
Journal of Computing Science and Engineering, Vol. 4, No. 4, December 2010, Pages 291-312.

Mutational Data Loading Routines for Human 

Genome Databases: the BRCA1 Case

Matthijs van der Kroon and Ignacio Lereu Ramirez
Centro de Investigación en Métodos de Producción de Software (PROS),

Universidad Politecnica de Valencia, Valencia, Spain

mkroon@pros.upv.es

iglera@fiv.upv.es

Ana M. Levin and Óscar Pastor
Centro de Investigación en Métodos de Producción de Software (PROS),

Universidad Politecnica de Valencia, Valencia, Spain

{alevin,opastor}@pros.upv.es

Sjaak Brinkkemper
Department of Information and Computing Sciences Utrecht University, 

Utrecht, The Netherlands

s.brinkkemper@cs.uu.nl

Received 8 November 2010; Revised 6 December 2010; Accepted 15 December 2010

The last decades a large amount of research has been done in the genomics domain which has
and is generating terabytes, if not exabytes, of information stored globally in a very fragmented
way. Different databases use different ways of storing the same data, resulting in undesired
redundancy and restrained information transfer. Adding to this, keeping the existing databases
consistent and data integrity maintained is mainly left to human intervention which in turn is
very costly, both in time and money as well as error prone. Identifying a fixed conceptual
dictionary in the form of a conceptual model thus seems crucial. This paper presents an effort
to integrate the mutational data from the established genomic data source HGMD into a
conceptual model driven database HGDB, thereby providing useful lessons to improve the
already existing conceptual model of the human genome.
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1. INTRODUCTION

Looking from an Information System point of view, the human genome is an

extremely complex system in which exists a lot of ambiguity. For example, basic

concepts of what exactly defines a gene are still not explicitly described by the domain.

Biology largely depends on domain experts interpreting data, in order for knowledge

to appear. Combining the lack of proper data structure and the very large amounts

of data generated, a clear problem emerges. How can domain experts dedicate their

limited time to the right pieces of information if these are buried in noise? Computers

excel at processing large amounts of data, and thus a logical step would be to apply

this excellence to the present day problem in genetics, sifting the noise from

potentially useful information. For this process to take place, a conceptual modeling

approach is essential: it allows for an adequate representation of the domain. Present

day solutions that pretend to do exactly this (i.e. ontologies) usually provide controlled

vocabularies instead of fixing a conceptual gamut.

A proper conceptual model is expected to provide a clear data structure, enabling

efficient and effective access to genomic data, thereby offering ways of reusing

previously researched data by pharmaceutic, medical and research institutes as

mentioned by [Pastor 2008]. Also, the paradigm shift implicated by considering the

genome as a complex information system is expected to allow for exciting new views.

To present day, most bioinformatics research is located in the solution space, by

attempting to interpret the data that comes out of ‘the black box’. For instance by

applying powerful sequence alignment tools like BLAST [Pertsemlidis and Fondon

2001] and BLAT [Kent 2002]. Another point of view is offered by [Pastor 2008], whose

efforts are directed at tracing and understanding the processes effectively leading to

these data. Essentially, seen from an informatics point of view, finding the source-

code, by analyzing the object-code, of what may very well be the most sophisticated

software ever to be analyzed: life itself.

It has already been shown that applying a conceptual modeling approach to

Information System development increases software quality, as has been discussed by

[Pastor and Molina 2007] among others. In order to improve the quality of Genomic

Information Systems obtaining a clear and sound structural view of the domain thus

seems clear. However, this is only part of the story. For any conceptual model to be

useful, it needs to be implemented and put to use. This is a vital issue in terms of

data quality assurance. As it is essential to warrant that the contents of the database

that corresponds to the conceptual schema are the adequate ones. In this work we

emphasize the argument that only guiding the genomic data loading process with a

well-defined, semantically precise conceptual schema, it will be possible to assess the

quality of the subsequent data contents. This is especially the case if we consider the

extremely high amount of hetereogenity, diversity and sometimes even inconsistency

that can be found under what many authors call the “genomic data chaos”. We could

use the image of a cupboard intended to store adequately various objects. If we were

to accurately pick a particular piece without searching through all of the contents, we

need a system in which everything is correctly in place. Here is what we want to

assure using a conceptual schema-centric approach, where only having a precise data

structure-provided by the conceptual schema-, we will be able to manage contents
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well. A well-defined, error-free data loading strategy becomes essential for that

purpose.

More concretely, In this work we explore the implementation of the Conceptual

Model of the Human Genome (CSHG) in the form of a database, and the process of

populating it. Indeed, for any proper exploitation to take place a loaded database is

deemed necessary. The CSHG has been devised beforehand in a top-down manner,

representing the domain as “should-be” according to present day state of knowledge

in both the Biology and Information System domains. The problems resulting from

this loading procedure are viewed to be typical for the domain, although only one

source of genetic mutations will be looked at in detail: the Human Gene Mutation

Database (HGMD) [Stenson et al. 2003]. For this loading procedure to take place, no

one-to-one mapping can be made and thus data need to be extracted from the external

source, transformed to the new structure and loaded into the new database. The

domain-specific problems resulting from this process are stated in this work, and

enforce our vision that for the proper understanding of this highly complex, highly

ambiguous and highly evolving domain only a sound conceptual modeling strategy

will do the job.

In the next section, the genomic domain will be introduced superficially and the

problem context will be clarified. The basics of genetics will be mentioned, and

literature resources for further reading are proposed. In Section 3 earlier work in the

problem domain will be discussed. Section 4 will describe the present day conceptual

schema of the human genome (CSHG) clarifying it's conceptual structure, relations

and attributes. Section 5 will discuss the results of the extraction of data from the

external sources, listing the encountered problems and resulting adjustments to the

conceptual model. Ultimately, in Section 6 conclusions will be drawn, along with

suggestions for further research.

