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Abstract
Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection

aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current tar-

get. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we

propose a novel method for unsupervised feature selection, which incorporates embedded learning and l2,1-norm sparse

regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during

embedded learning to preserve the local data structure. The l2,1-norm sparse regression acts as a constraint to aid in learn-

ing the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which

better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization

problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real

microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite prom-

ising performance.
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I. INTRODUCTION

In bioinformatics, many large projects together with

new techniques, such as DNA microarray techniques, have

created an enormous amount of data. DNA microarray

techniques enable biologists to simultaneously measure

the expression level of thousands of genes in specific

samples at a given time and under certain conditions [1].

Microarray data often comes with high dimensionality,

which involves several thousands of genes, far exceeding

the limited number of samples. An important research

topic in microarray data is the discovery of genes which

are relevant to a particular target annotation. Usually,

only a small number of genes show a strong correlation,

while a large number of genes are irrelevant and act like

noise to decrease the performance [2]. Furthermore, the

high data dimensionality can significantly increase the

computational burden, and can even make some data

mining approaches impossible [3]. Thus, finding the small

set of informative genes is of paramount importance to

microarray data analysis.

Feature selection is one of the most important compu-

tational techniques in processing the analysis of microarray

data. Feature selection aims at searching for the most
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discriminant feature/gene subset to distinguish dfferent

classes. Based on the way of utilizing label information,

feature selection can be classified into supervised and

unsupervised methods [4]. Unsupervised feature selection is

more challenging than supervised feature selection, since

without label information the relevance of features is unclear

[5]. With the rapid accumulation of high-dimensional data,

the obtained data usually lack any label information [6].

Thus, it is of great importance to develop unsupervised

methods for the unlabeled data.

Unsupervised feature selection has attracted much atten-

tion in recent years and a large number of unsupervised

feature selection methods have been proposed [7, 8]. The

filter and embedded methods are two kinds of widely

used unsupervised feature selection methods. In the filter

methods, the relevance of features is assessed by looking

only at the intrinsic properties of data. In most cases, a

relevance score of each feature is calculated separately,

and the features with low scores are removed. Typical

filter methods include the max variance (MaxVar) method,

the Laplacian score (LapScore) method [9] and the spectral

feature selection (SPEC) method [10]. The filter methods

are usually computationally simple and fast. However, a

common disadvantage of the filter methods is that they

ignore the feature dependencies, which may lead to

poorer clustering or classification performance.

In contrast to the unsupervised filter methods, unsuper-

vised embedded methods have been developed to search

for an optimal subset of features by considering the

correlation of features with a learning model simultaneously.

A number of methods have been proposed to maintain the

important underlying data structure in the embedded

learning processes [11, 12]. The importance of preserving

local structure has been well recognized in the recent

development of unsupervised feature selection methods.

Cai et al. [13] explored manifold learning and l1
regularization to select the features that can best preserve

the multi-cluster structure. Hou et al. [14] used similarity

based on locally linear approximation to construct graph,

and used unified embedded learning and sparse regression

to perform feature selection. Li et al. [15] utilized spectral

clustering and a nonnegative constraint for feature selection

by learning the cluster labels.

In this paper, we propose a novel unsupervised feature

selection method, which utilizes embedded learning and

l2,1-norm sparse regression into a framework to select

genes in microarray gene expression data. We apply local

tangent space alignment to preserve the local data structure

during embedded learning. The tangent space at each data

sample provides a low-dimensional linear approximation

of the local geometric structure of the nonlinear manifold.

The l2,1-norm sparse regression in the model acts as a

constraint to learn the gene weights correlatively. The

resultant formulation of the proposed method optimizes

for selecting the most discriminative features that can

better capture the underlying data structure, and thus to

select the most informative genes that can better capture

the interesting natural clusters of samples. We develop an

iterative algorithm to effectively solve the optimization

problem in the proposed method. Experimental results on

real microarray gene expression datasets demonstrate the

effectiveness of the proposed method.

The rest of this paper is organized as follows. Some

preliminaries are presented in Section II. We present the

proposed unsupervised feature selection method in

Section III. The experimental results are shown in

Section IV. Finally, we conclude the paper in Section V.

