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Abstract
In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC

technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on

an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly,

at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is

employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the

deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed

on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the

guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is signi-

ficantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.
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I. INTRODUCTION

The morphology of the human body, especially the

belly shape, is a crucial factor in areas such as apparel-

customized services and body fitness. It is widely accepted

that the accurate and effective attainment of the belly size

and a building of a 3D belly profile are critical for the

provision of a vital reference value for human fashion

design. Generally, the existing studies concerning the

measurement of the human-belly shape have been

undertaken using a static scheme [1, 2]; however, the

deformation measurement for different shapes should

be taken into account in personalized fashion design.

Unfortunately, a dearth exists regarding the studies that
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consider this topic, so it is believed that the dynamic

deformation measurement will become a salient future

issue.

Digital image correlation (DIC) [3, 4] is a powerful

and well-established noncontact optical metrology that is

based on computer vision for full-field surface-deformation

measurements. The DIC method that can be classified

into 2D and 3D categories was first proposed by Peters

and Ranson [5] in the 1980s. The 2D DIC with a single

camera has been applied to a large variety of research

fields [6], while the advanced 3D DIC [7] is utilized for 3D

profile and deformation measurements due to its extreme

practicality and effectiveness. Pan et al. [8] employed the

pixel voxel to retrieve 3D deformed information. Pan and

Wang [9] performed a DIC comparison of two subpixel-

registration algorithms. The DIC method has been applied

to the measurement of the dynamic foot-surface shape

during the walking process [10]. Until the present time,

the DIC technique has been improved significantly with

the incorporation of gray interpolation methods [11], the

shape function [12], the subset size [13], and various

subpixel-registration algorithms [14].

DIC, however, is still limited by significant drawbacks

that result in dissatisfactory effects in the practical

applications. This problem is attributed to the following

three issues. Firstly, it is assumed that an object deforms

continuously and the gray-level intensity is constant, but

when it confronts a large deformation, it is difficult to

conform the supposition to the actual situation. The

subsequent linear and nonlinear formulas are presented in

the literature [15]. Nevertheless, this issue dramatically

increases the cost that is owing to the additional parameters.

Secondly, the common ideology deems that a set of adjacent

points in a reference subset remains as the neighboring

points in the target subset and the size of the rectangle

subset is fixed. To address the DIC problems, the literature

[16] discussed a number of improvement techniques

including the first-order shape function and the second-order

shape function. Undoubtedly, all of these improvements

raise the complexity and the computational cost extremely.

Finally, the feature points do not remain at the integer-

pixel positions after a deformation. It is difficult to achieve

the acceptable accuracy with a mere reliance on the integer-

pixel search; consequently, the subpixel registration is

indispensable. Substantial studies and experiments have

proven that the Newton-Raphson (NR), Levenberg-Marquard

(LM), and quasi-Newton (qN) methods are accurate and

effective subpixel-registration algorithms. But the dis-

advantages of these algorithms that have been revealed in

recent years, such as huge computational costs and local

minimums with untrue values that make it difficult to

satisfy the time-critical demands in real-time applications,

need to be considered.

To avoid the previously mentioned drawbacks, the

literature [17] developed an improved genetic algorithm

(GA) for the subpixel registration of dual-energy computed

tomography (CT) images. Most recently, particle swarm

optimization (PSO) was successfully implemented to

optimize the correlation coefficient function derived by

by literature [18]. A novel optimization algorithm that is

based on the improved GA and the PSO was used to

optimize the parameters in a least squares support vector

machine (LS-SVM) [19]. More important, the design of

the algorithm still comprises strict requirements regarding

the initial deformation guess. Zhang et al. [20] presented

a hand-operated and computer-controlled interactive

method. In this method, three or more distinct points on

the undeformed image and their corresponding locations

on the deformed image are identified manually. This

approach is simple but not intelligent because of the low

extent of automatization.

Lately, the fractal dimension of fractal geometry has

been gradually developed as a quite active mathematic

branch. The fractal analysis has been extensively used for

the image analysis [21], feature extraction and matching

[22, 23], pattern recognition [24], computer vision [25],

and composite-material 3D reconstruction [26]. Its main

characteristics are self-similarity and the calibration in-

variance.

