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Abstract
With the large amount of complex network data that is increasingly available on the Web, link prediction has become a

popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary

classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm

called “Truncated Kernel Projection Machine” that is based on empirical-feature selection is proposed. The proposed

algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the

regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning

machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction

task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of sev-

eral classification algorithms was performed for comparison. The experimental results show that the proposed algorithm

outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.
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 I. INTRODUCTION
 

In recent years, complex networks such as social net-

works have attracted considerable Internet-based atten-

tion. A typical complex network can be represented as the

graph G = (V, E), where V represents the entities and E

represents the relationships between them. For instance,

the World Wide Web consists of pages as well as the

hyperlinks among them; moreover, social networks con-

sist of individuals and the relations among them. In the

field of bioinformatics, the network structures among

biological entities such as genes and proteins, which rep-

resent physical interactions and gene regulation, are stud-

ied extensively.

Complex networks contain highly dynamic objects, and

understanding the mechanisms by which they evolve is
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still an open question. For instance, with the prevalence of

the Web 2.0, online social network service (SNS) websites

such as Facebook, Flickr, and LiveJournal are increas-

ingly popular. The instantaneous and random interactions

between millions of people have created uncountable and

highly dynamic relationships of online social networks.

These connections grow and change quickly over time

through the presence or absence of the interactions

between people. For those seeking to mine the link

behaviors in complex networks, it is urgent to handle

complicated situations like those of SNS relationships.

In this paper, the focus is on solving the link-prediction

problem of several complex networks with the use of the

proposed empirical-feature-based learning algorithm.

Many link-prediction algorithms have been proposed

over the past few years. The most direct idea is the use of

the topological features of complex networks, whereby

the hypothesis that two entities that are “close” in a net-

work will have colleagues in common serves as the basis;

this shared factor suggests that the “close” entities are

more likely to collaborate or interact in the near future.

The most well-known model is the preferential-attach-

ment model that was proposed by Newman [1] and Bara-

basi et al. [2]. Liben-Nowell and Kleinberg [3] proposed

and compared a number of metrics such as the shortest-

path distances and the numbers of shared neighbors that

are derived from various network models.

A more sophisticated approach to the link-prediction

task can be formalized as either a binary-classification

problem or a ranking problem on the node pairs. This

problem leads to the adoption of several link-prediction

learning algorithms. Al Hasan et al. [4] used a set of

learning algorithms to evaluate the performances of these

algorithms in terms of the link-prediction problem,

whereby a comparative analysis was made through the

identification of a short list of features for a network-

based link-prediction task. Kashima and Abe [5] pre-

sented a novel probabilistic model of network evolution

that is parameterized for the derivation of an efficient

incremental-learning algorithm, which is then used to

predict the links among the entities in a number of com-

plex networks including biological networks.

In bioinformatics, the prediction of protein-protein

interactions (PPIs) has been intensively studied over

recent years. A large amount of work has been completed

for the prediction of PPIs whereby machine-learning

methods such as the support vector machine (SVM) [6, 7]

are used. Ben-Hur and Noble [8] used an SVM method

with a pairwise kernel and evaluated a number of

sequence features including the spectrum Kernel. Mag-

nan et al. [9] used several machine-learning methods with

sequence-based features for the prediction of protein sol-

ubility. Impressive performances regarding the use of

sophisticated pairwise kernels that allow for the achieve-

ment of classifications that are derived using machine-

learning methods have consequently been reported. 

This work, whereby the proposed sparse-learning algo-

rithm that is based on empirical features leads to an

improved accuracy and the greater precision of predic-

tions, differs from the earlier works. The contributions of

the present paper are as follows:

1) The classification link-prediction algorithm is called

Truncated Kernel Projection Machine. For the realization

of sparse learning that is based on empirical data, a number

of new kernel-projection machines that were studied

recently in [10-12] are proposed here. The algorithms can

be formulated as a coefficient-regularized framework for

the reproduction of the kernel-Hilbert space, e.g., the -

regularizer in [10] and the -regularizer in [11]. Differ-

ing from these regularized methods, a new empirical fea-

ture-based method that is based on an empirical risk-

minimization principal is proposed here; furthermore, its

representer theorem is established, and the easy and effi-

cient implementation of the algorithm is also shown.