II. PRELIMINARIES

A. Notations

In a gene expression microarray study, the output of

the microarray experiment is recorded as a gene expression

data matrix X. Let X = [x1, x2, …, xn]
T , where

xi  (i = 1, …, n) denote the n unlabeled samples. For

the sake of convenience, we use g1, g2, ..., gm to denote

the m genes. The data matrix can also be denoted as

X = [g1, g2, ..., gm]. We would like to select the most

informative d (d < m) genes to represent the original

sample. For a matrix A = (aij) , its l2,1-norm is defined

as

. (1)

The Frobenius norm of A is defined as

. (2)

B. Local Tangent Space Alignment

The basic idea of local tangent space alignment is to

use the tangent space in the neighborhood of each data

point to represent the local geometry, and then align those

local tangent spaces to construct the global coordinate

system for the nonlinear manifold [16].

Firstly, the k nearest neighbors of xi (i = 1, , n) are

found and denoted as a set Nk(xi) = [xi1
, xi2

, ..., xik
].

Secondly, the k data points in Nk(xi) are projected into the

tangent space of the manifold at xi by 

, j = 1, ..., k, (3)

where v(i) is a local coordinate of xi, mi =  is a

mean vector, and  is a tangent space projection

matrix. Pi can be calculated by performing the optimal

rank approximation of the centered data matrix [16].

Then, the local coordinates are linearly aligned into a

single global coordinate system in Rq by

, j = 1, ..., k, (4)
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where  is an affine transformation matrix, and ti
is a translation vector in Rq. The optimal Ci and ti in

Eq. (4) can be computed as [11, 16]

,

, (5)

where Yi = [yi1
, yi2

, ..., yik
]T , Vi = [ ]

, Ik is a k × k identity matrix, ek = [1, 1, …, 1] ,

and  is the Moore-Penrose generalized inverse of Vi.

The k squared errors from Nk(xi) are calculated as

, j = 1, ..., k. (6)

Summing all costs from the n patches obtains

, (7)

where .

According to the row selection matrices Si  (i =

1, …, n), we know that Yi = SiY. Thus, Eq. (7) can be

rewritten as

. (8)

The objective of local tangent space alignment is to

minimize ε (Y) as

 tr(YT LY), (9)

where

. (10)

III. THE PROPOSED METHOD

In this section, we propose a novel unsupervised feature

selection method for microarray data analysis. The

proposed method utilizes local Tangent Space Alignment

in embedded learning for unsupervised Feature Selection.

Thus, we refer to it as the TSAFS method.

A. Formulations

In the proposed method, the original sample xi is

embedded in a low-dimensional space by a transformation

matrix . We use Y = [y1, y2, ..., yn] to denote the

embedded data matrix of X. We utilize local tangent

space alignment during the process of embedded learning

to preserve the local data structure.

The objective function of the proposed TSAFS method

is formulated as

, (11)

where α and β are two balanced parameters. tr(YT LY) is

calculated as in Eq. (9), which is a promoting regularization

term to preserve the local data structure by local tangent

space alignment. 

The third term in Eq. (11) is the l2,1-norm of the

transformation matrix W to promote row sparsity. Denote

wi as the ith row of W, i.e., W = [w1, ..., wm]T . Since

the ith row wi corresponds to the weight of gene gi, the

sparsity constraint on rows makes W suitable for gene

selection. Each gene is ranked according to  in

descending order and the top d genes are selected.

B. Solutions

The optimization problem in Eq. (11) is not convex

when both W and Y are optimized simultaneously.

Furthermore, the l2,1-norm of W makes the problem

non-smooth. Inspired by [8] and [14], we solve this

problem in an alternative way.

For the sake of convenience, we denote Θ(W) = .

The derivative of Θ(W) with respect to W is

, (12)

where  is a diagonal matrix with the ith diagonal

element as

. (13)

Then, we construct an auxiliary function to solve the

problem in Eq. (11).

=

+ . (14)

Note that when U is fixed, the derivative in Eq. (11)

can also be regarded as the derivative of Eq. (14). Thus,

we try to solve the problem in Eq. (14) to approximate

the solution in Eq. (11).

