
Copyright  2017.  The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677   eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 11, No. 2, June 2017, pp. 58-68

Warp-Based Load/Store Reordering to Improve GPU Time
Predictability
Yijie Huangfu and Wei Zhang*

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

huangfuy2@vcu.edu, wzhang4@vcu.edu

Abstract 
While graphics processing units (GPUs) can be used to improve the performance of real-time embedded applications that
require high throughput, it is challenging to estimate the worst-case execution time (WCET) of GPU programs, because
modern GPUs are designed for improving the average-case performance rather than time predictability. In this paper, a
reordering framework is proposed to regulate the access to the GPU data cache, which helps to improve the accuracy of
the estimation of GPU L1 data cache miss rate with low performance overhead. Also, with the improved cache miss rate
estimation, tighter WCET estimations can be achieved for GPU programs.
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I. INTRODUCTION

Graphics processing units (GPUs) are now broadly
used as accelerators for compute- and/or data-intensive
applications. Especially, for applications that can be par-
allelized into a massive number of threads with few
dependencies among one another, GPUs are the ideal
accelerators to boost the performance, due to their single-
instruction multiple-thread (SIMT) execution model and
the large number of computing units/cores that execute
the threads simultaneously [1]. Such kinds of applica-
tions are also common in embedded systems, such as the
physics simulations [2] and human pose recognition [3],
etc. Therefore, there are more GPUs and GPU systems
targeting embedded applications, e.g., the Tegra proces-
sors [4] and the DRIVE PX2 [5] platform.

Applications in hard real-time systems, like traffic sign
recognition and autonomous navigation, also need to pro-
cess a massive amount of data, where GPUs can be a

promising accelerator, if we can safely and tightly esti-
mate the worst-case execution time (WCET) of these pro-
grams on GPUs. However, many advanced GPU
architectural features, such as dynamic scheduling, out-
of-order execution, etc., harm the time predictability,
though they benefit the average-case performance con-
siderably. Specifically, the cache memory, whose behav-
ior is dependent on runtime memory access history and is
hard to predict statically, is one of the major sources that
harm time predictability. Due to the large number of
threads and the dynamic warp scheduling in GPUs, the
cache behavior is not just dependent on the runtime mem-
ory access history, but also on the scheduling and execu-
tion orders of the threads, warps and the instructions in
each thread. This makes the WCET analysis for GPU
caches much more complicated and challenging. Modern
GPUs use all kinds of cache memory to improve the aver-
age-case performance. Therefore, it is necessary to
improve the time predictability of GPU cache memory to
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enable GPU real-time computing.
In this study, we build a framework of compiler-based

static analysis and architectural extensions to enable tight
and accurate miss rate analysis for GPU L1 data caches,
while allowing the dynamic warp scheduling, which is
critical for performance. Experiment results reveal that
the proposed framework can tightly estimate the miss rate
of GPU L1 data cache, while achieving better performance
than a pure round- robin scheduling. By providing the
estimated miss rate information to our GPU WCET ana-
lyzer, tighter WCET estimations can be achieved as well.

The rest of the paper is organized as follows. The back-
ground information about GPU, GPU memory architec-
ture and the dynamic scheduling and execution is
introduced in Section II. Section III describes the pro-
posed reordering framework. Section IV describes the
WCET estimator which can benefit from knowing the
estimated L1 data cache miss rate. The evaluation meth-
odology and experimental results are presented in Section
V. Section VI reviews the related work and we make a
conclusion in Section VII.

II. GPU ARCHITECTURE AND DYNAMIC
BEHAVIORS

A. GPU Architecture

The basic architecture of an NVIDIA GPU—NVIDIA
CUDA (Compute Unified Device Architecture) [6] ter-
minologies are used in this paper, though our method can
also be applied to other GPUs—is shown in Fig. 1. On a
GPU chip, streaming multiprocessors (SMs) share a uni-
fied L2 cache and the global memory. Inside each SM,
there are L1 data, instruction, constant and texture
caches, while, in this paper, we focus on the L1 data
cache, which is a major obstacle for time predictability.

GPU kernels are the general purpose programs that run
on GPUs and can be written in CUDA C [6] or OpenCL
[7]. CPUs set up the kernel configurations and launch the
kernel. The following code shows how a CPU configures
and launches a CUDA GPU kernel. An integer and a float

pointer are passed to the kernel K1 by the variables m and
A. The gridDim and blockDim set the kernel to be with
256 (16 × 16 × 1) threads in one kernel block and 64 (8 ×
4 × 2) kernel blocks, i.e., 16384 (256 × 64) threads in
total.