In view of the previously mentioned deficiencies, the

primary contributions of the paper can be summarized

concisely as follows:

1. A novel feature vector consisting of a fractal

dimension and a main subset direction is used for integer-

pixel mapping based on the fractal-dimension theory.

2. Under the situation of an actual background, an

elliptic subset is proposed according to an analysis of the

deformation shape, while the subset size is simultaneously

allowed to adjust adaptively in accordance with the

deformation degree.

3. With a mutual-learning adaptive-PSO (MLADPSO)

algorithm, integer-pixel positions that are obtained from a

coarse search are regarded as the initial-guess estimations

for the subpixel locations.

The goal of this paper is the exploitation of a novel

methodology that enables an automatic measurement of

the changed abdominal shape for different size groups.

The rest of this paper is organized as follows: The

basic principle as well as the technology of the 3D DIC

technique is presented in Section II; the details of the

improved strategies are expounded in Section III; the

results of numerical experiments and tests are discussed

in Section IV; and lastly, the drawn conclusions are

presented in Section V.

II. FUNDAMENTAL PRINCIPLE AND TECH-
NOLOGY FOR THE 3D DIC

A. Basic Principles of the Integer-Pixel Search

The existing DIC algorithm involves the following two



Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

Huan Liu et al. 81 http://jcse.kiise.org

major steps: integral pixel (i.e., coarse search) and subpixel

registration (i.e., fine search). In the integral-pixel search,

the process comprises the tracking of the gray-value

pattern in a small neighborhood called the subset. In

general, a rectangle is centered at the interrogated point

between the reference image and the deformed image.

During the coarse search, the displacement field within

the subset is assumed to be continuous and smooth.

Besides, the movement of the displacement increment is

constrained by an integer number of the spacing between

the pixels. The tracking procedure is completed by a

search for the peak position of the correlation-coefficient

distribution. Once the maximum similarity is detected,

the shape and the position of the target subset within the

deformed image can be determined. The procedure is

accomplished when all of the interest points have

successfully obtained their own corresponding optimal

points in the deformed image.

Nevertheless, it is necessary to mention that the feature

points may become located between the pixels (i.e.,

subpixel location) while the deformation occurs. Thus, it is

difficult to conform to the required precision in practical

applications because of the derivation from the integer-

pixel location. Undoubtedly, the fine-search resolution is

considered as a critical technique for the improvement of

the accuracy of the DIC method in the cases of certain

hardware conditions.

B. Formalism of the Subpixel-Registration
Resolution

The principle of the subpixel-registration resolution is

shown in Fig. 1, where p is a center point in the reference

subset at the coordinate (x0, y0), and the size is set as

(2M + 1) × (2M + 1), called the sample subset; this sample

subset corresponds to a subset in the deformed image

called the target subset with another center point  at

the coordinate , where q is a random point in the

reference subset at the coordinate (xi, yj). The corresponding

point in the target subset at the coordinate  is ,

the displacement of which can be calculated using the

following three mapping functions: zero-order shape

function, first-order shape function, and second-order

shape function.

The Newtonian algorithm, combined with a robust

matching criterion and a high-accuracy subpixel registration,

has been referred to as the gold standard for the subpixel

registration. The Newtonian algorithm solves the nonlinear

equations by directly employing the regularized cross-

correlation coefficient as the optimization function. Pan

and Li [27] put forward an improved NR method for the

reduction of its complexity, enhancing its computational

efficiency as well as strengthening its robustness. In spite

of its achievement of the most accurate subpixel estimation,

one significant shortcoming of the Newtonian algorithm

is an extremely huge computational cost that is mainly

due to its calculations of the first-order and second-order

derivatives, especially regarding the 6×6 Hessian matrix.

C. 3D DIC based on Stereo Vision

Stereo vision [28] generally serves as a technique for

the implementation of the 3D surface-profile reconstruction

on the basis of two matched points from two different

viewpoints. As shown in Fig. 2, the whole mapping process

comprises the following two parts: stereo-matching in the

horizontal part and the temporal matching between the

original and deformed images from the same camera in

the vertical part. pl is a point in the left reference image at

ti, and its matching point in the right image is pr. When

the deformation occurs, pl moves to a new position  in

the left reference image at ti+1, and its matching point in

the right deformed image also moves to . In this paper,

the main focus is on the temporal-mapping procedure.