The derivative of  with respect to W is

. (15)

By setting , we can obtain

. (16)
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= 

                 +tr(YTY)+αtr(YTLY)+βtr(WTUW)

             = 

                 −tr(WT(XTX+βU)W). (17)

Let M = XTX + βU, Eq. (17) becomes

                 

              = 

                  

= . (18)

When M and L are fixed, the solution of Eq. (18) can

be obtained by solving the following eigenproblem.

. (19)

The solution of Eq. (19) is the matrix Y which contains

the eigenvectors corresponding to the q smallest eigenvalues

as the column vectors.

In summary, we solve the optimization problem in

Eq. (11) in an alternative way. When W is fixed, U can be

updated according to Eq. (13). When U is fixed, Y can be

updated according to Eq. (19). Then, W can be updated

according to Eq. (16). After that, U can be updated again

based on the new W. The updating process will be repeated

until the objective function converges. We summarize the

procedure of the proposed TSAFS method in Algorithm 1.

Algorithm 1 will terminate when the objective function

of Eq. (11) tends to a constant or the change is smaller

than a threshold. The threshold is set very close to zero.

To optimize the objective function of TSAFS, the most

time consuming operation is to solve the generalized

eigenproblem in Eq. (19), which has a time complexity of

O(m3), where m is the number of features/genes.

C. Convergence Analysis

We show that Algorithm 1 will monotonically decrease

the value of the objection function of Eq. (11) in each

iteration. In Algorithm 1, when U is fixed as Ut in the tth

iteration to calculate Wt+1 and Yt+1, the following inequality

holds:

              

              

              . (20)

Since , we obtain

              

              

              . (21)

According to a Lemma in [17], we know

. (22)

Combining Eqs. (21) and (22), we have

     . (23)

This inequality indicates that the objective function of

Eq. (11) will monotonically decrease in each iteration.

Since the objective function has lower bounds, such as

zero, the above iteration will converge. Empirical results

show that the convergence is fast and only several

iterations (fewer than 10 iterations in the experiments)

are needed for convergence to occur. Thus, the proposed

method scales well in practice.

IV. EXPERIMENTS

In this section, we test the performance of the proposed

TSAFS method on microarray gene expression datasets.

We test the performance in terms of clustering and

Algorithm 1 The proposed TSAFS method
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classification, i.e., using the K-means clustering and the

Nearest Neighbors (NN) classifier. We compare the

proposed method with several existing feature selection

methods, i.e., LapScore [9], MCFS [13], JELSR [14] and

NDFS [15]. We also compare these feature selection

methods with the baseline method which uses all the

features for clustering and classification. In the experiments,

the number of selected genes is ranged over {20, 40, 60,

80, 100, 120, 140, 160, 180, 200}. The parameters are

tuned over {10-8, 10-6, 10-4, 10-2, 1, 102, 104, 106, 108}. The

number of nearest neighbors is set as k = 5. We report the

best result of all the methods by using different parameters.

A. Data Set Description

In the experiments, we use four public gene expression

datasets to illustrate the performance of different feature

selection methods. The datasets are Lung, Glioma, Lym-

phoma and ALLAML, which were downloaded from

http://featureselection.asu.edu/datasets.php. The properties

of the datasets are summarize in Table 1 and briefly intro-

duced as follows.
● Lung: 203 samples contain an expression level of

12,600 genes. The samples consist of 5 clusters with

139, 21, 20, 6, and 17 samples, respectively. The genes

with standard deviations smaller than 50 expression

units are removed and 3,312 genes are retained for

the 203 samples.
● Glioma: 50 different samples are taken from 4 clusters

with 14, 7, 14, and 15 samples, respectively. The

samples contain an expression level of 4,434 genes.
● Lymphoma: 4,026 genes are taken from 96 different

samples. The samples consist of 9 clusters with 46,

11, 10, 9, 6, 6, 4, 2, and 2 samples, respectively.
● ALLAML: 7,129 genes are collected from 72 samples,

which belong to patients suffering from acute myeloid

leukemia (AML: 25 samples) and acute lymphoblastic

leukemia (ALL: 47 samples).