2) The effectiveness of the proposed algorithm is eval-

uated through an empirical comparison of its predictive

performance with those of the KPM and the SVM. The

results of the experiments of this paper indicate that, for

the complex networks that are used, the predictive perfor-

mances of the proposed method in several key indices

including Accuracy, Precision, Recall, and F1-values are

significantly more effective than those of the existing meth-

ods. As far as the authors know, a link-prediction study

that is according to an empirical feature-based sparse

method has not been conducted. This study provides a

new insight for dealing with the previously mentioned

learning tasks, and it fills the gap regarding the empirical

evaluations of the previous algorithms in [10-12].

This paper is organized as follows. In Section II, the

empirical feature-based learning algorithm with a trun-

cated sparsity is presented with a theoretical analysis. In

Section III, the TKPM is applied in several datasets

including the UCI Machine Learning Repository, the

DBLP coauthor network, and a PPIs network, and the

SVM and the KPM are employed for the comparison.

Lastly, the conclusion is given in Section IV.

II. ALGORITHM

Let X be a compact metric space and let Y be contained

in [-M, M]. It is assumed that the product space Z := X × Y

is measurable and that it is endowed with an unknown

probability measure that is denoted by ρ. The input-out-

put pairs (x, y) are sampled according to ρ. For every x ∈ X,

let ρ(y|x) be the conditional (w.r.t. x) probability measure

on Y, and let ρX (x) be the marginal probability measure

on X. The error for a measurable function f: X→Y is the

so-called expected risk, as follows:

ε f( ) :=  y f –
L
ρ

2

2

= y f x( )–( )2dρ.
Z

 

∫
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It is known that the function that minimizes ε(f) is the

regression function that is defined by the following for-

mula:

Set Nm := {1,2,..., m} for any m ∈ N. A training set of

size m is drawn by sampling m independently and the

identically distributed pairs according to ρ, as follows:

The design of the learning algorithm that is investi-

gated in this paper is based on a reproducing kernel-Hil-

bert space Hk that is associated with a Mercer kernel K.

An integral operator on Hk is defined by the following

formula:

Note that LK is a compact, self-adjoint positive operator;

its eigenvalues are denoted with a non-increasing sequence

as {λi}, and the associated eigenfunctions are denoted

using {φi}. Here, {φi} forms the orthonormal basis of HK.

The power r of LK is also defined using the following

formula: 

In this paper, it is assumed that the following equation

applies:

, for some r>0 and gρ ∈ Hk. (1)

This assumption has been used extensively in machine-

learning algorithms, e.g., [11, 13]. If  and

, then ; furthermore, x = .

The empirical features  approximate {φi} here, where

 represents the eigenfunctions of the empirical oper-

ator  that is defined by the following formula:

where  is a normalized sum of m rank-one operators,

and it is self-adjoint and positive with the rank at most m.

The eigensystem of  is denoted by , where

 is arranged in a non-increasing order, and = 0

when i > m and  forms the orthonormal basis of Hk.

The first m eigenfunctions  can be considered

the empirical features for learning, and they can be

computed easily with the use of the Gramian matrix

K =  (see Remark 1 in [11] for details).

The algorithms that are based on the empirical features

are introduced in [10, 11], whereby the coefficient

regularization is derived through the use of the following

formula:

 := 

(2)

where V : R2 → R+ is a loss function , γ > 0 is a regularization

parameter, and Ω(c) is the penalty on the coefficients. In [10,

14], V(y,f(x)) = (y − f(x))2, and Ω(c) =  = |ci|.

The empirical feature-based learning by truncation that

is different from the regularized algorithms in [10, 11],

is the focus of this paper. A truncated parameter ε > 0

is therefore introduced to control the feature domain

Dm,ε = = , where k denotes the

number of features in Dm,ε. Through the use of the learning

algorithm, an empirical risk minimization is implemented

to derive the coefficient, as follows:

 = (3)

Then, the predictor is .

Now, the representer theorem for the algorithm in (3)

can be given.