2. THE GENOMIC DOMAIN

To understand the importance and necessity of a conceptual schema for the human

genome, an introduction to the genomic domain is indispensable. [Alberts et al. 2003]

provides a very complete guide to cell biology, and for a good understanding of this

article some basic knowledge about genetics is recommended. This section serves in

no case as an exhaustive guide to genetics, it however aims to provide a minimum of

knowledge required to understand the rest of this article. 

The chemical structure holding this hereditary information is called deoxyribonucleic

acid, or DNA. The syntax in which the genetic code is written, consists of 4 elements;

A, C, T and G denoting particular chemicals, referred to as nucleotides, or bases. Each

of these nucleotides comprises of 3 components; a phosphate group, a five-carbon

sugar and a nucleobase. The phosphate group and the sugar form a backbone structure

while the nucleobase defines the nucleotide denotation, or meaning. 4 different

nucleobases exist; Adenine, Cytosine, Thymine and Guanine, hence the nucleotide

identifiers. In DNA the phosphate groups of each nucleotide bond with the sugar of

the next nucleotide forming a sequence of nucleotides in that process. At the same

time, nucleobases adhere to each other in a specific way: A only bonds to T and C only

bonds to G. See Figure 1 for details.
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DNA as formed by these bonds consists of two deoxyribose phosphate backbones

with pairs of nucleobases in between. The 3D structure of the molecule is what is

known as the famous helix shape. The deoxyribose phosphate backbones are often

referred to as strands and since the nucleotides adhere to each other in only one

manner, the strand sequences are complementary to each other. This phenomenon is

often referred to as one strand sequence being sense and the other anti-sense. The

sequence on the strand that is transcribed to mRNA is called the ‘sense’ sequence,

while the sequence on the opposite strand is called the ‘anti-sense’ sequence. The

sense strand then is denoted with a ‘−’ symbol, while the ‘+’ symbol indicates a non-

sense strand. Both sense and anti-sense sequences can exist on different parts of the

same strand of DNA.

Since the nucleotides bond in an asymmetrical way, sugar to phosphate, DNA has

a direction. In the helix, the direction of one strand is opposite to the direction of the

other. The strand ends are referred to as the 5' and 3' ends, where the 5' corresponds

to the end with a terminal phosphate group and the 3' to the end with a terminal

sugar group. Nevertheless, genomes rarely exist as one uninterrupted DNA string, in

human beings for example the hereditary information is divided over 23 pairs of DNA

strings, commonly referred to as chromosomes. Contrary to what would be expected

however, only a small part of the total genome sequence codes for genes. About 95%

of the human genome has been designated ‘junk’ and percentages representing coding

parts of the genome range from 1.1% [Venter 2001] to less then 5% [Lander 2001].

The non-coding parts of the genome were considered for a long time to be evolutionary

Figure 1. DNA chemical structure.
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artifacts, serving no present day function. However, recent research shows the non-

coding parts of the genome might actually be fulfilling functions, not yet well

understood [Mattick 2003; Mattick 2004] and [Ahnert et al. 2008].

Every individual of our species shares approximately 99% of DNA with all other

individuals, meaning that the differences observed among individuals can be traced

back to around 1% of our genetic sequence. Some of these individual differences,

which we will call variations, can be retraced to relatively neutral aspects like hair

and eye color, while others have more serious effects like susceptibility to disease. A

clear example of the omnipresence of ambiguity in the domain is the lack of a clear

distinction in concepts that distinguishes between these different manifestions of

genetic variations. A large amount of recent genetic research has been focused on

discovering the relationship that exists between genotype and phenotype. Genotype

being the chemical ordering of the earlier mentioned bases and represented by a letter

sequence “ATGGGCCT”. And phenotype interpreted as the manifestation of all visible

characteristics of any organism. Clearly for this research to take place succesfully,

data about genotype needs to be stored, exchanged and analyzed in large amounts.

The Human Gene Mutation Database (HGMD) [Stenson et al. 2003] provides a

pergene repository of mutations, or base changes that research has uncovered to be

associated to disease. The full data set of HGMD can be acquired for a fee, while a

less complete version is available for free in case of academic use. Given that it is

curated by experts, reading scientific papers and extracting the mutational data from

them, the source is considered to be highly reliable. At present day the HGMD is

considered to be the primary source for obtaining genetic mutations among various

genes, although alternatives exist. Many of these alternatives are non-profit based,

meaning they provide open-access without limitations. Examples include the Catalogue

of Somatic Mutations in Cancer (COSMIC) [Bamford et al. 2004], the HapMap

[HapMap 2003], Entrez-SNP (previously known as dbSNP) [Sherry et al. 2001] and

many Locus Specific Databases (LSDBs). An interesting effort to standardize these

LSDBs, often databases that collect mutations on a single gene, is the Leiden Open

Variation Project (LOVD) [Fokkema et al. 2005]. What differentiates the HGMD from

these alternatives, is the relatively large quantity of data per gene, and that it

represents a collection of many genes. Table I shows an overview of available data

sources that contain data on the BRCA1 gene. The HapMap and Entrez-SNP are not

included in this overview, since they provide another type of mutational data: so

called Single Nucleotide Polymorphisms (SNP's). These SNP's are “usually” not

(causatively) associated to disease, as are the mutations that we consider in this work,

going into this very interesting issue however is outside the scope of this work.

The Online Mendelian Inheritance in Man (OMIM) [Hamosh et al. 2000; Amberger

et al. 2008] project consist of a semi-structured collection of diseases and genetic

mutations linked to these diseases. It is available as a single file download but due

to it's low degree of structure very difficult to process automatically. The genomic

domain can be characterized by three distinct properties: large data quantities, high

complexity and rapid evolution. The first property poses certain challenges on resources,

like processing time and storage space. Processing the large linkage disequilibrium

data files provided by the HapMap [HapMap 2003] resource (around 40 Gb compressed,
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224 Gb uncompressed) for instance certainly counts as challenging, but is by no

means impossible due to the regular structure. It is the high complexity and rapid

evolution that pose the real problems on the long run as they call for a stable and

homogeneous structure, while at the same time allowing for efficient and easy

evolution of this same structure. No amount of processing power can compensate for

a lack of structure, if what one is looking for simply has not been stored.