B. Clustering Results

In the first group experiment, we apply the K-means

clustering method to evaluate the performance of the

proposed method. Two widely used evaluation metrics,

i.e., normalized mutual information (NMI) and accuracy

(ACC), are applied to evaluate the clustering results. Denote

 as the ground truth clustering configuration

of a dataset, where h is the ground truth cluster number.

Denote  as the clustering configuration obtained

by a clustering algorithm, where h' is the obtained cluster

number. n is the cardinality of the whole dataset. ni is the

cardinality of Hi.  is the cardinality of . And, nij is

the cardinality of the intersection of Hi and . The NMI

criteria are defined as

            

. (24)

A larger value of NMI denotes better performance. Let

li denote the ground truth label of xi and  denote the

index of the clustering result of xi. ACC is defined as [12]

, (25)

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise, and

map( ) is the best mapping function that permutes

clustering labels to match the ground truth labels using

the Kuhn-Munkres algorithm. A larger value of ACC

denotes a better clustering result.

Each feature selection method is first performed to

select genes on the gene expression datasets. After selecting

the genes, K-means clustering is performed by using only

the selected genes. We repeat each experiment 20 times

with random initializations and report the mean performance

with standard deviation.

First, we compare the performance of the feature selection

methods on the four gene expression datasets. The

experimental results in terms of NMI and ACC evaluation

metrics are shown in Tables 2 and 3, respectively. We can

H Hi{ }i=1

h
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Table 1. Properties of datasets

Dataset # of samples # of genes # of clusters

Lung 203 3,312 5

Glioma 50 4,434 4

Lymphoma 96 4,026 9

ALLAML 72 7,129 2

Table 2. Normalized mutual information (%) of different feature selection methods

Dataset Baseline LapScore MCFS JELSR NDFS TSAFS

Lung 48.07 ± 3.58 52.73 ± 4.93 58.77 ± 5.24 60.83 ± 4.18 60.78 ± 4.12 62.62 ± 4.61

Glioma 41.06 ± 2.13 48.54 ± 2.68 47.02 ± 3.13 49.83 ± 3.25 50.62 ± 2.88 53.03 ± 3.45

Lymphoma 60.41 ± 4.20 65.29 ± 2.72 65.02 ± 2.93 59.66 ± 3.59 60.82 ± 3.81 66.12 ± 3.94

ALLAML 9.83 ± 4.43 13.59 ± 4.17 13.20 ± 5.01 10.67 ± 4.50 12.02 ± 5.33 20.94 ± 4.15

Values are presented as mean ± standard deviation.
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see that most of the unsupervised feature selection

methods perform better than the baseline method. Gene

selection can improve the accuracy of clustering results.

The proposed TSAFS method performs better than the

other methods on the four datasets, especially on the

ALLAML dataset. This is because TSAFS utilizes local

tangent space alignment for local structure preservation

to learn the weight of genes.

Then, we evaluate the performance of the clustering

results by varying the number of selected genes. The

performance of the clustering results in term of NMI and

ACC evaluation metrics are shown in Figs. 1 and 2,

respectively. We can see from the figures that the proposed

TSAFS method performs better than other methods in

most cases when selecting a different number of genes.

Note that for different datasets and different methods, the

numbers of selected genes to obtain the best results are

different. For example, in Fig. 1, on the Lung dataset, for

TSAFS and JELSR the optimized gene number is about

140, while for LapScore and NDFS the optimized gene

number is about 160. 

This is because in different microarray datasets, the

correlations of genes are different. Different methods

provide different ways to explore the underlying data

structure. In Fig. 2, the performance trend by using the

ACC evaluation metric is very similar to that using the

NMI evaluation metric. The proposed TSAFS method

obtains better performance than other methods when both

NMI and ACC evaluation metrics are applied.