Then, a series of improved alternative strategies are

provided for the purpose of solving the substantial

difficulties that often arise in deformation situations.

III. PROPOSED IMPROVED STRATEGIES

A. Novel Integer-Pixel Displacement-Search
Method

1) Innovation of the Fractal Dimension based on the

Subset Area

The fractal dimension is an essential application in

p′

x0

′
, y0

′
( )

xi
′
, yi

′
( ) q′ pl

′

pr
′

Fig. 1. Diagram of the digital image correlation (DIC) between
the reference and deformed images.
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image processing. There are numerous ways to calculate

the fractal dimension. In general terms, the box dimension

is widely applied in image processing, where the entire

area of an image is filled with boxes of the size δ (i.e., a

cover). The variation of the size of δ causes the changes

of the number of the boxes Nδ; that is, the smaller the size

of δ, the higher the number of boxes.

The normal box-counting method of the fractal dimension

for which the image is used is defined as follows:

, (1)

where Nr denotes the requisite total box quantity for the

coverage of the whole image, and r is the side of the box

(i.e., the cover of r). A series of Nr can be obtained by a

list of different r values, where ln(1/r) is taken as the x-

axis, ln(Nr) is taken as the y-axis, and then the box

dimension is a straight-line gradient that is obtained by

means of the method of least squares.

The number of each cover is solely considered in

Eq. (1), so the gray-level intensity and the probability for

each cover are the substitutions of its numerator. Alter-

natively, by allowing for a variation of the side of the box

according to the same proportion when the covered range

is varied, the size ratio replaces the denominator in Eq. (1),

and the new form is described as follows:

, (2)

where R represents the image size.

The denominator in Eq. (2) can be also modified using

the area ratio that is expressed, as follows:

= = .

(3)

As can be seen, the fractal dimension of the area is half

of the side value, and this ensures a shortening of the

deviations between the different scales. This is demonstrated

in Fig. 3, wherein the fractal-dimension calibration inde-

pendence under the different-size conditions is implied.

2) Adaptive Adjustment of the Elliptic Subset

A rectangle subset is commonly employed in DIC.

Actually, the shape of the correlated subset deforms in

the large deformation that is shown in Fig. 4(a) and (b).

Besides, with no deformation, the difference in the number

of pixels that belong to the same-size subset is nonexistent.

Whereas if the deformation of the object surface occurs,

the quality of the pixels will change from the original to

the deformed images, and this occurs even in subsets of

the same size.

In this work, the tests of the abdominal-deformation

measurement are conducted on a shape-flexible model

with an installed gasbag. The representations of the

existing studies show that the gasbag during its inflation

can be regarded as a ball. Thus, the elliptic subset that is

D lim
δ 0>

=
ln Nr( )

ln 1 r⁄( )
-----------------

Dr lim
δ 0>

=
f i( ) pi× ln pi( )×∑

ln R r⁄( )
----------------------------------------

Ds lim
δ 0>

=
f i( ) pi× ln pi( )×∑

ln S sr⁄( )
---------------------------------------- lim

δ 0>

f i( ) pi× ln pi( )×∑
ln R

2

r
2

⁄( )
---------------------------------------- 1

2
---Dr

Fig. 2. Diagram of 3D DIC matching process.

Fig. 3. Fractal dimensions of different forms.
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displayed in Fig. 4(c) and (d) is proposed. The subset-size

accuracy is considered as a critical factor that is close to

the accuracy of the measured displacement. A too-small

subset size tends to result in a deterioration of the accuracy,

while a too-large subset may cause an excessive compu-

tational cost. So the suitable size is achieved with a balance

of the influences of the random and systematic errors.

It is clearly preferable to search a parameter to define

the image-deformation degree on the basis of a subset.