THEOREM 1. Let  be the corresponding eigenvalue

of  for i ∈ Nk. The coefficient  in (3) is

given by

Proof. Since ( , ) ∈  for i ∈ Nk, the fol-

lowing formula is derived:

 =  = 

As  forms the orthonormal basis of Hk and  ∈
, it is possible to observe the following formula:

where δi,l = 1 if i = l, and δi,l = 0 otherwise. The empirical

error part can then be rewritten as follows:
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The desired result is then derived through the setting of

the following formula:

Here, the sparsity is controlled by the truncated threshold

ε. The details of the Truncated Kernel Projection Machine

(TKPM) can now be given by Algorithm 1, as follows:

The proposed binary classifier can be applied in a

number of link-prediction datasets by predicting whether

a specific link in the network should be added or not; the

detailed steps regarding the procedure for the application

of the proposed algorithm in the link-prediction problems

are provided in the experiments, i.e., the third paragraph

in subsection B of Section III. The TKPM was tested for

the link-prediction tasks of three different datasets in the

experiments. The results show that the proposed TKPM

can be implemented easily and efficiently.

III. EXPERIMENTS

The TPKM was tested in several complex networks. In

each experiment, three algorithms including the TKPM,

the KPM, and the SVM with the RBF kernel were

employed for the comparison. The same sample sets and

test sets are adopted in each comparison experiment. The

TKPM and the KPM are fixed with the same eigen num-

bers D = Numberseigenvalue>truncated threshold. The TKPM and

the KPM were implemented in MATLAB R2009a in

Linux. For the SVM, the free C library of libsvm is

employed in MATLAB.

A. Test TKPM in Several Benchmark Datasets

Six benchmark datasets that consist of some data that

are originally from the University of California at Irvine

(UCI) repository were taken from [15] and were used in

the TKPM test. All of the datasets consist of 100 realiza-

tions that had been split into a training sample and a test

sample. In all of the datasets except “Banana,” the 100

realizations actually contain the same data points and

only differ regarding the training/test split. The results

obtained from the application of several state-of-the-art

classification algorithms have been reported in [15],

including the SVM with the RBF kernel. Several optimal

results are reported on the website, along with the suitable

values (chosen by cross-validation) for the parameters σ
(kernel width) and CG (SVM-regularization parameter).

These parameters are also employed in the experiments

of this paper.

Table 1 lists the best results of TKPM, KPM, and SVM

for each dataset; furthermore, the corresponding trun-

cated thresholds and the parameters D of KPM are also

listed. The results are in the form of average errors ±

squared test errors. Noticeably, the KPM is less competi-

tive here, and the KPM results that are reported in [14]

are also included in Table 1 (named “KPM(R)”). Both the

TKPM and the SVM perform similarly in all of the

datasets. The TKPM performances are better than those

of the other algorithms in nearly all of the datasets, with

Algorithm 1. Truncated Kernel Projection Machine

Input: Let ε > 0 be the truncated threshold, whereby the

training set , the test set ,

and the kernel function K that is defined on z are given.

Output: The classifier sgn ( )

1: Compute the kernel matrix K =  and its

eigenvalue sectors ;

2: Transformation:

;

3: Feature selection:

;

4: Calculating the coefficient

 of the classifier sgn ( ).

∂ 1
m
----Σi=1

m

Σj=1

k
 
 

cjφ̃j xi( ) yi–⎝ ⎠
⎛ ⎞

2

∂cj
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ˆ
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j=1

m

∑= fk

 z

Table 1. Best test errors of the three algorithms

SVM KPM KPM(R) D TKPM Threshold

Banana 11.56 ± 0.37 17.69 ± 0.63 10.91 ± 0.57 12 10.52 ± 0.64 0.15 (40)

Breast Cancer 26.04 ± 0.47 28.81 ± 0.45 28.73 ± 4.42 1 25.22 ± 0.44 0.26 (19)

Diabetes 22.53 ± 0.38 24.52 ± 0.32 23.77 ± 1.69 17 23.17 ± 0.38 2.1 (17)

Flare Solar 32.43 ± 0.98 35.86 ± 0.53 32.52 ± 1.78 8 33.73 ± 0.47 2.1 (8)

German 23.61 ± 0.21 26.77 ± 0.46 24.09 ± 2.38 11 23.58 ± 0.21 10 (11)

Heart 15.97 ± 0.32 41.24 ± 1.38 17.53 ± 3.54 20 15.74 ± 0.28 0.85 (13)

Values are presented as average errors ± squared test errors.