3. RELATED WORK

As mentioned, the genomic domain is frequently subject to change as progressing

understanding keeps pushing the boundaries of knowledge. Fixing concepts is therefore

extremely difficult, but at the same time crucial. Conceptual modeling means looking

at a domain in terms of concepts, their properties, behavior and interrelations. It

therefore provides a very powerful tool with two different, but related applications.

First, conceptual models are used to direct the process of software creation, by

functioning as the equivalent of a blueprint used in traditional construction. And

second, conceptual models serve as tools to gain a deeper understanding of the domain

at hand, often used to drive effective creation of these earlier mentioned blueprints.

Other solutions to the ambiguity problems associated to the genetics domain include

ontologies [Ashburner et al. 2000]. To understand why ontologies alone do not fulfill

the job of obtaining a full understanding of any given domain, some background

information is necessary. Conceptual definitions exist on two levels: conceptually and

semantically. The semantic aspect refers to instances of concepts; e.g. the BRCA2

gene, which is an instance of the abstract “gene” concept. A problem here for example

means ambiguity about naming conventions, for instance the BRCA2 gene is also

known as: “Fancd1” and “RAB163”. The conceptual aspect is more abstract and

handles questions like “What is a gene?”. It is our strong belief that for the proper and

complete understanding of any given domain, both are vital.

The Gene Ontology (GO) [Ashburner et al. 2000] is a major effort with the aim of

standardizing the representation of gene and gene product attributes accross species

and databases. The GO resolves many of the ambiguity problems associated to

biological terms, and for instance solves the earlier mentioned naming convention

problem. Being very useful as it is, GO failes to properly define the concepts that are

behind the physical instances. What is missing still, is a holistic view of the human

genome as a system, taking into account all aspects that influence the genotype to

phenotype process. GO and many other biological ontologies, rather than being a pure

Table I. Amount of genes, and amount of mutations for the BRCA1 gene per genetic mutation

source.

Source Genes BRCA1

HGMD (academic) 2911 1018

HGMD (commercial) 3889 1275

COSMIC 18647 15

LOVD BRCA1/2 2 502
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ontology as defined by philosophy and information science, actually provide a

controlled vocabulary of terms for describing gene product characteristics and gene

product annotation data. [Smith et al. 2003] elaborates on this subject by pointing out

some drawbacks on GO, among which: “It is unclear what kinds of reasoning are

permissible on the basis of GO's hierarchies”. The conceptual model of the human

genome [Pastor 2008] is an initiative at devising this holistic view, resolving the

conceptual fuzziness surrounding, among others, the GO's hierarchies.

An information systems approach to this specific problem space is not entirely new.

[Okayama et al. 1998] describes the conceptual schema of a DNA database using an

extended entity-relationship model. [Paton et al. 2000] advanced on these efforts by

presenting a first attempt in conceptually modeling the S. cerevisiae genome by

proposing a collection of conceptual data models for genomic data. Among these

conceptual models are a basic schema diagram for genomic data, a protein-protein

interaction model, a model for transcriptome data and a schema for allele modeling.

Whereas [Paton et al. 2000] provides a broader view by presenting conceptual

models for describing both genome sequences and related functional data sets, [Pastor

2008] converged on the basic schema diagram for genomic data adapting it to the

human genome and eventually produced a database, the human genome database

(HGDB) corresponding to this model and following the standard rules of logical

design. This database is now in the prototype phase and the first 2 genes, NF1 and

BRCA1, have been partially loaded. [Pastor et al. 2010] describes the evolution HGDB

went through during the process of conceptually mapping HGDB and HGMD to each

other. [Pastor et al. 2010] describes the evolution of the model more in general and

provides a descriptive overview of how the model came to be, and from where it

evolved to what it is now.

A clear model description requires a well-understood and widely used notation. This

is why the selected notation for describing the quoted conceptual models is UML

Class Diagrams. Doing so, we establish a link with the Model-Driven community -

whose works are normally UML-based in different degrees-, and we also open to door

to identify connections between the Model-Driven software production paradigm, and

the way in which genomic systems are designed and implemented in terms of

software systems. The latter being of specific use in the genetics area, where the

knowledge dichotomy between domain experts (biologists) and Information System

designers is often hindering efficient development. The main issue when applying a

conceptual modeling approach to modeling application domains is the lack of meaning

of language constructs as ‘object’, ‘class’, ‘attribute’ and ‘operation’. To conceptual

modelers, these terms are pretty clear. The problems arise when communication takes

place between the modelers and domain experts, who are often not fully aware what

these terms mean in Information Systems development context. This vocabulary issue

has been addressed earlier by [Evermann and Wand 2004], and they propose

ontologically based semantics for object-oriented constructs to improve this. In case of

genetics it is the other way around where the same issues arise; concepts well known

to domain experts, might make no sense whatsoever to the conceptual modelers,

greatly complicating any Information System development. This puzzling fact is a day

to day reality in the creation of the conceptual model of the Human Genome. The
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problem is further enforced by the high level of ambiguity associated to Genetics in

general, young as it is. The authors of this work thus propose a similar approach to

resolving this issue as have chosen [Evermann and Wand 2004]: combining biological

ontologies and the conceptual modeling approach to obtain the desired efficiency of

communication that will ultimately lead to the full understanding of the Human

Genome.

4. CSHG: RELEVANT CONCEPTS

This section describes the relevant concepts of the CSHG, for a more complete

description consult [Pastor et al. 2010]. Initially, an ideal conceptual schema of the

human genome was created [Pastor 2008], essentially describing how the concepts

should be defined according to the latest knowledge. However, as data was matched

from various external sources to this ideal model, it soon became clear a dichotomy

existed between the ideal model and the way data was represented in the real world.

A second model was created, logically named the real model. This real model serves

as a practical tool of resolving the encountered limitations, it therefore compromises

on the aspect of understanding the domain. The intention of the real model is to adapt

the modeling elements included in the ideal model to the way in which we found that

data are stored and managed in practical settings. There is always a conceptual

mapping between concepts in the ideal model and how they appear in real models,

consequently, we can focus on the ideal model without loss of genericity. The ideal

model consists of three sub views; (i) the gene-mutation view, (ii) the genome view and

(iii) the transcription view.

