should be duplicated when

they are locally quantized with different offsets. Hence, in the encoded mesh geometry,

there are more quantized vertex positions than the number of vertices.

5. DECODING PROCESS

When we render a mesh with encoded geometry, we first restore the quantized cell

Figure 5. File structure for encoded mesh geometry. C, O, and P denote the quantized cell size, off-

set value, and vertex coordinate, respectively.
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size (Cx, Cy, Cz) from the mesh header. Then, each partition of the mesh is rendered

with the following procedure;

(1) Restore the offset values (Ox, Oy, Oz) from the partition header.

(2) Calculate a 4 × 4 decoding matrix

Md = . (3)

(3) Multiply matrix Md by the geometry transformation matrix, e.g., the modelview

matrix in OpenGL.

(4) Render the polygons in the partition.

In the decoding process, vertex geometry data are transmitted from main memory

to graphics hardware in the encoded form, i.e., an 8-bit integer for a vertex coordinate.

When we render a polygon, the vertex positions are automatically restored through

the geometry transformation matrix which has been modified by the decoding matrix

Md. Note that Md is the composition of two matrices, one for adding offsets to locally

quantized vertex coordinates in [0, 255] and the other for multiplying the quantized

cell size by the quantized coordinates after offsetting to obtain 32-bit floating point

coordinates.

Our decoding process is nicely incorporated into the standard rendering pipeline. As

a result, at rendering time, the only major overhead is one matrix multiplication per

a partition, which can be considered negligible. Although boundary vertices are

duplicated among partitions, the number of rendered polygons does not change and

the number of vertices processed for rendering remains the same.
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Figure 6. Models used in our experiments. From the top left in the clockwise order, children,

dancer, feline, filigree, horse, and squirrel.
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6. EXPERIMENTAL RESULTS

6.1 Experimental Settings

We have implemented and tested our algorithm using a variety versions of Khronos

OpenGL graphics APIs [Pulli et al. 2005], such as OpenGL 1.x, OpenGL 2.x, and

OpenGL ES 2.x emulator. In OpenGL 1.x and OpenGL 2.x implementations, the

decoding matrix Md is formed and multiplied by the model-view matrix before

rendering each sub-mesh. For OpenGL ES 2.x emulator, Md is formed and used when

we set up a vertex shader for a sub-mesh. Experiments have been performed on a

desktop PC with an Intel Pentium 4 3.6GHz CPU, 2GB RAM, and an NVIDIA

GeForce 7800 GTX graphics card.

Figure 6 shows models used in our experiments. In the experiments, we measure

the reduction ratio for vertex geometry data. We also count the number of duplicated

vertices along the boundaries of mesh partitions. That is,

Data Reduction Ratio =

Vertex Overhead =

The distortion of a mesh restored from encoded geometry is measured from the

original mesh in the average L2 norm using the Metro tool [Cignoni et al. 1998].

6.2 Compression Results

Figure 7 shows the distortions, data reduction ratios, and vertex overheads for

increasing numbers of partitions with the dancer model. When the number of partitions

becomes larger, the data reduction ratio decreases because we need to store more

partition headers and the vertex overhead increases. In contrast, the distortion of the

restored mesh is reduced with more partitions because the bounding cubes of parti-

tions become smaller, which increases the accuracy of quantization. As we can expect,

1
compressed data

uncompressed data
------------------------------------------------------

–⎝ ⎠
⎛ ⎞

100×

# of duplicated vertices
# of vertices

--------------------------------------------------------------- 100×

Figure 7. Compression results with different numbers of partitions for dancer model. Distortions

are shown in the unit of 10−6.
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such tendency appeared for all models in our experiments.

Figure 8 compares compressed data sizes of vertex geometry with respect to the

quantization methods. The compressed data size from our method for local quanti-

zation is variable according to the number of partitions, so we use the number of

partitions which provides 70% (+0.1) data reduction ratio. Both 8-bit global and our

8-bit local quantization methods require the same number of bits to represent a vertex

position, i.e., 8 bits for each coordinate. However, our 8-bit local quantization has

additional data for partition headers and vertex overhead, and the data size corre-

sponds to the amount between 9 and 10 bit global quantization results.