D is the best parameter of KPM and KPM(R) in each dataset, and threshold is the best parameter of TKPM in each dataset.
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“Flare Solar” being the only exception; meanwhile, the

TKPM dominates both KPM and KPM(R) in each of the

datasets.

In Table 2, for each dataset, the smallest test error of

the TKPM is compared with those of the SVM and the

KPM; each time, the winner is given one point. The

TKPM won more points in four of the datasets, the SVM

won in the Flare Solar and “German” datasets, and the

TKPM still dominates the KPM in each of the datasets

except for Flare Solar. These two tables highlight the

superiority of the TKPM over the KPM.

Figs. 1–3 show the average test errors of the TKPM

compared to the KPM for the same truncated threshold

(D). For each dataset, two algorithms are tested in the

eight truncated thresholds ∈ {0.1,0.2,0.5,1,1.5,2,5,10}. In

both figures, the average test errors of the TKPM are

smaller than those of the KPM regarding the same trun-

cated threshold (D). The performances of the TKPM are

very stable in nearly all of the datasets. The curves of the

TKPM are nearly straight lines in Figs. 1–3, while those

of the KPM change very sharply. The above results show

us that, when compared to the KPM, the TKPM can

achieve better results while it is not sensitive to the trun-

cated thresholds. 

B. Test TKPM in DBLP Coauthor Network

In this subsection, a basic computational problem that

underlies the social network evolution, the link-predic-

tion problem of social networks, is defined and studied.

Given a snapshot of a social network at time t, the aim

here is the accurate prediction of the edges that will be

added to the network during the interval from time t to a

given future time t'.

Table 2. Best classifier in the family

SVM KPM TKPM

Banana 3 2 95

Breast Cancer 27 11 47

Diabetes 19 23 45

Flare Solar 40 23 8

German 41 10 35

Heart 31 1 36

The numbers in the table denote the number of wins.

Fig. 1. The average errors of KPM and TKPM in different truncated thresholds (D) in Banana and Breast Cancer.

Fig. 2. The average errors of KPM and TKPM in different truncated thresholds (D) in Diabetes and Flare Solar.



Truncated Kernel Projection Machine for Link Prediction

Liang Huang et al. 63 http://jcse.kiise.org

The DBLP [16] dataset that is used in this experiment

provides the bibliographic information of major com-

puter science journals and proceedings. The dataset

indexes more than 2.5 million articles and 1 million

authors from a period of several decades. An XML docu-

ment of the article information including the title, author,

journal, and year is also provided with the DBLP dataset.

Papers that have been published in 18 journals in the field

of artificial intelligence and pattern recognition between

1996 and 2010 were chosen for this study. These papers

were then split into two sets so that the papers from the

years 1996 to 2003 could be used as the training set and

those from the years 2004 to 2010 could be used as the

test set. 

A coauthor relationship is defined if two authors are

the coauthors of a paper in the dataset. The training set

with 7,729 authors and 26,334 relationships, and the test

set with 7,729 authors and 42,185 relationships were con-

structed in this way.

An experimental setup that is similar to that of [4] was

adopted for these experiments. The classification dataset

was constructed through the selection of the author pairs

that appear in the training set, but that did not publish any

papers during those years. Each pair represents either a

positive label or a negative label, depending on whether

or not the author pairs published at least one paper in the

test set. The six features that are reported in [3] were used

in the experiments including graph distance, common

neighbors, Jaccard’s coefficient, Adamic/Adar, preferen-

tial attachment, and Katzβ.

1) Results

Similar to the last subsection, the kernel parameter σ
was set to 0.8, and CG = 16 for the three algorithms. The

standard five-fold cross-validation was employed for the

verification of the results with the six truncated thresh-

olds ∈ {0.1(148),0.5(107),1(66),3(21),5(15),10(10)}. Four

basic indices including accuracy, precision, recall, and

F1-value formed the focus of each experiment.