Considering that the relevant concepts form part of the gene-mutation view, we will

constrain ourselves to this part of the model. This view consists of 3 main concepts,

the Gene, Allele and Variation entities. [figure 2] provides an overview of these present

day model relevant concepts. Each of those has various dimensions associated to it,

capturing it's relevant properties. To obtain the required information, various external

genomic data sources have been used. For genic information, the Hugo Gene

Nomenclature Committee (HGNC) database [Eyre et al. 2006] proves to be very

useful. HGNC is devoted at providing an internationally accepted list of approved

gene names and symbols, thereby standardizing gene nomenclature. The allelic data,

among which the actual reference sequence representing a ‘standard’ allele (the so

called NCBI RefSeq), is obtained from the National Center for Biotechnology

Information (NCBI) [Pruitt et al. 2006]. The NCBI aims to develop new information

technologies to aid in the understanding of fundamental molecular and genetic

processes that control health and disease. Data about genetic mutations leading to

disease are acquired from the Human Gene Mutation Database (HGMD) [Stenson et

al. 2003]. HGMD represents an attempt to collate known (published) gene lesions

responsible for human inherited disease.

The Gene class captures the general concept of a gene: ID_symbol represents an

alphanumeric code for the gene according to HGNC, it also functions as the primary

key; ID_HUGO, a numeric code assigned to the gene by HGNC; official_name, the full

name of the gene; summary, a short description; chromosome, the chromosome on

which the gene is located and locus, representing the location of the gene within the
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chromosome.

The Allele class then represents the various encountered instances of a gene. It

stores information about the start and the end of the allele; the start_position and

end_position attributes respectively, and which strand (+ or −) it is located: the strand

attribute. It is important to note here, that DNA is double stranded. The ord_num

attribute functions as an internal identifier. An allele can either be an Allelic variant

or an Allelic reference type. The two entities contain the same Sequence attribute

which contains a nucleotide string. Each gene has at least one reference allele

associated to it, which is obtained from external sources, usually NCBI. The allelic

variant tuples then, are derived from this allele reference in combination with

information contained in the Variation entity. The Variation entity stores information

about allelic changes in respect to the reference, the allelic reference type. A variation

can thus be described as an observed nucleotide at a specific position of a person's

DNA, that is not equal to the reference allele. It has an id_variation attribute for

Figure 2. Gene-mutation view of the conceptual model of the human genome.
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internal identifying purposes. id_variation_db refers to the identification used in the

external source. It further holds a description, meant to store a small description

about the variation.

The entities specifying the Variation concept through generalization can then be

classified into three categories; (i) effect, (ii) location and (iii) description, each

representing a specific type of polymorphism. The location classes store information

about whether the variation affects one or more genes. In the case of a genic location,

only one gene is affected, while in the case of chromosomal, multiple genes might be

influenced. The effect entities specify the variations effect on phenotype. This can

either be mutant, a neutral polymorphism or the effect might be unknown. The

splicing, regulatory, missense and others concepts are considered to be mutations since

they have a negative effect, hence they are a specialization of the mutant concept.

Ultimately, the description classes include descriptive information about the variation.

Depending on the degree to which the data on the variation is precise, it falls into

either the precise or imprecise class. When imprecise, the entity only stores a general

description. In the case of precise data, it stores the position of the variation and

further specifies the nature of the variation into four classes: insertion, deletion, indel

and inversion. Each of these concepts store information about this specific type of

variation and the exact attributes vary from type to type.

The Category, Feature, Value, Measurable and Syndrome concepts associate a

Variation to phenotype. A variation is thus associated to a Value, which in turn is

associated to a Syndrome. A Syndrome is considered to be a negative phenotypic

effect, or disease. Every Value is composed of Features. These Features in turn, are

classified by Categories, which have a recursive property indicated by the self-

referencing relation. We do not enter into more details on these phenotype-oriented

characteristics. Readers can find a more elaborate definition of all these concepts in

[Pastor et al. 2010], where the whole Conceptual Schema of the Human Genome is

presented.

5. RESULTS

The first part of this work centers on emphasizing the importance of applying

conceptual modeling techniques before constructing any Information System, and

Genomic Information Systems in particular. The second part starts here and describes

the results of loading the BRCA1 gene data from HGMD into the database that

results from the Conceptual Schema of the Human Genome. The encountered problems

serve as examples and a case proof of why an Information System without a

conceptual modeling sound backbone results in myriad difficulties and undesired

behavior, thereby enforcing our earlier mentioned statement.

[Pastor et al. 2010] reports a study of comparing the HGMD to the CSHG, in order

to identify a conceptual mapping between the two. It is this mapping that is followed

in this document, and the following section will report the encountered problems for

actually loading the information from the HGMD into the HGDB for the BRCA1 gene.

Roughly problems can be separated into two categories intrinsic data properties and

data representation, with the final intention of providing a concrete report on what

type of problems the correct load of a conceptual model-based genome data base must
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face and solve. This is important because the main benefits of applying conceptual

modeling principles to the understanding of the human genome are located in both

having the right data structure and the right data contents. Identifying and classifying

these data loading problems provide general solutions that can help in solving the

same problems in other biological data loading contexts. Verifiably incorrect, inconsistent

or incomplete data (tuples) are examples of these encountered mishaps with the

actual data, or intrinsic data properties. Difficulties associated to physically extracting

the data from the external source and ambiguous description of mutation properties

are typical examples of data representation problems. Naturally, the division between

the two categories is not strict and thus some overlap exists, it is however useful to

keep in mind that intrinsic data property problems tend to be affecting the entire

genetics domain, while the data representation difficulties are restricted to HGMD.

