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Abstract
An improved sample balanced genetic algorithm and Extreme Learning Machine (iSBGA-ELM) was designed for accu-

rate diagnosis of Alzheimer disease (AD) and identification of biomarkers associated with AD in this paper. The pro-

posed AD diagnosis approach uses a set of magnetic resonance imaging scans in Open Access Series of Imaging Studies

(OASIS) public database to build an efficient AD classifier. The approach contains two steps: “voxels selection” based

on an iSBGA and “AD classification” based on the ELM. In the first step, the proposed iSBGA searches for a robust sub-

set of voxels with promising properties for further AD diagnosis. The robust subset of voxels chosen by iSBGA is then

used to build an AD classifier based on the ELM. A robust subset of voxels keeps a high generalization performance of

AD classification in various scenarios and highlights the importance of the chosen voxels for AD research. The AD clas-

sifier with maximum classification accuracy is created using an optimal subset of robust voxels. It represents the final

AD diagnosis approach. Experiments with the proposed iSBGA-ELM using OASIS data set showed an average testing

accuracy of 87%. Experiments clearly indicated the proposed iSBGA-ELM was efficient for AD diagnosis. It showed

improvements over existing techniques.
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I. INTRODUCTION

Alzheimer disease (AD) is an example of dementia or

neurological disorder with various symptoms, including

memory loss, confusion, and learning difficulties. AD is

most common in elderly people. AD diagnosis, especially

in the early stages, is one of the most challenging prob-

lems in the field of medicine. AD diagnosis using simple

and progressive methods can give an early signal to start

treatment which may slow down the disease [1]. Hence,

new and more advanced techniques are needed for AD

diagnosis at early stages.

Brain imaging is one of the most powerful tools for

AD diagnosis and AD research. Brain imaging investi-

gates the human brain by visualizing brain tissues using a

progression of different methods. Several brain imaging
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techniques have been developed for diagnosis and

research, including the following: computed tomography

(CT), single-photon emission computed tomography

(SPECT), positron emission tomography (PET), and

magnetic resonance imaging (MRI). According to recent

studies for AD diagnosis [2, 3], CT has a poor accuracy

in detecting AD. Both SPECT and PET use radioactive

isotopes for testing [4, 5]. They are harmful to patients

after several tests. In addtrion, data collected from

SPECT and PET might not be sufficient for proper AD

diagnosis as SPECT has low spatial resolution which

causes lower accuracy for AD diagnosis. Compared to

CT [2, 3], SPECT and PET [4, 5], MRI [6-8] is an effi-

cient and fast brain imaging tool with spatial resolution of

the brain shape and volume high enough for accurate AD

diagnosis. MRI is also able to give a dynamic analysis of

the brain shape and volume. Dynamic analysis can detect

fast modifications in brain activity which is extremely

important for AD diagnosis [6, 7]. 

MRI is widely used for accurate AD diagnosis in the

early stages. Analysis of MRIs taken from AD patients in

the early stages shows modifications in the hippocampus

and entorhinal cortex brain areas [9-11]. However, authors

who presented methods to differentiate AD patients and

normal persons by examining the volume of the hippo-

campus and entorhinal cortex in the brain areas chosen

manually. Such manual method is not always accurate. It

depends on researchers which might lead to mistakes.

Hence, an automatic approach is highly desirable.

Automatic AD diagnosis approaches use features

extracted from MRI and traditional machine learning

techniques for accurate AD classification [6-8, 11]. AD

diagnosis is possible due to artificial changes in the

brain’s volume captured by MRI. MRI analysis based on

regions-of-interest (ROI) can identify brain areas respon-

sible for AD and numerically rank the discovered brain

areas for further analysis. Lao et al. [11] and Chupin et al.

[12] have presented an ROI based approach for AD diag-

nosis which can automatically segment the hippocampus

areas using probabilistic and anatomical methods. ROI

based AD diagnosis is simple in nature. It may efficiently

detect AD patients when tissue loss in the brain is signifi-

cant. However, ROI based AD diagnosis can fail when tis-

sue loss in the brain is small. Hence, a new brain evaluation

methodology different from ROI needs to be developed.