. . .
in t m;
f loat *A ;
. . .
dim3 gridDim ( 8 , 4, 2 ) ;
dim3 blockDim ( 16 ,16 , 1 ) ;
K1<<<gridDim , blockDim>>>(m, A ) ;
. . .

In the execution of the kernel, each thread has its own
thread ID and block ID. A warp, which contains 32
threads with consecutive IDs in the same kernel block, is
the basic scheduling unit in kernel executions. In this
example, there are 8 warps in one block and 512 warps in
the kernel. Fundamentally, the term SIMT here means
threads in the same warp move forward in a locked-step
fashion; therefore, instructions in CUDA GPU kernel are
also called warp instructions.

B. GPU Dynamic Behaviors

1) Dynamic Warp Scheduling

Whenever a warp instruction cannot be issued, e.g., the
dependency is not met or the needed resource is unavail-
able, the warp scheduler will issue other active warps.
Therefore, for the same warp instruction in, for example,
3 warps, the issuing order can be any out of the 6 possible
combinations.

2) Out-of-Order Execution

The execution order of instructions in a warp does not
always follow the order of the instructions in the kernel
program, because, if dependencies are met and the
required resources are available, an instruction can be
executed immediately. Therefore, a trailing instruction can
be executed earlier. For example, even if instruction I1 is
behind I0, the execution of I1 can be earlier than I0.

Things become more complicated, when dynamic
scheduling and out-of-order execution are combined. An
example with 3 warps and 2 instructions is shown in
Fig. 2. Although the figure only shows 2 possible orders,
the total number of possible execution orders of 3 warps
and 2 instructions can be as many as 6! (or 720).

Fig. 1. Basic NVIDIA GPU architecture.

Fig. 2. Example of possible execution orders of warp instructions.
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3) Independent Execution among Warps

Warps execute independently to each other if no spe-
cial synchronization instruction is used. There is no syn-
chronization at the boundaries of basic blocks by default.
In the example shown in Fig. 3, W0 and W2 have differ-
ent execution path than BB0. A possible scenario example
is that W1 is in BB3, when W0 and W2 are still in BB1.

III. GPU L1 DATA CACHE ACCESS REORDERING
FRAMEWORK

A. Challenges of GPU Cache Timing Analysis

Abstract interpretation is a technique that has been suc-
cessfully used in cache timing analysis for CPUs [8]. A
basic assumption of this analysis method is that, for each
basic block, the memory access sequences to the cache
can be statically derived from the control flow graph.
However, this assumption cannot be guaranteed at all in
GPUs due to the behavior of GPUs.

For CPUs, a range of memory space can be used for a
data access whose address is unpredictable in static tim-
ing analysis. However, this is unaffordable for GPU ker-
nels, because the large number of threads can easily have
a huge number of memory accesses, which can lead to
overly pessimistic and useless WCET estimations. There-
fore, in this paper we assume the data access to the L1
data cache and the branch conditions are predictable,
which is common in GPU kernels that access data and
operate based on the thread and block IDs (There are
some programming guidelines for hard real-time soft-
ware running on CPUs, a similar guideline for develop-
ing real-time GPU kernels may be needed to ensure the
compliance with this assumption).

B. Issues of Regulating the Warp Scheduling
Orders

By reducing the dynamic behavior, e.g., enforcing a

pure round-robin warp scheduling policy, the time pre-
dictability of GPUs can be improved, which, however,
comes with considerable performance overhead, as shown
in Section V. But, in most cases, even a pure round-robin
warp scheduling policy still cannot guarantee the order of
different warp instructions in different basic blocks, due
to the independent execution of different warps, as
explained in Section II-B-3. Moreover, regulating the
warp execution order does not change the out-of-order
execution of instructions in a certain warp, which can still
impact the predictability of GPU data caches. So, the goal
of this paper is to have predictable cache behavior while
minimizing the constraints on the dynamic GPU behavior
and the performance overhead.