5.1 Data loading problems

HGMD distinguishes 10 mutation types: Missense/nonsense, Splicing, Regulatory,

Small Deletions, Small Insertions, Small Indels, Gross Deletions, Gross Insertions,

Complex Rearrangements and Repeat Variations. Roughly all the types can be mapped

to the Variation and Precise concepts of the CSHG, except for the Gross Deletions,

Gross Insertions, Complex Rearrangements and Repeat Variations. The latter are

described in a very unstructured manner, almost natural language, and are thus

considered impossible to process automatically. The CSHG facilitates these tuples as

Imprecise, which stores a description of the mutation. The HGMD public version does

not provide any information about Regulatory mutations for the BRCA1 gene, so

these are not considered in this report.

5.1.1 Intrinsic data properties. In some cases the HGMD mutational data simply

lacks entries. For instance, the splice mutations overview provided by HGMD

mentions 5 mutations in intron 22, while [Panguluri et al. 1999] states at least 2

other mutations; IVS22+67(T>C) and IVS22+8 (T>A). Three concrete examples of this

problem were encountered, all three in splicing site mutations. However, this particular

type of problem is very difficult to detect, since finding them involves rereading the

articles HGMD provides which is hard to automate. Thus, although only three concrete

occurrences of this problem have been encountered, it is likely more exist.

Splicing site mutation CS961492 describes a C>T mutation, as a possible phenotype

HGMD indicates Breast cancer. However, having the read the corresponding article

[Langston et al. 1996], not once breast cancer is mentioned in combination with this

mutation. The article does mention the mutation as being affiliated with men

suffering from prostate cancer. Thus, deducing from the rather limited information

made available by HGMD on this specific mutation, it is concluded HGMD made an

error during data entry. 

Splicing site mutations CS063247 and CS011027 should be located near intron 4,

according to the HGMD splicing site mutations overview. However according to the

splice junctions overview HGMD provides, there exists no intron 4, nor an exon 4.

Since indeed both of the papers [van der Hout et al. 2006] and [Shattuck-Eidens et

al. 2009] state the mentioned mutations near intron 4, it would be logical to presume



302 Matthijs van der Kroon et al.

Journal of Computing Science and Engineering, Vol. 4, No. 4, December 2010

the problem is on HGMDs side. So at first, this specific problem instance was considered

to be either a major flaw in HGMD due to inconsistent reference sequences, or a

result of human error during the HGMD loading procedure. However, deeper research

revealed a more subtle situation. splicing site mutations are located in HGMD by

using a splice junctions overview, which provides an overview of intron- and exon

borders in the gene. HGMD constructs this overview by using a NCBI reference

sequence, in this case L78833. This reference provides a comment in natural language

that explains the absence of an exon 4 as: “Characterization of an aberrant BRCA1

cDNA clone in the original report [Miki et al. 1994] led to the misidentification of an

inserted Alu element as exon 4. Not normally found in BRCA1 transcripts, insertion

of this Alu would lead to introduction of a STOP codon. Hence, BRCA1 exons and

introns are numbered 1a, 1b, 2, 3, 5, 6, etc.”.

Splicing site mutation CS012667 indicates a G>A mutation in nucleotide +3 from

the start of intron 2. However neither the HGMD splice junction overview, nor the

NCBI reference gene sequence indicates a G-nucleotide at this location. A very similar

event happens with splicing site mutations CS001825 and CS991331. They both

involve a mutation located 7 nucleotides upstream (+7) from the start of intron 22.

However, the first mentions an A>G mutation, while the latter describes, for that

exact same location, a T>C mutation. Since both the NCBI reference sequence and the

HGMD splice junctions overview indicate an A nucleotide at the appropriate position,

and the CS001825 reference article [Khoo et al. 2000] indeed mentions an A>G

mutation at the specific location, one could easily conclude the CS001825 A>G

mutation in the correct one. However, the CS991331 reference article [Panguluri et al.

1999] does indeed point out a T>G mutation at the location, so the truth might be

slightly more subtle. Since [Panguluri et al. 1999] involves an African-American

population, while [Khoo et al. 2000] entails a Chinese population, a possible reason for

the irregularity might be general genetic differences between those ethnic groups. A

phenomenon referred to as Single Nucleotide Polymorphisms, or SNPs [Zhao et al.

2003]. 5 Occurrences of this problem have been identified in splicing site mutations,

1 in Small Deletions and Small Insertions each, leading to a total of 7 occurrences.

SNP's are currently included in the CSHG as a separate concept, facilitating the

placement of these type of mutations. Finding these type of genetic variations, mixed

in with another type of variations does emphasize the need for an unambiguous data

representation.

5.1.2 Data representation. The HGMD public version, used for this research

presents data through a website in HTML tables. This makes an automatic extraction

procedure very difficult, but not impossible. Using a ‘screen-scraping’ approach including

HTML parser technology, the individual tuples can be isolated and extracted. This

approach however has several drawbacks, among which its inflexibility of coping with

changing environments, which especially in this rapid evolving domain is undesirable.

It deserves mentioning here that the professional license, available for a fee, does

allow for acquisition of the HGMD database as a .sql file, making this extraction

process a lot easier. Also, the public version has a delayed update cycle, while the

professional license includes the entire up-to-date dataset.
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Some data is provided in natural language. For instance the fact that the first two

BRCA1 exons are alternative non-coding exons is only mentioned in the header of the

Splice Junctions overview: ‘The first 2 exons are alternative non-coding exons and The

translation initiation codon is located within exon 2 ’, this mainly affects locating

splicing site mutations (1 instance). Adding to this, in Small Deletions (2 instances)

and in Small Insertions (3 instances) some mutations are located through mouse-over

tags, the information communicated by these tags is highly unstructured, to a degree

that we might call it natural language as well. Also, in the case of imprecise

mutations (Gross Deletions, Gross Insertions, Complex Rearrangements and Repeat

Variations), the greater part of the information presented by HGMD is in natural

language, impeding an automated approach severely in the affected cases.

In some cases, the HGMD database uses different ways of locating mutations,

within the same type of mutations. For instance, Small Insertion mutations CI030168,

CI962219 and CI022582 happen in non-coding areas of the gene, just like the Small

Deletions mutations CD991644 and CD994433. Since HGMD generally uses a cDNA

codon referenced way of locating these types of mutations, and given that non-coding

sequences simply not exist in the cDNA, HGMD locates these earlier mentioned

mutations in a different way. In the case of Small Insertions, HGMD provides a Splice

Junction reference, very much like the method used to locate splicing site mutations.