By doing so, it is practicable to evaluate the effect of the

image-structure information of each image subset on the

deformation measurement. To serve this purpose, an

intuitive parameter called subset structure density is

proposed here, whereby the subset size can be judged

dynamically using the structural density depending on the

extent of the deformation, as shown in Fig. 4(d).

, (4)

where fi signifies the gray-level intensity within the subset,

 denotes the mean of the gray-level intensity, and A is

the gray number within the subset. 

To ensure the reliability of the matching in the design

of the adaptive subset, three steps are included. In the

first place the major axis of the original elliptic size is set

as 8 pixel and the minor axis is set as 6 pixel; in the second

place, the associated  within the subset is determined

and simultaneously set as the threshold; and finally, the

new subset is acquired by an enlargement or reduction

using the Step-2 pixels on the basis of the original size.

Moreover, without a direction factor, which may cause

an error because of the insufficiency of the information

that is derived from the fractal dimension, the direction

property that is required for the feature descriptor should

be involved within the elliptic subset. The main direction

is determined by the distribution of the peak gradient

directions within the adjacent pixels around the key

point. Therefore, the above proposed feature descriptor

can be modified as a feature vector by

.

Next, the adoption of the distance between the two feature

vectors as the criterion of the similarity measurement of

each interest corner proceeds as follows:

,

where  is termed as a distance measurement

that is determined by

,

where fd denotes the fractal dimension and md is the main

direction.

In specific applications, a suitable threshold for the

similarity needs to be set in accordance with the accuracy

requirement. If the similarity is greater than the threshold

value, then the matching pair can be accepted and

retained. The smaller the threshold value, the fewer the

number of correct matchings, while a higher precision

results in a more stable system.

B. MLADPSO Algorithm for the Subpixel
Registration

The PSO is a stochastic algorithm. Literature [29]

presented an improved PSO method for the parameter

optimization of the image-distortion correction and

mosaicking in a panoramic parking-assistant system for

the automotive aftermarket. In literature [30], an adaptive

PSO is introduced to estimate the real transformation angle

for the sample point. In this paper, a novel MLADPSO

algorithm that is utilized for the subpixel registration is

introduced. The MLADPSO is an improvement based on

the standard PSO that involves both an information mutual-

learning mechanism and a dynamic adaptive-adjustment

ideology in terms of the PSO. The operation of an adaptive

regulation of the particle velocities ensures adaptability

and diversity, and this plays a role in the avoidance of the

trapping within the local extremum and results in fewer

iterations. Besides, the previous optimal information is

fully used in the initialization of the particle positions

regarding the next feature point, which effectively improves

the speed of the convergence.

In the uniform PSO, the learning factors r1 and r2,

which are adopted to weigh the searching ability, were

generally set at 2 empirically. For the sake of the closed

2

21
( ( ))

i i

i i

f f

A

f f
A

−

Γ =

−

∑

∑
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Γ
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Fig. 4. Subset of the deformation. 
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relation between the flight velocity and the range, it is

indispensable to adaptively adjust the flight velocity. In

this paper, an asynchronous strategy is implemented to

adjust the learning factors to enhance the optimization.

Considering the deformation differences of x and y in

relation to the deformed-belly image, r1 and r2 were further

refined into r1x and r1y and r2x and r2y, respectively.

It is assumed that the structural density of each feature

point in the reference image is denoted by =

, while in the deformed image, it is

denoted by , and the varia-

tions between these two values can be expressed as 

. r1 and r2 are assigned as follows:

, (5)

, (6)

where, generally, r1m = r2m = 2 when the pixel deformation

degree reaches the largest vales of r1 = r1m = 2 and

r2 = r2m = 2. The others are determined linearly according

to the deformation degree.

The values r of the x-axis and the y-axis are respectively

defined by

(7)

, (8)

where xr and yr are the coordinates in the reference image,

xd and yd are the coordinates in the deformed image, and

 and  indicate the deformed degradation on the

x- and y-axes, respectively.

As shown in Fig. 5, with the aim of a search for the

matched point with a higher precision in the right-view

image that encounters the belly deformation for each

detected corner in the reference image, the MLADPSO is

implemented to obtain the subpixel coordinate values. In

the MLADPSO, the parameters of each particle are

referred to as the x- and y-coordinate values of each

interest point. The number of particles is located at N.