Table I shows the distortions of restored meshes with different quantization

methods. As shown in Figure 7, the distortion from our local quantization varies with

the number of partitions. In Table I, we use the number of partitions which provides

70% (+0.1) data reduction ratio. Table I shows that the distortion of 8-bit local

quantization is quite less than that of 8-bit global quantization for every model. In

addition, the restored quality of 8-bit local quantization is better than or similar to 11-

bit global quantization in most cases, except the Squirrel model which is the smallest.

Figure 9 shows visual comparison of the restored meshes from global and local

quantization with 8 bits. We can clearly see visual degradation in Figure 9(a), while

Figure 8. Compressed data sizes with different quantization methods.

Table I. Comparison of the distortions of restored meshes between 11-bit global, 8-bit global, and

our 8-bit local quantization.

Model # V # P 11-bit Global 8-bit Global 8-bit Local

Children 100,000 564 0.000436 0.003429 0.000395

Dancer 24,998 135 0.000449 0.003622 0.000293

Feline 49,864 270 0.000442 0.003583 0.000373

Filigree 514,300 2480 0.000452 0.003642 0.000160

Horse 19,851 128 0.000430 0.003375 0.000462

Squirrel 9,995 52 0.000416 0.003360 0.000966
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Figure 9(b) is almost indistinguishable from the original in Figure 6. This example

demonstrates that 8-bit local quantization has enough accuracy for representing the

vertex geometry.

Table II compares compression results with our mesh partitioning method and

spatial subdivision. For spatial subdivision, we divide the bounding cube of a given

mesh into cells with 11-bit global quantization and cluster consecutive 2563 cells into

one partition. For fair comparison, we used the same number of partitions for our

method as the spatial subdivision. In Table II, the vertex overheads of two methods

are similar but the distortions of ours are less than spatial subdivision. Furthermore,

spatial subdivision cannot freely control the number of partitions, which relates with

the data reduction ratio and distortion, while our method can.

Table III shows the overhead in distortions of restored meshes induced for removing

visual seams of mesh partitions. If we do not care about the visual seams, for each

partition, we can compute a tight oriented bounding cube and perform more accurate

local quantization than our globally aligned one. In Table III, as we can expect, the

distortions from the tight bounding cubes are less than our method. However, the

differences are not really big and visual seams are a more severe problem than a little

more distortions in rendering a mesh.

By controlling the number of partitions for our 8-bit local quantization, we can

Figure 9. Visual quality comparison between 8-bit global and our 8-bit local quantization.

Table II. Comparison between spatial subdivision and our partitioning method. # P denotes the

number of partitions and # V'  denotes the number of vertices including duplicated vertices.

Subdivision Our Partitioning

Model # P # V' L
2 d-error # V' L

2 d-error

Children 264 112,439 0.000762 112,287 0.000537

Dancer 198 32,386 0.000498 30,433 0.000253

Feline 194 57,063 0.000522 57,364 0.000470

Filigree 232 558,864 0.000463 542,884 0.000352

Horse 159 23,679 0.000506 23,780 0.000438

Squirrel 254 13,756 0.000566 14,011 0.000498
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achieve a similar level of distortions to global quantization with a specified number

of bits. Table IV shows experimental results with the dancer model. In Table IV, we

can see that the compressed data size for vertex geometry with local quantization is

always smaller than the corresponding global quantization. Table IV also implies that

we can easily satisfy a requirement on the amount of distortions by controlling the

number of partitions used for local quantization.

7. ENCODING OTHER VERTEX ATTRIBUTES

In addition to positions, our local quantization method can be applied to other vertex

attributes, such as normals and texture coordinates. In this section, we present the

encoding results of these attributes and discuss a desired change for the chartification

method. In the experiments, the vertex coordinates of a mesh were represented by 8-

bit local quantization.