In this case the CI030168, CI962219 and CI022582 mutations are located at

IVS20+21, IVS20+48 and IVS20+64 respectively. So IVS20 indicates the intron

number, where +21 indicates the offset, however since no acceptor/donor information

is provided, it is unclear from which side of the intron the offset should be referenced.

In the case of Small Deletion mutations CD991644 and CD994433 at first sight, no

indication of how to locate them is provided. However, this information is provided

through mouse-over tags in the Splice Junctions referenced form, described earlier.

CD991644 is thus located by I7E8-24, aka IVS7 -15 del10. and CD994433 is located

by “I12+34/polymorphism?”. This problem was thus encountered 3 times in Small

Insertions and 2 times in Small Deletions, making a total of 5 occurrences.

As said, HGMD refers to codons in many cases, which are sets of three nucleotides.

Since HGDB will be using a nucleotide referenced position to locate mutations, a

transformation of HGMD provided data is necessary. In theory, acquiring the correct

nucleotide would be a matter of multiplying the codon number by three, reality is

slightly more complicated as will be discussed in the next paragraph. HGMD uses this

way of locating mutations in the case of Missense/nonsense (320 instances), most of

the Small Deletion mutations (288 instances), most of the Small Insertion mutations

(98 instances) and Small Indels (11 instances), leading to a total of 715 instances of

this problem. Retrieving the corresponding nucleotide in DNA would simply be a

question of multiplying the codon number by 3, if not for the existence of introns and

exons. cDNA only comprises of the genes' exons, thereby excluding the introns,

contained in the DNA. Due to this fact and given that HGDB will be incorporating

a DNA referenced scale, a linear transformation, by multiplying the codon number by

3, simply is not possible.

HGMD splicing site mutations are located by referring them to so-called splice-

junctions. These splice junctions indicate the borders between exon and introns.



304 Matthijs van der Kroon et al.

Journal of Computing Science and Engineering, Vol. 4, No. 4, December 2010

HGMD thus indicates an intron border, by giving an intron number and specifying

which border by providing either a donor- (ds) or acceptor- (as) site of the intron. The

donor site corresponds to the side closest to the 5' end of the DNA strand, while the

acceptor site corresponds to the side closest to the 3' end of the DNA strand. Then an

offset is given, to indicate the amount of nucleotides between the indicated splice

junction and the actual mutation. In the so-called splicing mutations overview HGMD

then provides a sample sequence for each intron/exon-junction contained in the gene.

This method of locating mutations is used primarily in splicing site mutations (80

instances), but in some exceptional cases HGMD also uses this notation to provide

locational data for other types of mutations. For instance, In Small Deletions (2

instances) and in Small Insertions (3 instances).

In the HGMD data exists ambiguity; for instance, mutations may or may not result

in a certain phenotype, this is indicated by a question mark following the supposed

phenotype. However, no probability scores are stated and a mutation without a

(noticeable) phenotype is considered to be a variation with neutral effect. Since

variations and mutations are considered to be two different concepts in the HGDB

data model, this poses problems with loading the database correctly. 94 instances of

this problem have been identified: missense/nonsense mutations account for the most

instances (73), splicing site mutations contains another 16, small deletion mutations

2 and small insertion mutations account for 3 instances.

In short to summarize the encountered problems in the data loading process. Nine

distinct problems have been identified, each of which has been discussed separately

in the above section. The following sections will provide useful insights on how to

resolve future instances of these. The problems as encountered, separated by category

are as follows: 

Intrinsic data properties

(1) Lacking data

(2) Data entry errors

(3) Reference to non-existing introns

(4) General inconsistency

Data representation

(1) Data difficult to access

(2) Use of natural language

(3) Inconsistent way of positioning mutations

(4) Inconsistent with NCBI refSeq

(5) General ambiguity

5.2 Data loading problem solutions

Inserting the 804 precise and 90 imprecise variations provided by the non-commercial

version of HGMD manually seemed like a cumbersome and more importantly, error

prone operation. For this reason a series of scripts was devised to automate the

procedure, while at the same time providing useful experience and knowledge about

how to further process the variational data automatically. A full technical report on

this process, including the source code of these scripts can be found in [van der Kroon
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et al. 2009]. The basic function of the software is to convert the HGMD provided

mutational data into the format used by HGDB and detect inconsistencies in the data.

The main tools are the cDNA- sequences provided by HGMD [Genebank, U14680]

[Genebank, L78833], the NCBI DNA reference sequence [NCBI NG 005905.1] and the

NCBI Coding Sequences (CDS, located in NCBI RefSeq NG 005905.1). The HGMD

cDNA sequence is the aggregation of all coding sequences (exons) of the BRCA1 gene,

thus excluding introns. The NCBI DNA sequence then is the complete sequence of the

BRCA1 gene, including introns. The CDS information specifies what parts of the

NCBI DNA sequence are coding and which are not. The scripts extract, and in some

cases, calculate the variables which are to be inserted into the HGDB Variation,

Precise and Imprecise tables. At the same time detecting inconsistencies in the

HGMD database that can not be resolved in an automated way, indicating a manual

approach is needed in those cases. Since dealing with the above mentioned problems

was necessary to devise those scripts, they are considered to be the crystallized

solutions to the earlier mentioned problems. The main disadvantage of this screen-

scraping approach, is high vulnerability to changes in HGMD data structure. This

means the scripts will require regular updating. Also, by depending on a medium like

HGMD, trust is invested in the integrity of the source. However, at this point the

exact reliability of HGMD has not been identified and some of the encountered

problems during this project clearly suggest reasons to doubt this reliability.

5.2.1 Intrinsic data properties. HGMD lacks data entries for two reasons. HGMD

might simply not be up-to-date with the latest information provided by scientific

research on the subject, or HGMD missed entries during the manual loading of the

database. A partial solution to this problem involves using the professional version of

HGMD, which includes more and more up-to-date entries. However, it is also a

characteristic of the immatureness of the field that no full coverage exists, simply not

enough research has been performed to identify all existing mutations. Therefore the

database will inherently be incomplete, and thus resolving falls outside the scope of

this paper. 