The initial values of the particle in the first iteration

incorporate the integer-pixel value, namely pr(xcoarse, ycoarse),

derived from the integer-pixel displacement in the stereo

matching, as well as the n-1 of the distance (Δd) values

based on pr(xcoarse, ycoarse). In the temporal matching, the

Δd that is set randomly signifies the relative distance for

the points such as pl and  in the reference and deformed

images from the left view. The parametric n-1 can be

denoted as (pr + Δd1, pr + Δd2, ......, pr + Δdn-1), and then

the global best value (xgbest, ygbest) can be gained after

multiple iterations. Next, with regard to the rest of the
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Fig. 5. The mutual-learning dynamic adaptive-particle swarm optimization (MLADPSO) diagram.
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corners in the reference image, the initialization of the

particles is defined in accordance with the mutual-

learning property. The particle parameters are denoted

as (( , ) + , ( , ) + , ......,

( , ) + ), and in the integer-pixel

displacement stage, its own integer-pixel coordinate value

is . (( , ), ( , ),

......, ( , )) are the top best n-1 values from

the former corner, and in the temporal matching, 

signifies the relative distances of  and  in the

deformed image from the left view. The entire process

continues until the subpixel registrations of all of the

feature points are fulfilled.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

In this section, the conduction of the experiments on

the belly-deformation measurements of the shape-flexible

model using the proposed methods is reported. The specific

setup that is shown in Fig. 6 consists of the following two

main parts: (I) A shape-flexible model with an installed

airbag, as can be seen in Fig. 6(a); an electric air pump

that is shown in Fig. 6(b); and the software platform of

Fig. 6(c). The electric air pump uses the inflation of the

airbag to vary the shape on the abdomen with different

pressures. (II) A stereo-vision system composed of four

Cyber-shot DSC-W3 CMOS cameras (Sony, Japan) with

a resolution of 2816×2112 and an effective pixel quantity

of approximately 6003000 pixel, as shown in Fig. 7, was

utilized. The focal length of 18.9 mm (when it is converted

to the 135-mm camera, the value is 114 mm) is arranged

around the model, and the image size is 624×363 pixel.

Two of the cameras (NO. 1 and NO. 2) were located as a

pair at the front of the abdomen at an angle of 60°, and

the other two cameras (NO. 3 and NO. 4) were arranged

at the rear of the abdomen at the same angle. The frontal

cameras were used to obtain the abdominal images, and

the rear ones captured the images from the back part of

the abdomen.

The abdominal images from the different perspectives

are shown in Fig. 8. For a straightforward extraction of

the feature points, a portion of the seams of a tight dress

that was fitted onto the abdominal part of the shape-

flexible model served as easily recognizable markers.

The markers were designed as small bumps that are like

approximate spheres. Here, 620 markers with a diameter

of less than 2 mm are located separately on both the front

and back pieces of the tight dress at the abdominal part.

The implementation of each test comprises the following

four consecutive steps:

1. Separate extraction of the feature points in the

reference and deformed images using the Harris method.

xgbest 1( )
i 1–

ygbest 1( )
i 1–

Δd1

′
xgbest 2( )
i 1–

ygbest 2( )
i 1–

Δd2

′

xgbest n 1–( )
i 1–

ygbest n 1–( )
i 1–

Δdn 1–

′

pr
i

xcoarse
i

, ycoarse
i

( ) xgbest 1( )
i 1–

ygbest 1( )
i 1–

xgbest 2( )
i 1–

ygbest 2( )
i 1–

xgbest n 1–( )
i 1–

ygbest n 1–( )
i 1–

Δd′

pl i 1–( )
′

pl i( )
′

Fig. 6. Experimental setup. (a) A shape-flexible model with an
installed airbag, (b) an electric air pump, and (c) the software
platform.

Fig. 7. Stereo-vision system.

Fig. 8. Images from different views. (a) Frontal abdomen in left
view (a) and right view (b).
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2. Conduction of coarse tracking using the novel feature

vector combined with the fractal dimension and the main

direction to gain the integral-pixel positions. 