C. Classification Results

In the second group, we apply Nearest Neighbors (NN)

classifier to test the performance. We utilize 5-fold cross-

Table 3. Accuracy (%) of different feature selection methods

Dataset Baseline LapScore MCFS JELSR NDFS TSAFS

Lung 67.00 ± 1.64 60.37 ± 1.89 81.28 ± 3.24 78.74 ± 4.17 77.49 ± 4.13 82.76 ± 2.83

Glioma 52.00 ± 3.12 60.12 ± 3.24 60.40 ± 2.73 59.45 ± 3.41 58.38 ± 3.28 61.10 ± 3.26

Lymphoma 56.54 ± 5.26 62.50 ± 3.64 60.67 ± 3.84 58.33 ± 4.17 58.63 ± 4.50 65.63 ± 4.37

ALLAML 68.17 ± 6.48 73.65 ± 5.12 73.44 ± 5.82 70.54 ± 6.05 72.61 ± 5.71 81.94 ± 6.02

Fig. 1. Normalized mutual information (NMI) by varying the number of selected genes. (a) Lung, (b) Glioma, (c) Lymphoma, and (d)
ALLAML.
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validation by which the original samples are randomly

partitioned into 5 equal-sized subsets. Of the 5 subsets, a

single subset is retained as the validation data for testing

the model, and the remaining 4 subsets are used as

training data. The cross-validation process is then repeated

5 times (the folds), with each of the 5 subsets used exactly

once as the validation data. We perform gene selection by

using the training data, and evaluate the performance of

the selected genes on the test data. The experiments are

repeated 20 times on the best parameter combination. We

report the mean classification error with standard deviation.

The classification results of different methods on the

four datasets are listed in Table 4. We can see from the

table that the proposed TSAFS method has a lower

classification error than the other methods on most of the

datasets, except for the Lung dataset. On the Lung

dataset, the baseline method obtains the best result, and

gene selection cannot reduce the classification error. On

the other three datasets, most of the unsupervised feature

selection methods perform better than the baseline method.

In particular, on the ALLAML dataset, the proposed

method outperforms other methods significantly. This is

because, on the ALLAML dataset, by the proposed method

the selected genes have less redundancy and have a higher

accuracy in predictive results.

The detailed classification performances for the selected

features are shown in Fig. 3. We can see from Fig. 3 that

the proposed TSAFS method has a lower classification

error than other methods on most of the selected features

on the four datasets. The proposed TSAFS method also

has a better stability than other methods on the four

datasets. On three of the four datasets, i.e., on the Lung,

Lymphoma and ALLAML datasets, the proposed method

outperforms other methods significantly. In particular, on

the Lung and ALLAML datasets, TSAFS has the best

performance on all of the selected features. 

Table 4. Classification error (%) of different feature selection methods

Dataset Baseline LapScore MCFS JELSR NDFS TSAFS

Lung 5.93 ± 1.63 8.90 ± 1.73 6.84 ± 1.22 7.33 ± 2.04 8.37 ± 1.62 6.90 ± 2.10

Glioma 22.02 ± 3.00 22.20 ± 3.18 19.22 ± 2.81 20.12 ± 3.06 22.00 ± 2.73 19.03 ± 3.02

Lymphoma 16.67 ± 3.04 15.58 ± 2.33 15.51 ± 2.57 16.63 ± 2.93 16.14 ± 3.22 10.42 ± 3.11

ALLAML 18.68 ± 4.63 13.89 ± 3.52 13.59 ± 4.00 17.28 ± 3.66 15.28 ± 4.07 6.56 ± 3.98

Fig. 2. Accuracy (ACC) by varying the number of selected genes. (a) Lung, (b) Glioma, (c) Lymphoma, and (d) ALLAML.
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V. CONCLUSION

In this paper, we proposed a novel unsupervised feature

selection method for gene selection in microarray data

analysis. The proposed method incorporates embedded

learning and l2,1-norm sparse regression into a framework

for feature learning. Local tangent space alignment is

applied during embedded learning to preserve the local

data structure. The proposed method optimizes for selecting

the informative genes which better capture the interesting

natural classes of samples. We provided an effective

algorithm to solve the optimization problem in our method.

Experiments on four real microarray gene expression

datasets demonstrated that the proposed method not only

achieves good performance, but also outperforms other

state-of-the-art unsupervised feature selection methods.

In future work, we will consider an efficient method to

reduce the time complexity of the proposed algorithm to

solve the optimization problem.
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