HGMD provides erroneous data for a variety of reasons, human error on either

HGMD or the source paper side might be an issue. Inconsistencies between HGMD

and source paper notation style might play a role. In either case, this is a very difficult

problem category to detect since detection involves rereading the papers. A possible,

but unsatisfactory to some degree, solution would be to perform a deep investigation

on a limited amount of mutational data provided by HGMD, thereby uncovering error

frequency. This error frequency, provided it is investigated according to scientific

measures, can then be extrapolated to the rest of the database, thus providing a

handle from which to calculate reliability of the data-set.

Since inconsistencies can be detected, a manual check of the apparent inconsistent

data is possible. Indeed, the scripts indicate only a few inconsistencies and so the

shear amount of papers to be read manually can be reduced drastically, making the

manual approach possible in these cases. In case the source is locating a mutation

within a non existing intron, the solution might be to manually complete the splice

junctions overview, combining the information from the NCBI reference sequence and
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coding sequences information (CDS), however contradiction exists about whether an

intron 4 actually exists. The implications of this, as has been discussed earlier that

reference papers are using different reference sequences, are far more serious and

indicate a structural flaw in the HGMD splicing site mutations data-set since no

facilities to indicate such differences exist within HGMD, neither indicate the involved

reference papers exactly what reference sequence they are using. Therefore reasons

exist to doubt the splicing site mutations integrity. However, detection depends on

whether a given sample corresponds to the actual nucleotide occurrence at that

position in the DNA sequence. Since HGMD only provides a single nucleotide sample

for splicing site mutations, the odds of a nucleotide at any position in the DNA

corresponding to it is 25%, reducing error detection reliability greatly. As has been

mentioned, in some cases the HGMD mentioned mutation involves a nucleotide

change where the to-be changed nucleotide is actually different in the reference DNA

gene sequence, thereby indirectly suggesting an error on either the source paper side

or the HGMD data entry side. Except for splicing site mutations, as has been

discussed earlier, most of these inconsistencies can be detected with relatively high

reliability. This is possible because HGMD provides a sample sequence surrounding

the mutations, that can be used as a handle to see whether the mentioned nucleotide

actually is the one on the calculated position in the DNA sequence. In case of an

inconsistency between the reference, and the given sample sequence a manual

approach is possible to investigate further.

5.2.2 Data representation. Solving the data extraction problems involves copy-

pasting the HTML-tables with mutational data, provided by HGMD, into the

programming logic of the scripts. By using the PHP explode-function the data is then

cut into bite-size chunks and stored in an array, ready for further processing. Due to

choosing this screen-scraping approach, information contained in HTML mouse-over

tags is not captured. A simple solution to this problem would be to copy-paste the

HTML source-code instead of the browsers rendering, effectively including the HTML

tags and thus the mouse-over contained information. Then use a more elaborate

algorithm to extract the pieces of information from the source. Also, since many

biological information sources present their information in HTML tables as discussed

by [Stein 2002], many solutions to this specific problem have been devised, although

no silver bullet solution exists today. The information contained in these tags is highly

unstructured, to a degree where it is considered natural language. Also, the

informations structure of the different occurrences of the problem differs highly. So a

more generic solution has been chosen to solving this problem: instead of using the

information HGMD provides to locate the mutation, the PHP script simply takes the

sample string provided by HGMD and matches this to the entire BRCA1 gene

sequence, given that the string is unique, a location will be found and presented.

Although solving this particular instance proved possible due to the fact the natural

language contained non-vital information, future occurrences might be more difficult

and no satisfying resolution exists, for coping with natural language inherently is a

weakness in computer technology. HGMD has a tendency to disrupt it's own

structure, by providing different ways of locating mutations within the same mutation
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type. This complicates an automated approach, however a generic solution to this

problem has been devised. Since the main difficulty here is the uncertainty about

whether HGMD might present locational data in yet other ways, it was decided not

to use HGMDs locational data at all in these exceptional cases. Instead, the earlier

mentioned sample sequence given by HGMD is extracted from the HTML table. The

location of the mutation within this sample sequence is then found by detecting a

character case change. The result of this detection is then considered to be the offset,

very much alike the offset given by HGMD in for instance the missense/nonsense

mutations. The entire sample sequence is then matched against the entire BRCA1

reference gene sequence, after which the offset is added to the found location resulting

in the absolute mutation position. The major flaw in this approach however, is the

fact that the given sample sequence might be happening more then once in the

BRCA1 gene, thereby compromising this methods reliability to some extend. For this

reason, this approach is only considered usable in case the regular method, which is

considered to be more reliable due to the more rigid structure, fails.

The way HGMD stores genetic variation positions, is very distinct from the format

in which HGDB stores this information. Each of the HGMD variation types,

undergoes a distinct transformation operation, depending on how HGMD indicates

the location within the cDNA and will be discussed separately.

Missense/nonsense

HGMD indicates a missense/nonsense location by providing a codon number, referencing

cDNA plus an offset. Since HGDB requires a DNA referenced nucleotide position,

transformation of this data is required. First, the software composes its own cDNA

sequence by extracting and merging the coding sequences from the NCBI DNA

sequence using the NCBI CDS information. It then matches the composed cDNA

sequence to the HGMD cDNA to detect inconsistencies. By matching the original and

substituted codon (ATG>GTG) provided by HGMD the position of the mutated

nucleotide in reference to the indicated codon is detected. Subsequently, it multiplies

the codon number minus 1 by 3, in order to acquire a nucleotide referenced scale. It

adds to this number the exact location of the mutation within the codon hereby

obtaining the exact location of the mutation, referenced on a nucleotide cDNA scale.