Let TP represent the true positive, TN represent the

true negative, FP represent the false positive, and FN rep-

resent the false negative. The definitions of the four indi-

ces can be given as follows:

.

Table 3 lists the performances of the three algorithms,

whereby the results are presented in the form of each

index ± squared error. The TKPM won in terms of the

accuracy, recall, and F1-value indices for nearly all of the

truncated thresholds (D), as shown by the bold values in

Table 3. The KPM won the precision index with a very

low recall in each truncated threshold (D). The best per-

formances in terms of accuracy, recall and F1-value were

achieved by the TKPM, as shown by the bold values that

are also italicized in Table 3. The KPM won the precision

index with the lowest recall. Table 3 also shows that the

KPM is very unstable regarding the test with the larger

test error and changes. Due to the difference regarding

the selection of the DBLP datasets and features, the aver-

age results of the experiments here are relatively lower

than those of [4]. It remains persuasive, however, that the

TKPM can achieve better performances in a wide range

of truncated thresholds with smaller test errors.

Fig. 4 shows the error bar of the KPM and the TKPM.

Both of the TKPM curves are nearly straight lines with

very small squared errors; yet, the KPM curves change

frequently with large squared errors. The average results

of the three algorithms are relatively lower than those of

[4] due to the differences between the datasets and

parameters of the two studies; however, the results still

prove that the TKPM can achieve better performances in

Accuracy TP TN+
TP FP TN FN+ + +
--------------------------------------------=

Precision TP
TP FP+
-------------------=

Recall TP
TP FN+
-------------------=

F1 value 2*Precision*Recall
Precision Recall+

--------------------------------------------------=

Fig. 3. The average errors of KPM and TKPM in different truncated thresholds (D) in German and Heart.
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a wide range of truncated thresholds with small test

errors.

C. Test TKPM in PPIs Network

In this subsection, a prediction of PPIs that is based

only on the amino acid sequence information is the focus.

PPIs are central to most biological processes, e.g., meta-

bolic pathways, signaling cascades, and transcription con-

trol processes.

Shen et al. [17] proposed a descriptor named “conjoint

triad,” which is for the properties of one amino acid and

its vicinal amino acids in the amino acid sequence of a

protein, and regarded any three continuous amino acids as

a unit. The triads can therefore be differentiated according

to the amino acid classes, i.e., triads composed of three

amino acids belonging to the same class. Shen defined

343 amino acid triad classes, and each protein can be rep-

resented by a 343-dimension vector. The vector count is

the number of occurrence times for each triad in the pro-

tein sequence. A protein-protein pair can therefore be

represented by a 686-dimension vector through the con-

catenation of the vectors of two proteins.

In [17], the SVM with a kernel function was adopted

for the prediction of the PPIs, and sound results were

achieved. In the experiments of this study, the method of

[17] was used to extract the features of the PPIs. The results

of the TKPM were compared to those of the SVM and the

KPM with the same kernel function and parameters.

1) Dataset

The Database of Interacting Proteins (DIP) [18] was

adopted for this experiment. The DIP is a database that

documents experimentally determined PPIs, providing

the scientific community with an integrated set of tools for

browsing and the extraction of information regarding the

protein interaction networks. As of October 2011, the

DIP catalog comprises approximately 73,024 unique inter-

actions from 24,281 proteins that belong to 447 organ-

isms; the vast majority are from yeast, Helicobacter pylori,

and the human species.