A suitable evaluation methodology based on MRI has

been invented by Ashburner and Friston [13]. They pro-

posed whole brain morphometric evaluation for accurate

AD detection. It is efficient even when tissues loss is rel-

atively small. Their brain morphometric evaluation can

identify and measure modification of tissue volume in

individual brains or between brains of AD patient and

normal person. Brain morphometric evaluation will cre-

ate a set of relevant morphometric features for accurate

AD diagnosis. The extracted morphometric features or

voxels represent probabilities of the gray and white mat-

ters as well as cerebrospinal fluid tissues. Kloppel et al.

[6] and Davatzikos et al. [7] have trained Support Vector

Machine (SVM) classifiers for AD diagnosis using a set

of morphometric features. The proposed iSBGA-ELM

(improved sample balanced genetic algorithm and

Extreme Learning Machine) of this study utilizes a set of

morphometric features to build an AD classifier and pro-

cess experiments.

Mahanand et al. [14] have utilized MRI from the pub-

lic Open Access Series of Imaging Studies (OASIS) [15]

database to build a set of 5,788 features extracted using

the voxel-based morphometry (VBM) approach. They

reduced the set of features using Principal Component

Analysis (PCA). The reduced set of features was used to

build an AD classifier using a self-adaptive resource allo-

cation network (SRAN). Experiments with 30 normal

persons and 30 AD patients from the OASIS database

clearly indicate that discovery of a reduced set of features

is sufficient for accurate AD diagnosis [14].

Although SVM is a popular and efficient machine

learning tool for solving various classification problems,

including the AD classification problem [6, 7], the train-

ing phase of SVM is computationally extensive. It usu-

ally needs significant time to build a classifier with high

classification accuracy. Hence, a new machine learning

technique with acceptable classification accuracy with a

fast training phase is needed.

Most of the set of morphometric features extracted

from MRI of OASIS data are redundant for analysis.

Thus, direct use of the complete set of extracted morpho-

metric features to build an AD classifier does not guaran-

tee high classification performance. Hence, a search for a

reduced set of voxels (or features) to create an AD classi-

fier with better classification accuracy is needed.

The search for a reduced set of features with promising

properties is one of the most common optimization prob-

lems in many research areas of science. Saraswathi et al.

[16] have searched for a reduced set of genes from popu-

lar Global Cancer Map (GCM) to build a cancer diagno-

sis approach using integer coded genetic algorithm and

particle swarm optimization coupled with Extreme

Learning Machine (ICGA-PSO-ELM). This method has

a serious drawback; the number of genes has to be

assigned manually. The cited cancer classifier detects 14

types of cancer with high classification accuracy [16].  In

comparison, Sachnev et al. [17] have used a binary coded

genetic algorithm to search for an optimal set of genes

from the GCM database. They used about 52 discovered

biomarkers from a set of 92 chosen genes to build a can-

cer classifier. 

An efficient AD diagnosis approach based on the

iSBGA-ELM is proposed in this paper. The proposed

iSBGA is a completely automatic approach for searching

for a robust set of voxels and building a classifier for

accurate AD diagnosis. The iSBGA uses two crossovers

designed specifically for data from the OASIS database
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(namely a regular sample balanced crossover and an

irregular sample balanced crossover) and sample bal-

anced mutation to create a basis for iSBGA. A reduced

set of robust voxels is then used to train an AD classifier

based on the ELM. The ELM classifier with maximum

classification accuracy is our final AD diagnosis

approach. The reduced set of robust voxels which creates

the ELM classifier with the highest accuracy is then used

to discover biomarkers responsible for AD. 

This paper is organized as follows. The OASIS data-

base is presented in Section II. The framework of the pro-

posed iSBGA-ELM is presented in Section III in detail.

Experimental results are presented in Section IV. Section

V concludes the paper.