7.1 Vertex Normal Encoding

Table V compares the quality of the rendered images between the global and local

quantization of vertex normals. The quality is represented by Peak Signal-to-Noise

Ratio (PSNR) from the image rendered with the original normals. With quantization,

each component of a normal vector is encoded with 8 bits, similar to a vertex

coordinate. For local quantization, we use the same mesh partitions used for vertex

encoding in Sec. 6. In decoding time, a locally quantized vertex normal can also be

restored by one matrix multiplication.

Table IV. Comparison between global and local quantization with similar amounts of distortions for

the dancer model.

Global Quantization Local Quantization

b/v L
2 d-error size (KB) # partitions L

2 d-error size (KB)

10 0.000884 92 10 0.000840 76

11 0.000449 101 40 0.000427 80

12 0.000228 110 256 0.000222 94

Table III. Comparison of the distortions of restored meshes between tight oriented and globally

aligned bounding cubes. Recall that tight oriented bounding cubes result in visual seams. The data

reduction ratio used for determining the number of partition for each model is 70% (+0:1).

Model  # P Tight Cubes Aligned Cubes

Children 564 0.000292 0.000395

Dancer 135 0.000246 0.000293

Feline 270 0.000279 0.000373

Filigree 2480 0.000136 0.000160

Horse 128 0.000416 0.000462

Squirrel 52 0.000824 0.000966
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In image processing domain, it is known that human vision system cannot recognize

the difference of two images when PSNR is larger than 30-50 dB. Table V shows that

in our experiments, both 8-bit global and local quantization for vertex normals provide

satisfactory image quality. Nevertheless, 8-bit local quantization produces better

results in Table V and will be beneficial when the rendered image is sensitive to

vertex normals.

7.2 Texture Coordinate Encoding

Figure 10 compares texture mapping results of a mesh between local and global

quantization of texture coordinates. The spaceship model is segmented into 128

partitions using the mesh partitioning method in Sec. 4.1. Texture coordinates can be

encoded and restored in a similar way to vertex normals. The boundary of a circular

Figure 10. Comparison of texture mapping result between 8-bit global and 8-bit local quantization

of texture coordinates.

Table V. Quality comparison of the rendered images between local and global quantization of vertex

normals.

Model 8-bit Global 8-bit Local

Children 57.00 dB 60.46 dB

Dancer 69.21 dB 72.40 dB

Feline 59.47 dB 63.60 dB

Filigree 61.60 dB 64.93 dB

Horse 60.97 dB 64.36 dB

Squirrel 61.58 dB 64.98 dB
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mark in middle row is distorted in (b), while it preserves the shape in (c). Similarly,

the patterns in the bottom row are slightly shifted in (b), while it is not in (c).

7.3 Modification of Mesh Partitioning

For vertex normal and texture coordinate encoding, we used the mesh partitions

computed by considering vertex positions, and obtained satisfactory results. However,

the results can be improved by modifying the mesh partitioning method to incorporate

other vertex attributes than positions.

In our mesh partitioning method, the partitioning results are mainly determined by

the cost function Eq. (2). We can modify the cost function by combining the differences

of vertex normals and texture coordinates as well as positions. See [Sander et al.

2003; Choe et al. 2006] for an example of combining several terms in a cost function.

As a result, the maximum bounding boxes of the vertex attributes can be reduced in

local quantization, and the distortions of encoded attribute values can become smaller.

8. SUMMARY AND DISCUSSION

The compression rate of our geometry encoding is 24+α bits per vertex (bpv), where

α comes from the overhead of partition headers and duplicated vertices. This rate is

far worse than the state-of-the-art techniques, which give about 10 to 13 bpv for

geometry encoding [Alliez and Gotsman 2005; Peng et al. 2005]. However, our goal is

to develop a mesh geometry compression technique suitable for mobile graphics,

instead of achieving best compression rates.