The S. cerevisiae (baker’s yeast) that is composed of

4,525 PPIs was taken from the DIP and used for the

experimental dataset; therefore, a positive dataset with

Table 3. Performances of three algorithms for DBLP

Method Accuracy Precision Recall F1-value Threshold (D)

KPM 55.23 ± 0.93 91.04±8.05 17.41±9.13 22.72±8.64 0.1 (148)

TKPM 66.58 ± 0.47 79.34±0.80 44.96±0.92 52.37±0.86 -

KPM 56.31 ± 1.21 86.50±5.33 21.46±13.2 25.51±7.91 0.5 (107)

TKPM 66.44 ± 0.46 79.32±0.76 44.59±1.00 57.06±0.92 -

KPM 53.32 ± 1.09 89.50±9.03 27.36±16.1 26.79±8.69 1 (66)

TKPM 66.36 ± 0.45 79.35±0.79 44.35±1.01 56.87±0.91 -

KPM 56.56 ± 1.82 95.30±9.39 14.21±17.2 22.95±8.95 3 (21)

TKPM 65.76 ± 0.53 79.16±0.79 42.92±1.19 55.62±1.07 -

KPM 60.96 ± 1.69 93.61±8.21 23.77±3.91 36.89±5.70 5 (15)

TKPM 66.04 ± 0.47 79.51±0.88 43.36±0.96 56.08±0.88 -

KPM 56.54 ± 2.31 96.02±10.5 13.90±5.43 22.20±8.02 10 (10)

TKPM 65.28 ± 0.14 78.40±0.77 42.36±0.94 54.96±0.80 -

SVM 65.92 ± 0.40 75.40±0.71 42.96±0.91 53.41±0.93 -

Values are presented as each index ± squared errors.

σ = 0.8, truncated threshold (D) ∈ {0.1(148),0.5(107),1(66),3(21),5(15),10(10)}.

Fig. 4. Error bar of accuracy, precision, and recall of TKPM and
KPM in different truncated thresholds (D). The data are
represented as percentage ± squared error.
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4,525 protein-protein pairs was constructed using the

method of [17], and each protein-protein pair comprises

686 features. The amino-acid sequence of each protein-

protein pair was then shuffled according to the laws of k-

let; accordingly, two different datasets were constructed

including the 1-let and 2-let datasets, and each negative

dataset comprises 4,525 negative protein-protein pairs.

The standard five-fold cross-validation was employed for

the comparison between the performances of the TKPM,

the SVM, and the KPM.

2) Results

In the experiment, the TKPM, SVM, and KPM were

compared. The σ was set to 2.5 and the CG (SVM-regu-

larization parameter) was set to 8. The eigen numbers

were still fixed to D = Numberseigenvalue>truncated threshold. The six

thresholds ∈ {0.1(3958),0.5(2288),1(694),3(133),5(48),10(12)}

were employed for the 1-let dataset and the six thresholds

∈ {0.1(3931),0.5(2183),1(684),3(132),5(50),10(13)} were

employed for the 2-let dataset here. The results were pre-

sented for the three indices accuracy, precision, and sen-

sitivity in the form of percentage ± squared error. The

definition of sensitivity here is the same as that of recall,

as was previously mentioned. Tables 4 and 5 list the

results of the experiment, wherein the three algorithms

achieved good results for both the 1-let and the 2-let

datasets. The TKPM outperformed the other algorithms

in terms of accuracy and precision in the 1-let dataset for

each truncated threshold (D) with a relatively small

squared error; however, the KPM won the sensitivity

index for each truncated threshold (D) in the 1-let dataset.

The performance of the TKPM is comparable to that of

the KPM for the 2-let dataset, but the former still won

more indices in more truncated thresholds (D). The

TKPM performed best in the accuracy and precision indi-

ces, and the KPM performed best in the sensitivity index,

as shown by the italicized, bold values in Tables 4 and 5.

The results of the 1-let dataset dominated the 2-let dataset

results. The classification results that can be achieved

with a 1-let dataset are therefore superior to those of the

2-let dataset.

IV. CONCLUSION

A new algorithm that is used for the prediction of the

links in complex networks is proposed in this paper with

an empirical-feature-based learning algorithm called

TPKM that comprises a truncated sparsity.

The performance of the algorithm was applied to dif-

ferent instances of complex networks for the comparison

with the KPM and the SVM. The experiment results

show that the results that can be obtained with the TKPM

are superior to those of the SVM. The TKPM outper-

formed the KPM and SVM in nearly all of the datasets

with high stability. The TKPM curves are like straight

lines compared to those of the KPM which change sharply.

These results show that the TKPM is not sensitive to the

truncated threshold (D) when compared to the KPM.