C. The Reordering Framework

The proposed reordering framework has three major
components, which are a CUDA kernel analyzer, a GPU
L1 data cache miss rate estimator, and an architectural
extension for warp-based load/store reordering. The ker-
nel analyzer takes in a CUDA kernel and outputs the
reordering configuration and the information of memory
access of the kernel. The miss rate estimator uses the
information from the analyzer and gives the estimation of
the L1 data cache miss rate of the kernel. The reordering
extension in the GPU regulates memory traffic to L1 data
cache based on the reordering configuration. The details
of these three parts, as shown in Fig. 4, are discussed in
the following subsections.

D. Kernel Analyzer

The kernel analyzer, whose pseudo code is shown in
Algorithm 1, uses the PTX code [9], the kernel input values,
and the hierarchy configuration of the kernel to generate the
desired L1 data cache access pattern and the memory
access addresses of the global load/store instructions in the
kernel. With the information of the kernel collected, the
analyzer generates the control flow graph and the infor-
mation about global load/store instructions in the kernel. For
every warp in each kernel block, the analyzer parses the
kernel with the information of the warp (block and warp
IDs). Algorithm 2 describes the pseudo code of the parser.

Fig. 3. Example of warp and basic block relations.

Fig. 4. General structure of the reordering framework.
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The KernelParser starts with the first instruction of the
kernel then follows the control flow graph. For an arith-
metic instruction, the value of the target operand is updated.
For a global load/store instruction, several actions are
carried out. The parser first coalesces (Algorithm 3) all the
addresses used by the threads in the warp to form a list of
addresses of this warp instruction, which will be used later
for the worst-case L1 data cache miss rate estimation as the
memory access addresses from this warp instruction. Then,
the corresponding value in the WarpAccInfo list will be set
as true to indicate that this load/store instruction will access

the L1 data cache. The parser finds the next basic block
based on the control flow graph, if the current instruction
is a branch at the end of the current basic block. The fol-
lowing example explains how the analyzer works.

. entry  _example (

. param  . u64  _ _cudaparm_input_cuda)
{
. reg  . u32  %r<29>;
. reg  . u64  %rd<33>;
. reg  . f32  %f <20>;
. reg  . pred  %p<6>;
$Lbegin :

ld . param. u64 %rd5 ,  [_ _cudaparm_in
put_cuda ] ;
cvt . s32 . u32 %r3 ,  %t i d . x ;
mul . wide . s32 %rd3 ,  %r3 , 3 2 ;
add . u64 %rd8 ,  %rd5 , %rd3 ;
cvt . s32 . u32 %r1 ,  %c t a i d . y ;
mov . s32 %r2 ,  0 ;
s e tp . eq . s32 %p1 ,  %r1 , %r2 ;
@!%p1  bra $L1 ;
ld . g lobal  . f32 %f1 ,  [%rd8 +4] ;
bra  $L2 ;

$L1 :
s t  . g lobal  . f32 [%rd8+2048] ,  %f 2 ;

$L2 :
e x i t ;

$Lend :
} // _example$

For example, if the hierarchy of the above kernel is
<<< dim3(1, 2, 1), dim3(16, 4, 1) >>> and the input
value of __cudaparm input cuda is 0, the results of the
analyzer are shown as follows. The analyzer output
shows that the kernel has 2 global load/store instructions.
There are 2 kernel blocks; each has 2 warps. The warps in
the first kernel block execute the first load/store instruc-
tion, while the warps in the second kernel block execute
the second load/store instruction. The list of memory
access addresses and access types are also shown in the
output.

−num_pcs 2
−pc_addrs [ 6 4 , 8 0 ]
−grid [ 1 , 2 , 1 ]
−block [ 1 6 , 4 , 1 ]
Block [ 0 , 0 , 0 ]
Warp0 [ 1 , 0 ]
Warp0 [ [ [ 0 , 128 , 256 , 3 8 4 ] , L] , None ]
Warp1 [ 1 , 0 ]
Warp1 [ [ [ 0 , 128 , 256 , 3 8 4 ] , L] , None ]
Block [ 0 , 1 , 0 ]
Warp0 [ 0 , 1 ]
Warp0 [None , [ [ 2 0 4 8 , 2176 , 2304 , 2 4 3 2 ] , S ] ]
Warp1 [ 0 , 1 ]
Warp1 [None , [ [ 2 0 4 8 , 2176 , 2304 , 2 4 3 2 ] , S ] ]

Algorithm 1 Kernel Analyzer

Algorithm 2 GPU Kernel Parser

Algorithm 3 Addresses Generation for Instruction I and Warp W
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E. Architectural Extension for Warp-Based
Load/Store Reordering