Our technique has the following nice properties;

− simplicity It is simple enough for real-time decoding on a mobile device. The

decoding operation is combined with the model geometry transformation, and the

only overhead is one matrix multiplication for each mesh partition and the

vertices in the same partition can be processed in parallel, exploiting the

capability of graphics hardware.

− on-the-fly decoding At rendering time, vertex positions are restored on-the-fly

through the model geometry transformation. Vertex data can be stored in main

memory and transmitted to graphics hardware in the quantized form, saving

memory space and system bus bandwidth.

− better compression ratio Our technique provides better compression ratios and

better restoration quality of vertex geometry than the previous mobile compression

technique [Purnomo et al. 2005], which uses global quantization.

− fixed data size Encoded vertex coordinates have the same fixed data size, which

offers benefits in addressing and random access of vertices. If the data size is

supported in a mobile graphics library, no bitwise operation is needed to extract

encoded vertex coordinates.

− compatibility Since the decoding operation is compatible with the standard

graphics pipeline, in addition to mobile graphics, our technique can be used for PC

and game console graphics without modification.

− flexibility A requirement on the amount of distortions can easily be satisfied by

controlling the number of partitions used for local quantization.
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− usefulness Out framework can be used for not only the vertex positions but also

various vertex attributes, such as vertex normal and texture coordinates.

In mobile hardware, basic units for data processing are 8, 16, and 32 bits. If a

different number of bits are used, data handling, especially transmission through the

system bus, will become inefficient. As we mentioned in Sec. 3, the use of more than

12 bits for a vertex coordinate does not help a lot to increase the visual quality of

rendering. Therefore, our choice of allocating 8 bits for each vertex coordinate seems

best in terms of compatibility with mobile hardware and visual quality.

Our mesh partitioning method minimizes the bounding cubes of partitions. In Sec.

6, we showed that our method is better than spatial subdivision in terms of the

distortions of restored meshes. There are other alternatives for mesh partitioning,

including feature sensitive partitioning used for multi-chart geometry images [Sander

et al. 2003]. In feature sensitive partitioning, a mesh is divided along feature lines

and planar partitions are preferred. Figure 11 compares the partitioning results from

both methods with the same number of partitions. In Figure 11, the volumes of some

bounding cubes from feature sensitive partitioning could be smaller than those from

ours. However, when we compute the largest x, y, and z sizes of the bounding cubes,

our method will give smaller values than feature sensitive partitioning. The largest

x, y, and z sizes are used for determining the sizes of aligned locally quantized cells,

which are directly related to the distortions of a restored mesh. As a result, our

method is more effective for reducing the distortions of a restored mesh than feature

sensitive partitioning.

In mesh partitioning, as a preprocessing, we can change the orientation of a given

mesh so that the major axes of the mesh are aligned with the coordinate axes for

vertex positions. We performed experiments for the preprocessing, where major axes

of a mesh are determined by PCA (Principal Component Analysis) [Press et al. 1992]

of vertex coordinates. For the models used in this paper, the major axes of a mesh are

already almost aligned to the coordinate axes, and the distortions from local

quantization with and without the preprocessing are not much different. So we did

Figure 11. Comparison of partitioning results with 64 partitions between (a) feature sensitive par-

titioning and (b) our method.
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not use the processing in the experiments in this paper. However, such preprocessing

would be useful if the major mesh axes and the vertex coordinate axes are totally

misaligned.

Our geometry compression scheme can be combined with any data structure (e.g.,

triangle strips) used for representing meshes in main memory. In our scheme, a given

mesh is partitioned into sub-meshes. When each sub-mesh is stored in main memory

using the selected data structure, our local quantization method can be used for

representing the vertex coordinates with reduced memory space. Similarly, our

scheme can be adapted for a mesh file format. For example, for an OBJ file, we can

set each sub-mesh as a group and represent vertex coordinates in the quantized form,

where additional information, similar to the partition header in Figure 5, is stored for

each group.