II. OASIS

The publicly available OASIS database [15] is a famous

database of MRI scans for AD research. OASIS contains

MRI from two sets of data (218 people from 18 to 59

years old, and 198 people from 60 to 96 years old). The

second set of data (198 people) was used in this paper for

analysis. Of the 198 people, 98 are normal people without

AD. The Clinical Dementia Rating (CDR) of the 98

patients is 0; whereas the remaining 100 are AD patients,

including 70 with very mild AD (CDR = 0.5) and 28 with

mild AD (CDR = 1). 

The MRIs in the OASIS database were created using a

Siemens 1.5-T vision scanner in a single imaging session.

T1-weighted 3D MPRAGE (magnetization-prepared rapid

acquisition gradient echo) datasets of the whole brain

were acquired. The acquired volumes had 128 sagittal

1.25 mm-thick slices without gaps and a pixel resolution

of 256×256 (1×1 mm). Finally, brain morphometric eval-

uation was used to extract a set of 19,879 voxels (fea-

tures) from the MRIs of the OASIS database.

The AD classification problem considered here was a

binary classification problem with 19,879 features and

198 samples (100 AD patients and 98 normal people).

The proposed iSBGA-ELM processed the presented

OASIS data and built an efficient AD classifier. 

Detailed explanation of the proposed iSBGA-ELM is

presented below. 

III. PROPOSED iSBGA-ELM APPROACH FOR
AD DIAGNOSIS

The proposed iSBGA-ELM utilizes features extracted

from MRIs of the OASIS database to create an accurate

AD diagnosis approach. The proposed iSBGA-ELM con-

tained two major steps: Voxels’ selection and AD classi-

fication (see Fig. 1).

The iSBGA-ELM started by processing the MRIs (see

Voxels’ selection procedure in Fig. 1). Each MRI was

converted into a set of 19,879 voxels using brain morpho-

metric evaluation. The Voxels’ selection procedure initi-

ated a search for a reduced set of voxels based on the

proposed iSBGA. Each reduced set of voxels was then

used to build an AD classifier using the ELM. 

In the proposed method, combining the iSBGA and the

ELM created an efficient unified framework. The effi-

ciency of the created ELM classifier was mostly depen-

dent on the set of reduced voxels chosen by iSBGA.

Recent AD research has focused on discovering sets of

voxels (or biomarkers) which probably have some

responsibility for AD. It was discovered that the subsets

of voxels which created AD classifiers with accuracies

close to the maximum were slightly different from the set

of known biomarkers. Thus, slight modifications in the

set of reduced voxels chosen by iSBGA may or may not

improve the accuracy of AD classification. Sets of voxels

can be modified to find improvements. They can be mod-

ified again and again until no further improvement could

be reached. Such an iterative strategy is the basis of the

genetic algorithm. 

A. Improved Sample Balanced Genetic Algorithm

The proposed iSBGA is a modification of well-known

genetic algorithm (GA) adapted for searching for the

reduced set of voxels most suitable to create an AD clas-

sifier with maximum classification accuracy.

The GA is a famous optimization tool for solving com-

plex optimization problems in many areas of science and

engineering. GA exploits self-adaptive gene recombina-

tion mechanisms from nature. In GA, each optimization

problem is specified by the set of chromosomes. Manipu-

lations with chromosomes extracted from an optimization

problem helps GA to search for an optimal solution. The

iSBGA proposed here uses a string of binary coefficients

as a set of meaningful chromosomes.

String of binary coefficients: A set of voxels from

OASIS database has to be transformed into a set of rele-

vant chromosomes. Each chromosome is a critical value

for a given optimization problem. The set of extracted

chromosomes builds a solution. A fitness function then

uses those parameters to calculate a numerical measure or

fitness value which is then used to evaluate each solution.