The proposed architectural extension is used to regu-
late the memory access before they go to the L1 data
cache so that the load/store access order can be predict-
able, which thus enables accurate cache timing analysis.
The modification to the default relation between the load/
store unit (LD/ST) and the L1 data cache is shown in
Fig. 5. A channel is added for each active warp 3, and
each channel is a FIFO-like buffer to hold load/store
requests from a warp to the L1 data cache. Besides the
head and tail pointer of a normal FIFO, an extra search
pointer is used to allow the Reordering Unit to search for
the expected memory access in each channel buffer,
which enables the reordering of memory access from the
same warp. The memory access requests from the LD/ST

are sent to a certain channel based on the warp ID (The
warp ID here refers to the dynamic runtime warp ID for a
warp when it is executing the kernel. The mapping
between a runtime warp ID and the index of a warp in a
kernel block can be calculated at runtime when a kernel
block is selected to be active) of that request by the Dis-

tributing Unit.
The reordering happens at two locations in this extension.

First, requests from the same warp are reordered in the
channel for this warp, because instructions from the same
warp can be executed out-of-order. For example, there can
be two load/store instructions I0 and I1 from the same
warp. The memory request from I1 can arrive at the chan-
nel earlier than I0. In such case, the Reordering Unit will
be reordered from I0 to the L1 data cache first to regulate

the access order. Second, the reordering across warps
happens at the interface between the channels and the
Reordering Unit. For instance, in the PTX code example
there are 4 warps in total, which are B0W0, B0W1, B1W0,
and B1W1 that are mapped to the runtime warp IDs based
on Table 1. Then the possible orders of memory requests
before reordering and the order after reordering are
shown in Fig. 6. It should be noted that the reordering is
only applied to the load/store instructions after they are
issued and arrive between LD/ST and L1 data cache. It
does not affect dynamic behavior elsewhere and thus may
not affect the overall performance as much as reordering
all the instructions such as the pure round-robin scheduling.

The analysis results of the kernel analyzer are sent to
the Reordering Unit as the initial reordering configura-
tion. The Reordering Unit always searches for the warp
(channel) with the smallest warp index (in a kernel block
rather than runtime warp ID) and the smallest kernel
block ID that still has the global load/store instruction
with the lowest instruction address. Once the Reordering

Unit gets a memory request from that channel and sends
it to the L1 data cache, it updates the reordering configu-
ration so that it can move on and wait for a different
channel or a different instruction at the same channel.
The access order to the L1 data cache is decided by the
reordering configuration, which comes from the kernel
analyzer. This is how the miss rate estimator can have an
accurate estimation based on the information provided by
the kernel analyzer.

An example is given in Fig. 7 to illustrate how the
reordering works. The initial reordering configuration is
depicted in Fig. 7(a), based on which the Reordering Unit

knows it should wait at the channel for B0W0, which is
CH2. Even if the requests from other warps are in their
channels already, the Reordering Unit keeps waiting at
CH2 until it gets the memory request from that warp and
then sends it to the L1 data cache. After this the reordering
configuration is changed as in Fig. 7(b), based on which

Fig. 5. Warp-based load/store reordering architectural extension.

Table 1. An example of mapping between static block/warp IDs
and runtime warp IDs

Static block/warp ID Runtime warp ID

B0W0 (block 0, warp 0) W2

B0W1 (block 0, warp 1) W3

B1W0 (block 1, warp 0) W0

B1W1 (block 1, warp 1) W1 Fig. 6. An example of memory warp instruction reordering.
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the Reordering Unit knows it should wait at CH3 for B0W1

now. Eventually, the reordering configuration becomes
Fig. 7(c) after the Reordering Unit sends all the memory
requests to the L1 data cache in the predictable order.

Different sequences of the memory access in the above
example are shown in Fig. 8. The access sequence to the
L1 data cache can be arbitrary in the default scheme.
Under the pure round-robin warp scheduling policy, the
order follows the runtime warp ID. With the proposed
reordering framework, the sequence of the accesses is
controlled by the reordering configuration as explained
above. Both the reordering framework and the pure
round-robin scheduling policy can improve the predict-
ability in the sequence of GPU L1 data cache accesses,
compared to the default system. However, the perfor-
mance impacts can be quite different.