Ultimately, to acquire the correct location within the DNA, a calculation involving the

NCBI CDS and nucleotide location of the mutation in the cDNA takes place. The

software calculates the length of each coding sequence and each non-coding sequence

in the DNA, according to the NCBI CDS. It then identifies the amount of non-coding

nucleotides between the start of the NCBI DNA sequence and the mutation position,

then adds this number to the cDNA referenced nucleotide location, resulting in the

DNA referenced nucleotide position of the mutation.

Splicing

Solving the problems affiliated with the manner in which HGMD locates splicing site

mutations, seems rather straightforward at first: by simply using the splice junctions

overview provided by HGMD, every mutation should be located. However due to the

discovery of HGMDs splicing site mutations overview poor correspondence to its own
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Splice Junctions overview, an alternative solution had to be devised. In this case the

script uses a matching strategy in which it grabs the given nucleotide sequence from

the Splice Junctions overview and matches this to the reference sequence provided by

NCBI, thereby locating the location of the mutation more reliably.

Regulatory

The HGMD non-commercial database does not indicate any regulatory problems in

the BRCA1 gene.

Small Deletions/Small Insertions/Small Indels

These three types of variations are located by HGMD in exactly the same manner,

therefore they are discussed together. HGMD uses a codon referenced cDNA scale to

locate these variations, just like with missense/nonsense mutations. However, in this

case, the mutation can involve up to 20 bps and therefore often happens outside the

referenced codon, either to the 3' or the 5' side. In this case, the transformation

software calculates the given codon location in very much the same way as with the

missense/nonsense mutations, by matching the NCBI CDS data with the codon

number, resulting in a nucleotide position on a DNA scale for the first codon base. The

software then calculates the offset in nucleotides between the referenced codon, and

the actual start of the mutation, adding (or subtracting, depending on where the

mutation starts in relation to the reference codon, downstream or upstream the DNA

strand) this quantity to the nucleotide position of the codon in the DNA, resulting in

the DNA referenced nucleotide start position of the mutation.

Gross Deletions/Insertions/Complex rearrangements/Repeat Variations

Since these type of mutations are considered to be imprecise, no data about them

needs processing. In this case, the script simply appends an identifier and applies the

values to the corresponding cells in the HGDB Variation and Imprecise tables.

Absolutely resolving the data ambiguity would include rereading all the papers

used to populate HGMD. However, this approach is impossible to automate due to the

highly unstructured nature of scientific papers. Hence another solution is suggested:

modifying the HGDB to account for the uncertainty by adding a certainty attribute

to the variational table. HGMD presents on their background pages an indication of

how to interpret this uncertainty by providing the inclusion criteria for Disease-

Associated/Functional Polymorphism's.

6. CONCLUSIONS

In this document we have shown the primary reason of existence of conceptual

modeling techniques. The HGMD is considered an extremely useful source of data

about genetic mutations in the field. For being curated, it is also considered to be

highly reliable. This document shows, that although we do not doubt the quality of

the data an-sich, a lot remains to be wished for. Some of the problems can be retraced

to the relative youth of the genetic domain. The reference to the non-existing intron

4 exemplifies this nicely. The data are difficult to extract, but we do not consider this

a real problem. It has been the HGMD decision to choose a more commercial route,
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and when respected one can obtain a more accessible means of retrieving the desired

data. This being said, the apparent lack of a thorough conceptual modeling approach

seems to bear it's traces on the service. 

Every tuple in the HGMD is supposed to represent a genetic variation, known to be

associated to disease. This quite rigorous definition becomes endangered in cases

where indicated variations ‘might’ be associated to disease, as indicated in the HGMD

by the question mark. Indeed, a variation that is not associated to disease should not

be considered a mutation and thus not enter the dataset as is. The CSHG handles

these cases by providing the neutral polymorphism dimension, for the Variation

concept.

Another point of improvement is the lack of a proper way of facilitating the various

reference sequence in common use by research papers. For illustration, a certain

mutation might be located in position 131 in reference sequence X, but correspond to

position 125 in reference sequence Y. The HGMD provides it's own cDNA sequence,

from which it locates the majority of it's mutations. However this cDNA sequence is

‘based’ on an NCBI sequence, and can thus differ from it. For an optimal use of the

data provided by HGMD, this means an expert in many cases still needs to evaluate

and interpret the data. This is expensive in both time and money. Aligning the

HGMD set of mutations to the NCBI reference sequence, that is considered to be the

‘golden standard’, thus seems a logical step and has been one of the merits of this

work.

Concretely, we suggest two major changes to the HGMD: (i) facilitate a more

elaborate way of handling associated phenotype, perhaps link directly to the Online

Mendelian Inheritance in Man (OMIM) database [Amberger et al. 2008]. And (ii) add

a new column, in which the reference sequence indicated by the source paper is also

stored. This will allow for a much easier, and more efficient use of the HGMD data

set. Considering data is acquired manually from the papers, adding this element of

extracted data seems to be relatively low cost.

The CSHG aims to avoid the earlier mentioned problems, by applying the

conceptual modeling approach. It is our strong belief that the only way of accurately

representing any data, and perhaps genetic data in particular, can only be done by

means of careful analysis of the domain and its peculiarities. Furthermore, following

the selected conceptual modeling approach, the conceptual schema itself is open to

incorporating new concepts and new discoveries in a domain whose constant evolution

is without a doubt. A conceptual schema is ready to adapt to any new knowledge in

a way that enables having a continously updated whole, correct picture of the

problem. The logical step of representing the acquired model appears to be in the form

of a conceptual schema. When we look at the HGMD we can not help but notice that

although very useful, a lot is still to be wished for from an information systems point

of view. It is exactly this what characterizes the present day problems in the genetics

domain; so many data are generated but no coherent, holistic view, of these data

exists. The data are scattered around the globe in various databases, many much like

the HGMD, and hidden among them we possess over solutions to so many problems.

It is in this haystack, that the needle will allow for exciting new possibilities and huge

improvements in healthcare. We are now facing the choice, to either brute force our
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way through the haystack, sifting and sifting until we encounter the big prize. Or we

structure the haystack, bring order in chaos and obtain an understanding of what

exactly composes the mechanical processes that drive life. It is our belief that the only

way to do this, is by applying the use of a conceptual modeling approach.
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