In the proposed AD diagnosis approach, each voxel

Fig. 1. Framework of the proposed Alzheimer disease (AD)
diagnosis based on iSBGA-ELM.
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from the OASIS database represents a chromosome in the

proposed GA framework. The OASIS database contains

19,879 voxels. Thus, each solution for the AD classifica-

tion problem contains 19,879 chromosomes. The proposed

iSBGA searches for a reduced set of voxels/chromo-

somes from the 19,879 voxels/chromosomes available. In

this research, each chromosome determines the appear-

ance status of a corresponding voxel. According to the

chromosome value, each voxel can be either picked or

not picked in the reduced set of voxels. Thus, the solution

from the proposed iSBGA is a set of values: pick/NOT-

pick, or “true”/“false”, or in binary “1”/“0” (see Fig. 2).

In the proposed method, binary “1” links to chosen vox-

els while binary “0” links to skipped voxels. Finally, the

string of 19,879 binary coefficients (the binary solution)

builds a reduced set of voxels for further analysis (see

Fig. 2).

The proposed iSBGA creates new binary solutions by

using three genetic operators: regular sample balanced

crossover, irregular sample balanced crossover, and sam-

ple balanced mutation.

1) Genetic Operators

GA uses crossover and mutation to create new solu-

tions (see Fig. 3). Genetic operators manipulate chromo-

somes of given optimization problem in a similar way to

chromosome exchange mechanism from nature. Cross-

over creates a new genome by exchanging genetic mate-

rials from two input sources (genomes). The created

genome may contain properties from both input sources.

Such genetic recombination is chaotic and unpredictable

in nature. Crossover achieves an exchange of properties

between the inputs and outputs. Such properties may be

either enhanced or degraded. Mutation modifies genes

randomly and usually causes significant property degra-

dation. Sometimes mutations can create new properties

not existing in the input genomes. 

Genetic operators in the GA process chromosome

exchange between input sources similar to crossover and

mutation found in nature. GA crossover recombines

chromosomes from two randomly chosen solutions and

builds a new solution. GA crossover always follows a

fixed strategy to build new solutions. 

The efficiency of the GA depends on problem specifi-

cation, the efficiency of the chosen genetic operators, and

GA settings. Problem specification deals with finding a

proper way to transform a given optimization problem

into the set of relevant chromosomes. A wrong choice of

problem specification can lead to incorrect work and fail-

ure of the whole GA. The efficiency of the chosen

genetic operators mostly depends on the given optimiza-

tion problem and data. Different optimization problems

may need different crossover and mutation methods or

their combination. The GA settings affect the main proce-

dures of GA. They may cause various problems. Incor-

rect settings can damage the convergence of the GA,

create in balance between populations, and finally cause

the GA to fail.

The proper choice of the crossover for GA is a big

challenge. Wrong choice significantly damages the gen-

eralization ability of the GA. The concept of hybrid

crossovers may solve such problem. The hybrid cross-

over provides a choice from several different crossovers

in a pool. A pool may contain a few well-known cross-

overs or a few crossovers with novel design. It may even

contain special crossovers. The hybrid crossover ran-

domly picks one crossover from the pool and processes it

to generate a new solution. Thus, the final set of solutions

is obtained by using all crossovers listed in the pool.

Hybrid crossovers are efficient if the optimization prob-

lem is relatively new and the proper crossover is difficult

to choose. Sometimes a hybrid crossover is useful when a

single crossover does not guarantee efficient search.

Therefor, a combination of a few crossovers is needed.

Search for an optimal set of voxels for the AD classifi-

cation problem using GA based on several existing cross-

overs including hybrid crossovers failed. Hence, a new

crossover or set of crossovers designed specifically for

the AD classification problem using the GA framework is

needed.

Fig. 2. Binary solution for Alzheimer disease (AD) diagnosis
based on iSBGA-ELM (improved sample balanced genetic
algorithm and Extreme Learning Machine). Fig. 3. Regular samples balanced crossover. 
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In this paper, two new crossovers and one mutation

designed specifically for GA focused on solving the AD

classification problem are presented. Regular sample bal-

anced crossover, irregular sample balanced crossover,

and sample balanced mutation are presented in this paper.