A performance difference example of four warps is
shown in Fig. 9. The time points from A to F are as
shown in the figure. Due to the latency introduced by the
reordering extension, the time point for a warp to be
ready in the reordering framework may be later than in
the other two schemes, e.g., C and F. The warp schedul-
ers start with W0. Under the pure round-robin policy, the
next warp is W1, which will be ready at C. But the
dynamic scheduler can choose to schedule other ready
warps, instead of waiting for W1. So, the dynamic sched-
uler has better performance.

F. GPU L1 Data Cache Miss Rate Estimation

For CPUs Abstract Cache State (ACS) is used in the
abstract interpretation method [8] to analyze the content
and behavior of the cache at a certain point in a program.
Fig. 10 illustrates the basic concept of this method; every
basic block has initial and exiting stats, namely ACSi and
ACSe. Upon each memory references in each basic block,
the ACS is updated using a specific cache replacing/
updating policy, e.g., LRU. A basic block with only one
predecessor gets the ACSe of the predecessor as its ACSi.

When there are more than one predecessors, the ACSe of
each of its predecessor is Joined together to form the
ACSi. Depending on whether the analysis is targeting
“always hit” or “always miss”, the Join operation can be
set intersection or set union.

In the CPU cache abstract interpretation, a program
only diverges and converges at the boundaries of basic
blocks, not in between. Different program traces also do
not interfere between each other. However, since warps
execute independently in GPUs, these cannot be guaran-
teed across warps. Putting together the examples in Fig. 3
and Fig. 10, the ACSe(BB0) should be only decided by the
content of BB0 in CPU programs. However, in GPUs,
when W0 and W2 are still in BB0, W1 could be in BB2

Fig. 8. Access orders of different schemes.

Fig. 7. An example of reorder configurations.

Fig. 9. Delays of different schemes.

Fig. 10. An example of abstract interpretation based static
timing analysis.
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already, i.e., the ACSe(BB0) is affected by the content of
BB2. Therefore, the CPU cache abstract interpretation
method cannot be applied to GPU caches directly, because
the boundaries between basic blocks are destroyed by the
independent and dynamic execution of different warps.
With the proposed reordering framework, the boundaries
are restored for global memory requests. For instance,
with the reordering framework, only after all the accesses
from BB0 for all the active warps are done, requests from
BB1 or BB2 can access the L1 data cache. For branches,
access from one path, e.g., BB1, need to be finished
before accesses from another path, e.g., BB2, can access
the L1 data cache. With this regulation, the miss rate esti-
mator uses the information of memory access addresses
from the kernel analyzer (Section III-D) and the schedul-
ing policy (Section III-E) to generate the sequence of
memory access addresses for a kernel. This address
sequence is used by the estimator to update the abstract
cache models with different configurations to estimate
the miss rate. Since the estimator knows how the reorder-
ing framework regulates the access order, it can generate
a considerably accurate estimation.

1) Limitation of the GPU Data Cache Timing Analyzer

Not all types of GPU kernels can be analyzed with the
proposed method. Kernels with input-dependent data ref-
erences, i.e., whether a load/store instruction will execute
depends on statically unpredictable value, currently can-
not be analyzed by this cache timing analyzer. Also, the
proposed framework requires knowing the loop upper
bound statically, which is typical for WCET analysis.

G. Hardware and Performance Overhead of
the Reordering Framework

The channels in the architectural extension are memory
requests buffers; one channel for one active warp. CPUs
store the reordering configuration in the global memory
together with the data needed by the GPU kernel. The
reordering extension gets the information about the active
kernel blocks when they are selected to run. The method
of prefetching can be used to hide the latency of fetching
the reordering information. Compared with sending requests
directly to L1 data cache, reordering can introduce some
performance overhead, which is, however, much less
than that of using pure round-robin scheduling to regulate
the access order, as shown in the evaluation results.