Acknowledgments

The dancer, dancing children, filigree, and feline models are courtesy of IMATI,

IMATI-GE, SensAble technologies, and Multi-Res Modeling Group at Caltech,

respectively. The dancer, dancing children, filigree, horse, and squirrel models are

provided by the AIM@SHAPE Shape Repository. This work was supported by the

Industrial Strategic Technology Development Program of MKE/MCST/KEIT

(KI001820, Development of Computational Photography Technologies for Image and

Video Contents), the ERC Program of MEST/NRF (R11-2008-007-01002-3), and

Samsung Electronics.

REFERENCES

ALLIEZ, P. AND GOTSMAN, C. 2005. Recent advances in compression of 3D meshes. In Advances in

Multiresolution for Geometric Modelling, N. A. Dodgson, M. S. Floater, and M. A. Sabin, Eds.

Springer-Verlag, 3−26.

CALVER, D. 2002. Vertex decompression in a shader. In Direct3D ShaderX: Vertex and Pixel

Shader Tips and Tricks, W. F. Engel, Ed. Wordware, 172−187.

CHOE, S., AHN, M., AND LEE, S. 2006. Feature sensitive out-of-core chartification of large polygonal

meshes. In Proc. of Computer Graphics International, 518−529.

CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro: Measuring error on simplified surfaces.

Computer Graphics Forum 17, 2, 167−174.

GARLAND, M., WILLMOTT, A., AND HECKBERT, P. S. 2001. Hierarchical face clustering on polygonal

surfaces. In Proc. 2001 ACM Symposium on Interactive 3D Graphics, 49−58.

LLOYD, S. 1982. Least square quantization in pcm. IEEE Transaction on Information Theory 28,

129−137.

PENG, J., KIM, C.-S., AND KUO, C.-C. J. 2005. Technologies for 3D mesh compression: a survey.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. 1992. Numerical

Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press, 456−495.

PULLI, K., AARNIO, T., ROIMELA, K., AND VAARALA, J. 2005. Designing graphics programming

interfaces for mobile devices. IEEE Computer Graphics and Applications 25, 8, 66−75.

PURNOMO, B., BILODEAU, J., COHEN, J. D., AND KUMAR, S. 2005. Hardware-compatible vertex

compression using quantization and simplification. In Proc. Graphics Hardware 2005. 53−61.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND HOPPE, H. 2003. Multi-chart geometry

images. In Proc. Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. 146−

155.

STRÖM, J. AND AKENINE-MÖLLER, T. 2005. iPACKMAN: High-quality, low-complexity texture



224 Jongseok Lee et al.

Journal of Computing Science and Engineering, Vol. 4, No. 3, September 2010

compression for mobile phones. In Proc. Graphics Hardware, 63−70.

Jongseok Lee received the BS and MS degrees in computer science and

engineering from Konkuk University and Pohang University of Science

and Technology (POSTECH), respectively. After finishing his MS degree,

he has been working at LG Electronics as a Junior Research Engineer

since 2008. His research interests include computer graphics, mesh com-

pression, and graphics for mobile devices.

Sungyul Choe received the BS, MS, and Ph.D degrees in computer

science and engineering from Pohang University of Science and Technology

(POSTECH). After finishing his Ph.D degree, he has been working at

Samsung Electronics as a Senior Engineer since 2008. His research inter-

ests include computer graphics, mesh processing, mesh compression, and

graphics for mobile devices.

Seungyong Lee received the BS degree in computer science and

statistics from Seoul National University in 1988 and the MS and PhD

degrees in computer science from Korea Advanced Institute of Science and

Technology (KAIST) in 1990 and 1995, respectively. He is now a professor

of computer science and engineering at Pohang University of Science and

Technology (POSTECH), Korea. From 1995 to 1996, he worked at the City

College of New York as a postdoctoral research associate. Since 1996, he

has been a faculty member and leading the Computer Graphics Group at

POSTECH. From 2003 to 2004, he spent a sabbatical year at MPI Infor-

matik, Germany, as a visiting senior researcher. His current research

interests include image and video processing, nonphotorealistic rendering,

3D mesh processing, 3D surface reconstruction, and graphics applications.