GA based on well-known crossovers failed due to prob-

lem specification based on the binary string with 19,879

coefficients for each given AD classification problem.

Each binary solution contains 19,879 binary coefficients.

However, the number of binary coefficients equal to “1”

is always relatively small. Each binary solution contains

on average 20-200 binary coefficients equal to “1”, while

the rest of the coefficients are “0”. According to the prob-

lem specification, only binary coefficients “1” are mean-

ingful in defining the efficiency of GA. All examined

crossovers significantly modified the number of binary

coefficients “1” in the new solution compared to the

number of coefficients “1” in input solutions, which

caused significant performance loss for AD classifica-

tion. In the worst case scenario, crossovers might create

solutions with all zeros, which means there are no chosen

voxels to build a classifier. This case is unacceptable.

Hence, the new regular sample balanced crossover, irreg-

ular sample balanced crossover, and sample balanced

mutation are proposed to handle this challenge.

Regular samples balanced crossover manages the

challenge by controlling a number of binary coefficients

“1” in a new solution compared to the number of binary

coefficients “1” in the input solutions. Regular samples

balanced crossover is displayed in Fig. 3. 

The proposed regular samples balanced crossover

exchanges chromosomes from “solution #1” and “solu-

tion #2” to build a “new solution” (see Fig. 3). Regular

samples balanced crossover keeps binary coefficients “1”

located in both input solutions and randomly picks binary

coefficients “1” different in both input solutions. The pro-

posed regular samples balanced crossover collects loca-

tions of the binary coefficients “1” in both input solutions

(see “indices #1” and “indices #2” in Fig. 3). Then the

extracted indices are divided into the set of “different

indices” and “same indices”. “Same indices” are directly

moved to the set of “new indices” which creates a “New

solution”. “Different indices” are divided randomly by

“Random choice” according a random parameter sr. Selected

indices are then unified with “same indices” to build the

“new solution”. Random parameter sr in “Random choice”

is chosen in the range of 0.3–0.7. The random parameter

is randomly generated every time GA calls for a crossover.

Fig. 3 presents an example of the proposed regular

samples balanced crossover. In the given example, two

input solutions (“solution #1” and “solution #2”) are

given. The random parameter sr is equal to 0.6. Binary

coefficients “1” are located in the positions of {1, 3, 5, 7,

10} and {1, 2, 7, 8, 10} of “solution #1” and “solution

#2”, respectively (see “index #1” and “index #2”). Then,

extracted indices are divided into “same indices” {1, 3,

7} and “different indices” {2, 5, 8, 10, 11}. “Random

choice” randomly picks  indices from “different

indices”, where L is the number of indices in the set “dif-

ferent indices”. Then, . “Random

choice” picks indices {2, 8, 10}. Then, “new indices” {1,

2, 7, 8, 10} unify the “same indices” {1, 3, 7} and the

indices chosen by “Random choice” {2, 8, 10}. Finally,

“new indices” create “new solution” (see Fig. 3). 

The proposed regular sample balanced crossover keeps

the balance of the binary coefficients “1” between input

and output solutions and efficiently processes any binary

solutions for the AD classification problem. If the num-

ber of common binary coefficients “1” from input solu-

tions is relatively small, then the size of the set “same

indices” is small or even 0 (when there are no same indi-

ces in the input solutions). The new solution is created

mostly from “different indices” picked randomly. In this

case, the new solution and input solutions have the maxi-

mum possible difference. Such solutions may either sig-

nificantly degrade or improve the properties. If the

number of common binary coefficients from input solu-

tions is significant, then most of the indices from both

input solutions belong to the “same indices”. In this case,

new solution is mostly created from the “same indices”.

Thus, the proposed regular samples balanced crossover

balances GA in various scenarios. In the beginning, GA

manages solutions generated randomly and input solu-

tions have a small number of binary “1” in common. New

solutions are then created from “different indices”, simi-

lar to a chaotic search. Near the end, GA should have

already identified a set of common locations of binary

“1”. Thus, most of the indices from input solutions will

belong to the “same indices” set. New solutions are only

slightly modified compared to input solutions, similar to

a search for an optimal solution.