IV. GPU WCET ESTIMATOR

A. Warp Instruction Segment Based WCET
Analysis

Based on the dependencies between instructions, the
PTX code of a GPU kernel can be divided into segments,

each of which has one or more instructions. The depen-
dencies between these instruction segments lead to the fact
that the instructions in one segment cannot be issued until
the instructions in the previous segments, which are the
instructions that write to the register used by the instruc-
tions in the current segment, have finished their execu-
tions and written back the results. Fig. 11 shows an example
of the relations of four warps (W0 to W3), each of which has
three instruction segments. Tij represents the time point
when the GPU can start to issue the instruction segment j of
warp i. LIij stands for the latency of issuing the instruction
segment j of warp i, while LEij represents the latency of
executing the same instruction segment. After initializing
the starting issuing time point of each warp by Eq. (1), the
rest of the time points in this example can be calculated
using Eq. (2), which basically means that the time point
when one instruction segment in a warp can start to issue
depends on the maximal latency between the latency of the
previous instruction segment in the same warp and the
latency of issuing the segments in other warps before the
scheduler gets back to this warp. The time point for the
second segment in W0 to start to issue could be  in the
figure, if LE00 is less than LI10 + LI20 + LI30.

                         

(1)

                         

T ′01

T00 0⇐

Ti0 Ti′0 LIi′0 i 0>( )+⇐

i′ i 1–( )=

Fig. 11. Example of warp instruction segments.
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            (2)

B. Latency Calculation

To use the equations in Section IV-A to estimate the
WCET, the latencies of issuing and executing each type
of instructions should be available. The latency of issuing
instructions in a segment is generally the number of
instructions in that segment, while the executing latency
of a segment depends on the instruction with the longest
latency in the segment. The executing latency of arithme-
tic instructions is usually decided by the latency of the
related function units. But, even without considering the
L1 data cache, the latency of global memory instructions
involves several parts, as shown in Eq. (3). Lbase is the
baseline latency of accessing the global memory. COALmax

represents the maximal number of coalesced memory
requests from one warp instruction. NConflictSM is the num-
ber of SMs that can send requests to the global memory at
the same time (Since the major focus of this paper is on
the reordering framework rather than the WCET estima-
tor, only the meanings of the components of the equations
are given here without detailed descriptions).

When the existence of the L1 data cache is considered,
the latency is calculated as in Eq. (4), in which MRL1D is

the estimated L1 data cache miss rate. As shown in the
experiment results, a tighter WCET estimation can be
achieved by taking the estimated L1 data cache miss rate
into consideration.

L = COALmax + (Lbase + COALmax × NConflictSM) (3)

L = COALmax + MRL1D × (Lbase + COALmax × NConflictSM)

(4)

V. EVALUATION METHODOLOGY AND 
EXPERIMENTAL RESULTS

A. Evaluation Methodology

We use the GPGPU-Sim [10] simulator to implement
and evaluate the proposed reordering framework. The
configuration of the simulator is shown in Table 2. The
default dynamic warp scheduling policy is the loose
round-robin policy. The cache configurations have three
different sizes with the associativity from 4-way to 8-way
and 16-way and the least recently used (LRU) replacing
policy. The benchmarks are chosen from the Rodinia
benchmark suite [11].

B. Experimental Results

1) Performance Results

The normalized performance results in execution
cycles are shown in Fig. 12. The performance results of
three configurations with a 16-kB L1 data cache are nor-
malized to the performance with the default configura-
tion. The dynamic loose round-robin warp scheduling
policy is used in both the default and reordering configu-
rations. This dynamic policy searches for ready warps
based on the order of warp IDs, while the pure round-
robin policy does not move to the next warp until one
instruction is issued for the current warp. Results reveal
that the default configuration has the best average-case
performance, while the reordering configuration has
much less performance overhead compared to the pure
round-robin configuration, 24.4% better on average.

The performance results, which are normalized to the
performance results of the default configuration with 16-
kB L1 data cache, with different L1 data cache sizes with
three configurations are shown in Fig. 13. With different
cache sizes, the reordering framework still has much less

Tij MAX Ti′j LIi′j, Tij′ LIij′ LEij′+ ++( )⇐

i′ i 0==( ) ? N 1–( ) : i 1–( )=

j′ j 1–=

N : Number of Wraps

Table 2. GPGPU-Sim configuration

Number of SMs 15

Number of 32-bit registers per SM 32768

Size of L1 data cache per SM 16/32/64 kB

Size of shared memory per SM 48 kB

L1 data cache block size 128 B

L1 data cache replacing policy LRU

L1 data cache associativity 4/8/16

L2 cache 256 kB

Default warp scheduling policy Loose round-robin

Optional warp scheduling policy Pure round-robin

Number of reordering channels 48

Length of a reordering channel 10

Fig. 12. Normalized performance results with 16 kB L1 data cache.
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performance overhead than the configuration with pure
round-robin policy and a small amount overhead com-
pared to the default configuration.