The computational cost of the TKPM still outperforms

Table 4. Performances of different algorithms for DIP S. cerevisiae
with 1-let

Method Accuracy Precision Sensitivity
Threshold

(D)

KPM 92.89±0.39 90.29±1.45 95.03±1.01 0.1 (3958)

TKPM 94.72±0.35 95.02±0.79 93.78±0.54 -

KPM 91.52±0.41 87.54±1.33 94.11±0.98 0.5 (2288)

TKPM 93.74±0.31 93.81±0.75 92.95±0.69 -

KPM 88.72±0.46 85.33±1.51 92.02±1.49 1 (694)

TKPM 90.62±0.58 90.81±0.17 89.36±1.11 -

KPM 85.34±0.53 83.52±1.25 86.27±0.88 3 (133)

TKPM 85.11±0.47 85.48±1.21 82.81±0.55 -

KPM 81.56±0.44 79.17±1.62 83.14±0.98 5 (48)

TKPM 81.94±0.61 82.85±1.46 78.45±0.96 -

KPM 48.08±2.23 47.94±2.28 59.61±0.93 10 (12)

TKPM 57.28±0.42 55.85±2.45 55.70±2.40 -

SVM 93.13±0.40 91.40±0.71 87.65±0.91 -

Values are presented as percentage ± squared error.

σ = 2.5, truncated threshold (D) ∈ {0.1(3958),0.5(2288),1(694),3(133),

5(48),10(12)}.

Table 5. Performances of different algorithms for DIP S. cerevisiae
with 2-let

Method Accuracy Precision Sensitivity
Threshold 

(D)

KPM 88.32±0.41 87.13±1.98 87.93±0.38 0.1 (3931)

TKPM 89.51±0.38 87.74±1.87 84.31±0.21 -

KPM 85.98±0.21 86.29±1.01 81.49±1.52 0.5 (2183)

TKPM 86.42±0.50 85.93±1.98 85.87±0.46 -

KPM 82.34±0.63 80.58±1.51 76.58±0.49 1 (684)

TKPM 81.01±0.57 80.24±1.84 79.64±0.80 -

KPM 75.52±0.63 74.15±0.27 69.75±0.57 3 (132)

TKPM 74.71±0.41 76.42±1.52 73.26±0.93 -

KPM 69.92±0.75 71.11±1.69 61.49±1.10 5 (50)

TKPM 70.68±0.61 69.62±2.35 66.35±5.15 -

KPM 50.78±0.52 48.62±1.86 81.19±6.61 10 (13)

TKPM 51.28±0.49 51.18±2.62 38.55±5.83 -

SVM 85.84±0.61 83.47±1.32 86.54±1.33 -

Values are presented as percentage ± squared error.

σ = 2.5, truncated threshold (D) ∈ {0.1(3931),0.5(2183),1(684),3(132),

5(50),10(13)}.
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that of the KPM, the latter of which needs to solve a lin-

ear optimizing problem with a large cost. In the experi-

ments, KPM memory errors were reported frequently,

whereas TKPM errors were rarely reported and they

comprise more eigen numbers. In the experiments, the

speed of the SVM is faster than that of the TKPM,

whereby a different implementation caused the different

speeds. The optimized and tested libsvm library in C,

TKMP, and KPM were implemented in MATLAB.

The proposed algorithm will not only allow for the

extension of link prediction and link analysis to different

kinds of complex networks, but it will also provide a use-

ful tool for understanding the structure and evolution of

these networks.

Two different future directions are evident regarding

this work, as follows: 1) following an analysis, the

TKPM can be extended into the area of semi-supervised

machine learning, whereby better results could be

achieved. 2) The methods that have been used in the

experiments of this study are limited by static time peri-

ods. The time-series-analysis algorithm can be intro-

duced here for the achievement of a better performance

regarding the link-prediction task.

It is hoped that the TKPM will be employed success-

fully in the prediction of new links and missing links in

complex networks, and will help to uncover new and

interesting properties in this area.

In a future study, the proposed algorithm will be

extended through a binding of the graph kernel [19] with

the data dependence. The achievement of a better perfor-

mance is sought through the use of this extended algo-

rithm.
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