Irregular samples balanced crossover is a modified

version of the regular sample balanced crossover pre-

sented above. Irregular samples balanced crossover cre-

L sr⋅

L sr⋅ 5 0.6⋅ 3= =

Fig. 4. Irregular samples balanced crossover. 
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ates new solution from randomly picked “different

indices” and “same indices” (see Fig. 4). The split param-

eter for “Split different indices” is sdif in the range of 0.3–

0.7. The split parameter “Split same indices” is ssame in

the range of 0.8–1.0. Split parameters sdif and ssame are

randomly generated every time when GA calls for a

crossover.

In the example presented in Fig. 4, sdif and ssame are

0.6 and 0.8, respectively. The irregular samples

balanced crossover presented in Fig. 4 randomly picks

 from “different indices” and

 from “same indices”. Thus,

“new index” {1, 2, 7, 8, 10} unifies 3 indices from “dif-

ferent indices” {2, 8, 10} and 2 indices from “same indi-

ces” {1, 7}.

Irregular samples balanced crossover is needed when

GA has almost finished the search. A significant portion

of the generated solutions contain the same indices. In a

case when “solution #1” and “solution #2” are the same,

regular sample balanced crossover generates new solu-

tion exactly the same as “solution #1” and “solution #2”.

Irregular sample balanced crossover does not have this

drawback. In the previous scenario, irregular sample bal-

anced crossover generates new solution different from

“solution #1” and “solution #2”.

In this research, the concept of hybrid crossover is

implemented. The hybrid crossover randomly picks

either regular sample balanced crossover or irregular

sample balanced crossover. Regular sample balanced

crossover is efficient except when “solution #1” and

“solution #2” are the same. Irregular sample balanced

crossover efficiently handles cases when “solution #1”

and “solution #2” are the same. It does not degrade GA

performance significantly otherwise. 

The proposed samples balanced mutation randomly

modifies binary coefficients from input solution so that

the number of binary “1” in new solution and the input

solution stays the same. 

Fitness function is a special procedure to evaluate

solutions in GA. The fitness function calculates a fitness

value which gives a numerical estimate of the importance

of each solution in the GA framework. Solutions with

maximum or minimum fitness value (depending on what

kind of optimal solution is the target for the given optimi-

zation problem) are optimal or suboptimal solutions for

the given problem. Fitness values are used to rank the

examined solutions in the GA framework. In GA, all

important solutions with fitness values closer to the max-

ima (or minima) are used to generate slightly different

solutions with better fitness values. Lower ranked solu-

tions are discarded. 

In the proposed iSBGA-ELM framework, the fitness

function is an AD classifier based on the ELM. The AD

classifier is trained using a reduced set of voxels speci-

fied by the current string of binary coefficients or solu-

tion. The given set of voxels is used to train 10 ELM

classifiers using random parameters. The average testing

accuracy of the 10 created ELM classifiers is a fitness

value. 

The selection procedure sorts given solutions accord-

ing to fitness values and selects solutions with promising

fitness values for further processing in GA framework.

The selection procedure assigns a selection probability to

each solution according to its fitness value. Thus, a solu-

tion with a higher rank has a better chance to survive and

generate another solution in GA. Solutions with lower

ranks are mostly ignored. 

In the proposed iSBGA-ELM, the geometric ranking

method [19] is used as a selection procedure. The method

sorts all given solutions in descending order according to

fitness value and assigns a probability to each solution Pj

as follows: 

(1)

where 

 is the selection parameter, rj is a rank of j-th solution

in the partially ordered set, and N is the population size.

The detailed explanation of the geometric ranking method

is given previously [18]. In this research, the parameter

q = 10−3 is chosen.

Termination criteria: The GA stops when no better

result can be produced during the last 50 generations. 

iSBGA-ELM framework: iSBGA-ELM processes the

initialization step and several generations (see Fig. 5).