3. Employment of the integral-pixel position as the

initial-guess-value estimation for the subpixel fine search

in the application of the MLADPSO. 

4. Attainment of the various abdominal sizes that are

associated with different barometric pressures by means

of the recovery of a 3D abdominal model that is based on

the stereo-vision system.

A flow chart is given in Fig. 9. The following subsections

offer several tests regarding two typical cases in accordance

with the different barometric-pressure choices. The concrete

instructions are given as follows: the image shown in

Fig. 10(a) shows the initial condition without any pressure

in the abdominal airbag; Case 1, which is shown in

Fig. 10(b), is the condition with the pressure of 10 kPa,

and Case 2, which is shown in Fig. 10(c), shows the

condition with the 20-kPa pressure. With the increase in

the pressure, the deformation of the abdominal shape

gradually occurred.

B. Integer-Pixel Displacement Search

In this subset, a coarse displacement search is performed

in comparison with the conventional method that is based

on the gray-level intensity within a fixed rectangle subset

and the proposed method in the previously mentioned

two cases. The coordinate errors in Tables 1–3 were

calculated according to all of the mismatches from the

initial matching in the integer-pixel displacement.

The contrast between the performance indicators with

the specific parameters that are between the two approaches

is listed in Table 1. correct_match is the correct matching

rate that signifies the ratio of the number of absolute

correct matching pairs without any errors to the total

number of matched pairs. recall_ratio is the entire

detectability that is determined by the ratio of the correct

matched points to the total number of detected feature

points. T denotes the mapping time-consumption. Dev_x

and Dev_y are the errors of the integer pixel from the

calculated value to the real value at the x-coordinate and

the y-coordinate, respectively; here, Mean_x and Std_x

denote the average error and the variance error of the x-

coordinate, respectively, and the same meanings are

applicable to the Mean_y and Std_y of the y-coordinate. As
Fig. 9. Flow chart. (a) Deformation matching, (b) integral-pixel
deformation, and (c) subpixel registration.

Fig. 10. Abdominal images from the left camera under different
conditions. (a) Initial abdomen, (b) 10-kPa abdomen, and (c) 20-kPa
abdomen.
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illustrated in Table 1, it is evident that the correct_match

and the recall_ratio that were obtained using the

proposed method are superior to those of the traditional

method in both experiments, particularly under the large-

deformation situation. That is, the previous two performance

parameters were successfully implemented using the

conventional solution that yielded sharp declines of

different extents, whereas the proposed method produced

results that maintained a greater stability and a robustness

with a mere slight decrease. Moreover, the deviations of

the x and y locations of the proposed method are all

dramatically smaller than those of the traditional approach

despite the slightly longer time-consumption that was

measured within an acceptable range. Overall, it is firmly

believed that the proposed method is a valuable alternative

tool for the coarse search that benefits from the extra-

ordinary ability to achieve a high accuracy and a strong

stability.

To confirm the efficiency, comparisons of 24 and 29

falsely matched pairs that were selected randomly between

the two methods are given here, and the results are

illustrated in Tables 2 and 3, respectively. dis tan ce_t and

dis tan ce_p denote the distance errors from the utilizations

of the traditional method and the proposed method,

respectively. X and Y represent the coordinate values of

the points. The statistical results given at the end of each

table are the minimal distance, maximal distance, mean

distance, and standard deviation of distance.

As can be easily confirmed from the tabulations, the

results of the two methods in either case differ by several

times; this is unlike the traditional method that produces

large errors that are intensified with the increase in the

Table 1. Analysis of coordinate errors between two cases in
integer-pixel

Table 2. Comparison of the distance error between two
methods at Case 1 (pixels)

Table 3. Comparison of the distance error between two
methods at Case 2 (pixels)
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deformation. The results produced by the proposed method

are basically slight deviations. This method is capable of

maintaining a high stability because of the advantages of

adaptability and recognition.

C. Subpixel-Registration Algorithm

It is worth noting that, as a nonlinear optimization

algorithm, the Newtonian method requires an accurate

initial guess to achieve a precise and rapid convergence.

In the present paper, the integer-pixel coordinate values

are taken as the initial-guess estimations in the subpixel

iteration. In this subsection, the focus comprises comparisons

of the Newtonian method, the uniform PSO, and the

proposed method, MLADPSO. 