2) Cache Miss Rate Estimation Results

The normalized GPU L1 data cache miss rate estima-
tion results of a 16 kB cache are shown in Fig. 14. The
estimated miss rate results are normalized to the simu-
lated miss rates with the reordering configuration. With
the support of the reordering extensions and the static
analyzer, the miss rate estimation can be very accurate as
shown in the figure.

Fig. 15 shows the simulated and estimated GPU L1 data
cache miss rate results of three different cache sizes. The
results show that the miss rate estimator can still provide
accurate miss rate estimations in different cache sizes.

3) WCET Estimation Results

By integrating the estimated L1 data cache miss rate
results to the WCET estimator, we get the comparison
between the WCET estimations without and with know-
ing the L1 data cache miss rate estimation, as shown in
Fig. 16. When the WCET estimator does not have the L1
data cache miss rate information, it must assume all the
global memory requests go to the global memory and
take long latency, which results in large overestimation in

WCET; more than 60%–80% on average. But having the
accurate L1 data cache miss rate estimations, the WCET
estimator can achieve much tighter WCET estimations;
20%–40% on average. This is because the estimator,
knowing the miss rate estimation, does not have to
assume the maximal latency for global memory requests
anymore. In the figure, the overestimation of benchmark
backprop is noticeably larger than the others. This is
because there are input-dependent branch behaviors in
this benchmark (The input-dependent behaviors in this
benchmark do not affect the global memory instructions
and thus the reordering framework still works on this
benchmark). Due to the branch divergence behavior of
GPU warps, the WCET estimator must assume both
branch paths will execute, which results in higher over-
estimation. In the srad benchmark, the overestimation
increases greatly with 32 kB and 64 kB caches, when the
estimator does not know the miss rate estimation. This is
because the performance of this benchmark benefits from
larger cache sizes, while the WCET estimation is still the
same since no cache miss rate information is used. But
when the WCET estimator has the miss rate estimation,
WCET estimation gets much closer to the actual execu-
tion time, as shown in the figure.

Fig. 13. Normalized performance results with different L1 data
cache sizes.

Fig. 14. Miss rate estimation results with 16 kB L1 data cache.

Fig. 15. Miss rate estimation results with different L1 data cache
sizes.

Fig. 16. WCET estimation results without and with cache miss
rate information.
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VI. RELATED WORK

GPUs have become a major type of accelerator for
compute- and/or data-intensive applications, such as
building large hash table of millions of elements in real-
time efficiently [12] and improve the performance of
real-time AES-CBC encryption application [13].

Studies on real-time scheduling for GPUs and hetero-
geneous processors [14-16] focus on the scheduling algo-
rithms to use them in real-time applications, while assuming
the WCET of the real-time tasks is known. This indicates
the importance of the time predictability of GPUs.

For cache memory, lots of work have been done to
improve their time predictability, e.g., cache locking [17-
19]. Alternatives to normal caches are also proposed,
such as the scratchpad memory (SPM) [20] and method
cache [21], which have better time predictability than
normal caches. There are studies on WCET analysis of
caches [8, 22-25] as well, which all focus on caches in
CPUs rather than GPUs.

In regulating the memory accesses to GPU caches, Xie
et al. [26] propose a compiler-based method to bypass the
memory accesses with bad localities to improve the per-
formance, while Jia et al. [27] use reordering and bypass-
ing to get more cache-friendly access orders. But both
aim at improving the average-case performance rather
than the predictability.

Several studies have been done on the WCET analysis
of GPU applications [28, 29], which are based on mea-
surement of program segments or the whole application,
while the WCET analyzer proposed in this work does not
rely on measurement of the GPU program.

VII. CONCLUSION

The dynamic architectural features of GPUs harm the
time predictability a lot and, thus, hinder their application
in real-time systems. To address this issue, we propose a
framework based on both compiler and architectural
extension, which regulates the access order to the GPU
L1 data cache with a small performance overhead, even
with dynamic scheduling policies, and enables accurate
estimations of the miss rate in GPU L1 data cache. Also,
by integrating the L1 data cache miss rate estimation in
our GPU kernel WCET estimator, tighter WCET estima-
tion can be achieved. In our future research, we would
like to extend our GPU cache and WCET analysis to sup-
port kernels with irregular memory access patterns and
dynamic branches.
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