Each generation contains selection procedure, a set of

genetic operators, and a fitness function. The proposed

iSBGA starts from the initialization step. A total of 200

binary solutions are generated randomly. Each solution is

processed by the fitness function and its fitness value is

then calculated. Each solution is a set of 19,879 binary

coefficients. The number of binary “1” in each initial

solution is limited to the range of 20–200. Each initial

solution then builds a reduced set of voxels from the

OASIS database (see Fig. 2). The reduced set of voxels is

used to train 10 AD classifiers based on the ELM. The

created ELM classifiers are fitness functions and the

average overall testing accuracy is the fitness value.

Thus, a combination of 200 initial binary solutions

 and corresponding fitness values

 build the initial population of the GA,

Ldif sdif⋅ 5 0.6⋅ 3= =

Lsame ssame⋅ 3 0.8⋅ 2= =

Pj q′ 1 q–( )
rj 1–

=

q′
q

1 1 q–( )N–
------------------------=

q′

F1
0
, F2

0
, F3

0
, ..., F200

0{ }
f1
0
, f2

0
, f3

0
, ..., f200

0{ }
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F0 (see Fig. 5). Each n-th generation in iSBGA starts

from the selection procedure based on the geometric

ranking method. The selection procedure picks solutions

from the previous population Fn−1 according to the

assigned probabilities. Pairs of selected binary solutions

are processed by genetic operators. The hybrid crossover

based on regular sample balanced crossover and irregu-

lar sample balanced crossover together with the sample

balanced mutation then creates a set of new binary solu-

tions, . Similar to the initialization

step, each binary solution  is evaluated by a fitness

function and its fitness value  is then calculated. The

combination of all binary solutions 

and corresponding fitness values  builds

n-th population Fn. In each generation, crossover creates

70% or 140 new solutions, and mutation creates the

remaining 30% or 60 new solutions. GA processes gener-

ations until new generations no longer produce better

results during the last 50 generations. 

B. Extreme Learning Machine

The ELM is a machine learning technique with extremely

fast learning phase and good generalization performance.

Technically, ELM is a single hidden layer feed-forward

neural network where input weights and bias of the hid-

den neurons are randomly assigned while output weights

are estimated analytically [19].

In the proposed AD diagnosis approach, an ELM is used

to solve the AD classification problem. The AD classifi-

cation problem is a binary classification problem with

198 samples (100 AD patients and 98 normal persons)

and 19,879-dimensional feature space. In the proposed

AD diagnosis approach, iSBGA significantly reduces the

feature space and simplifies the AD classifiers based on

the ELM.

The framework to build an ELM classifier controlled

by Gaussian hidden neurons for the AD classification

problem is presented below.

Data: Training and testing sets are created using given

binary solutions and the OASIS database. First, 198 sam-

ples (100 AD, 98 normal) from OASIS are randomly

divided into a training set (70 AD, 68 normal) and testing

set (30 AD, 30 normal). The 19,879 features from the

OASIS database are reduced by iSBGA to a set of m fea-

tures. Then, the training set contains 138 samples, i.e.,

, …, , …,  testing set

contains 60 samples, i.e., , …, ,

…, , where Xtest and Xtra are m-dimensional

feature vector and  or {AD patient, normal

person} in a class label. The coded class label yt
 is calcu-

lated as follows:

(2)

Therefore,  and ytest ={

..., }. They are vectors with coded class labels for

testing and training, respectively. 

The framework of the ELM is summarized as follows:

Training phase:

1) Assign the number of hidden neurons L.

2) Generate sets of input weights Am×L and width (bias)

bL×1 of hidden Gaussian neurons randomly.

3) Compute the hidden layer output matrix G:

(3)

where N is a number of samples (N = 138 for train-

ing and N = 60 for testing),  is a response of j-th

hidden neuron for t-th sample calculated as follows:

(4)

4) Compute output weights β:

β = ytra·G
† (5)

where † is a Moore-Penrose generalized inverse.