A selection of 30 feature points that were taken from

the total number were enacted randomly. The specific

position values of the x-coordinate and the y-coordinate

that are associated with each feature point are illustrated

in Fig. 11, where Fig. 11(a) and (b) reflect the x and y

positions of Case 1, and Fig. 11(c) and (d) are the

corresponding values of Case 2. The results demonstrate

that the MLADPSO-achieved positions are much closer

to the real values than those that were obtained by the

Newtonian method and PSO. With the MLADPSO, the

location accuracy is up to 10-6, while only 10-4 was

achieved with the use of the Newtonian algorithm. The

PSO accuracy is between those of the other two methods.

In addition, in consideration of a full account of the

performances of the two methods, the distance errors of

the subpixel as well as the time-consumption is listed

below in Tables 4 and 5, respectively. The tests were

conducted on two cases where the points were increased

from 50 to a maximum of 497. The mean_dis tan ce and

std_dis tan ce denote the average error and the variance

of distance, respectively, while t is the computational

time that was expended in the subpixel registration. The

statistical results revealed that the MLADPSO errors are

Fig. 11. Coordinate values of Case 1 and Case 2. (a, b) The x and y positions of Case 1. (c, d) The corresponding values of Case 2.
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much smaller than those of the Newtonian method and

PSO in both cases. 

As can be seen in the tables, at the beginning, on the

condition of a small quantity, the velocity of the Newtonian

method is merely faster than that of the MLADPSO; but

with the increasing of the quantity, the efficiency of the

MLADPSO was gradually improved. Conversely, when

the number was increased to 300, the MLADPSO is faster

than the Newtonian method. Overall, the PSO speeds

of the three algorithms are always the slowest. This

advantage is primarily attributed to the mutual-learning

mechanism that contributes to the minimization of the

time-consumption of the initialization for each particle,

while the repetitive random initialization operations that

are required for the Newtonian method waste substantial

time, leading to an efficiency decline. Meanwhile, the

MLADPSO improves the accuracy but reduces the running

time. In general terms, the utilization of the MLADPSO

is strongly recommended for the subpixel registration,

especially in the case where a particularly high accuracy

and efficiency are obtained.

D. Analysis of the Shape Size

In order to evaluate the overall accuracy of the proposed

method, it was tested on a shape-flexible model. The tests

were completed using the respective pressures of 10, 20,

and 25 kPa and three independent modellings and measure-

ments, and the aim is the attainment of the belly circum-

ference in the process. In the present work, the ultimate

abdominal size was obtained using a 3D-reconstruction

technique that is based on the stereo-vision system after

the completion of the coarse-fine search. The manual

measurement is a traditional contact method. Comparisons

of the parameters of the previous two schemes (manual

measurement and the proposed method) were made. As

shown in Table 6, the Error and the R_Error are the error

and the relative error between the manual and proposed

methods, respectively, in the three pressure-value cases.

The results listed in Table 6 revealed that even with the

existence of differences from the comparison with the

measured values, the errors are merely minor and completely

conform to the acceptable criteria in consideration of

apparel design and engineering.

V. CONCLUSIONS

In this paper, an innovative 3D DIC formulation with a

coarse-fine two-step method is proposed. Tests of the

Table 4. Error analysis and time-cost comparison of subpixels at
Case 1 (10 kpa)

Table 5. Error analysis and time-cost comparison of subpixels at
Case 2 (20 kpa)

Table 6. Error inspection of the abdominal size between
measured and calculated values
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abdominal 3D deformation measurements were carried

out on a shape-flexible mannequin to validate the proposed

method. The results of the integer-pixel examination

revealed that the fractal dimension and the main direction

are more feasible and reliable compared with those of the

traditional method. The results derived from the subpixel-

registration resolution demonstrated that the modified

MLADPSO is more accurate with a higher computational

efficiency, and this is in contrast to the Newtonian algorithm

and PSO. In particular, the boosting of the iterative

computations of the subpixels in the proposed method are

gradual as the number of feature points are increased, and

this occurs without any loss of the measurement precision.
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