5) Compute predicted coded class labels : 
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Fig. 5. Framework of the proposed iSBGA-ELM (improved sample
balanced genetic algorithm and Extreme Learning Machine).
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 = β·G (6)

6) Define the predicted class label as follows:

Testing phase:

1) Compute the hidden layer output matrix G for test-

ing (N = 60) using Eq. (3), where

2) Compute predicted coded class labels :

 = β·G

3) Define predicted class label for testing as follows:

Accuracy of any ELM classifier mostly depends on the

randomly chosen weights and hidden neuron bias. In the

proposed iSBGA-ELM, each binary solution is used to

create 10 ELM classifiers with randomly generated

weights and bias. The fitness value is an average of the

10 overall testing accuracies of the ELM classifiers. This

10-fold validation balances the generalization perfor-

mance of the ELM but neglects the effects of randomness.

IV. EXPERIMENTAL RESULTS 

Experiments with the proposed iSBGA-ELM included

training the AD classifier using the ELM on a set of 138

samples (70 AD patients, 68 normal persons) and testing

using 60 samples (30 Ad patients, 30 normal persons).

Experiments also included searching for a reduced set of

voxels from the OASIS database with maximum fitness

value, i.e., maximum overall testing accuracy of the cre-

ated ELM classifier.

The proposed iSBGA-ELM processed 122 generations

until the termination criteria were satisfied, i.e., no improve-

ment since the 72th generation. The iSBGA-ELM found a

set of 38 voxels which were used to create the ELM clas-

sifier for AD diagnosis. The best ELM classifier from the

set of 10 created ELM classifiers from the 10-fold valida-

tion showed 93% overall training accuracy, while the

average showed 87% of overall testing accuracy. 

A. Comparison with Existing Methods

Comparison with existing techniques should cover

completely automatic AD diagnosis approachs based on

machine learning techniques and the OASIS database.

Direct comparison is possible if the examined methods

also use a complete set of samples (198 patients) from the

OASIS database and the complete set of 19,879 voxels.

Unfortunately, researchers mostly used a manually

reduced set of voxels and samples. Thus, direct compari-

son was impossible. 

 Kloppel et al. [6] have used 4 sets of patients with AD

and healthy controls for cross database analysis. Each set

could unify MRI that was created using one scanner with

fixed settings. They used the SVM to create an AD clas-

sifier and found that the classification accuracy was about

81%–96% udner different scenarios. 

Davatzikos et al. [7] have collected MRI from 30 AD

patients and 20 normal persons, extracted morphometric

features, and trained an AD classifier based on the SVM

classifier. They reported a classification accuracy of

about 90%. 

Mahanand et al. [14] have used a set of MRI from 30

AD patients and 30 normal from OASIS database and

extracted a set of 5,788 features using the VBM approach.

A reduced set of 20 features was used to build an AD

classifier using a SRAN. They reported that the overall

testing accuracy was about 91%.

As mentioned earlier, direct comparison was impossi-

ble for all examined existing techniques. Besides, the

iSBGA-ELM proposed here used a complete set of sam-

ples and voxels for accurate AD diagnosis. Experiments

with a complete set of samples and voxels are more chal-

lenging. It increases the complexity of the classifiers and

reduces the accuracy. Thus, the proposed AD diagnosis

approach based on iSBGA-ELM was used to solve the

more complex classification problem. It showed accept-

able classification accuracy. 

V. CONCLUSION 

In this paper, an iSBGA-ELM was used to create an

efficient AD diagnosis approach. Hybrid crossover based

on the proposed regular sample balanced crossover and

irregular sample balanced crossover maintained the con-

vergence of the proposed iSBGA-ELM and obtained a

reduced set of voxels with the highest fitness value. 

Our experimental results clearly indicated that the pro-

posed approach based on iSBGA-ELM was efficient for

AD diagnosis. The proposed method showed an overall

testing accuracy of 87% in tests of all samples available

in the OASIS database. 
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ŷtest
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