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Abstract
Feature selection is one of the most challenging problems of pattern recognition and data mining. In this paper, a feature

selection algorithm based on an improved version of binary differential evolution is proposed. The method simultaneously

optimizes two feature selection criteria, namely, set approximation accuracy of rough set theory and relational algebra

based derived score, in order to select the most relevant feature subset from an entire feature set. Superiority of the pro-

posed method over other state-of-the-art methods is confirmed by experimental results, which is conducted over seven

publicly available benchmark datasets of different characteristics such as a low number of objects with a high number of

features, and a high number of objects with a low number of features.
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I. INTRODUCTION

Data mining is the kind of knowledge discovery

process for searching meaningful patterns or interesting

information from the real life voluminous dataset with a

huge number of redundant, noisy and inconsistent data.

Tremendous growth in technology in the past few decades

results in a mammoth amount of data which is to be

analyzed intelligently to extract fruitful knowledge from

it. Feature selection is an important part of dimension

reduction which is mainly done in two approaches: filter

approach [1], which is independent of underlying classifier

strategy, and wrapper approach [2], which entirely depends

upon the underlying classifier. However, some hybrid

feature selection [2] and embedded feature selection [3]

techniques are noticeable in the literature. To overcome

the curse of dimensionality [4], feature selection is the

most important part of data mining. Objective of feature
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selection process is to select the most informative and

compact subset from an entire feature set without losing

any important information required for subsequent data

mining process. Small sample size and external noise are

often treated as obstacles for achieving good mining

result from the data. The stability which indicates the

insensitivity of feature selection over external perturbation

in the data set or induced noise in the data set plays an

important role in the knowledge discovery process. 

Inherently, feature selection is a combinatorial optimi-

zation problem [5] which searches an optimal feature

subset of a pool of 2N competing candidate subset in the

data set of N features. Optimum feature selection can be

done by means of several unsupervised measures like

feature similarity measure (FSFS) [6], unsupervised

discriminative feature selection (UDFS) [7], multi-cluster

feature selection [8], etc. Popular methods for feature

selection include the fuzzy-rough feature selection [9-11],

rough set based feature selection [12, 13] and probabilistic

feature selection [14]. Independent of learning mechanism

to search for an optimal feature subset is the primary

objective of feature selection algorithm. As optimal feature

subset selection from a pool of 2N competing candidate

solution is an NP-complete problem, several evolutionary

search methods [15-20] are used for the purpose. 

At present situation, differential evolution (DE) [21,

22] holds a very prominent role in evolutionary optimizer

space. Various measures have been taken to improve the

performance of DE for scalable optimization problems.

Some DE-variants incorporate parameter adaptation

based on success-history (like SaDE [23], JADE [24]),

new mutation and crossover policies (like Pro-DE [25],

MDE-pBX [26]), and combining diverse offspring

generation policies (like CoDE [27], EPSDE [28]). For

large-scale optimization problems (greater than 500

dimensions) DE has been adopted by methods including

comprehensibly all the above three algorithmic philo-

sophies. Owing to its inherent simplicity, DE was used as

the base optimizer in Yang et al.’s first work [29] on

random grouping based CCEAs. Zamuda et al. [30]

enriched DE by log-normal self-adaptation of its control

parameters and by using cooperative co-evolution as a

decomposition mechanism based on each dimension. The

cooperative micro-DE developed by Parsopoulos [31] for

large scale global optimization. Zhao et al. [32] hybri-

dized the self-adaptive DE with MTS for large scale

optimization. Some other approaches of improving DE

for high-dimensional function optimization can be found

in [33-35].

In the paper, multi-objective search for optimal feature

subset selection using bi-objective differential evolution

is proposed. In the method, feature selector uses two

objective functions, one based on set approximation

accuracy of rough set theory [36] and the other based on

division operation of relational algebra. For selection step

in proposed modified binary differential evolution, a

dominance based [37] approach is used in the paper. Each

bi-objective differential evolution based feature selector

(DEFS) produces a non-dominated [37] feature subset

from which the final feature subset is chosen. Some well-

known datasets with typical characteristics like small

sample size with large feature size, and large sample size

with small feature size are collected from publicly available

UCI ML repository [38] to show the effectiveness of the

proposed method. Performance comparison of proposed

method with some state of the art feature selection methods

like feature similarity measure or FSFS [4], Laplacian

score for feature selection or LSFS [39], multi-cluster

feature selection or MCFS [40], dense subgraph finding

with feature clustering or DSFFC [41], correlation based

feature selection or CFS [42], CON [42], particle swarm

optimization search or PSO search [43], genetic search

[44] and improved differential evolution based unsuper-

vised feature selection or IMoDEFS [45] is provided in

the paper. Classification accuracies on reduced datasets

generated by CFS, CON, PSO search and genetic search

are measured by various classifiers available at WEKA

[46] tool while the same is collected from paper [41] for

feature selection methods like FSFS, LSFS, MCFS and

DSFFC. The experimental result shows the effectiveness

of the proposed method. 

The remaining part of the paper is organized as follows:

some preliminary concepts of DE used in proposed

method are described in Section II. Subsequently, detailed

feature selection methodologies based on DE, experi-

mental results and comparative performance analysis are

provided in Sections II and III, respectively. Finally,

Section IV holds the conclusion and final comments.

II. THE DIFFERENTIAL EVOLUTION 
PRELIMINARIES

Initialization, mutation, recombination and selection

are four basic steps of standard differential evolution or DE

algorithm. The generations are executed sequentially until

some termination criteria are satisfied (proposed work

used exhaustion of maximum iteration as termination

criteria).

A. Initialization

In DE, initialization of Np real-valued vectors whose

components represent D parameters of the optimization

problem is the first step of search for global optimum in

D directional search space. A generalized notation used

to identify the ith solution (real parameter vector) of the

present generation G can be shown as:

.

Given the decision parameter bounds,

Xi,G x1,i,G, x2,i,G ... xD,i,G[ ]=
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, and 

, the jth dimension of ith individual is initialized by

Eq. (1).

(1)

where randi,j is a uniformly distributed random number

lying in the range [0, 1] and it is newly generated for each

ordered pair (i, j).

B. Mutation

Invited target vector is the term for any population

member (say, i) of the current population, mutated with

scaled difference vectors  to produce a new

mutant or donor vector. The indices r1 and r2, sampled

from {1,2,…,Np}, are different from the current index i. A

scaling factor F, usually lying in the range [0.4, 2], scales

the difference vector(s). Two well-known DE mutation

strategies are listed in Eq. (2a) and (2b).

DE / rand / 1: :  (2a)

DE /best /1: :  (2b)

where r1, r2, and r3 are mutually exclusive indices that are

randomly selected from {1,2,…,Np}.

C. Recombination

In DE, the crossover step aims to combine the

individual components of the parent and the mutant vector

into a single offspring commonly known as trial vector

. DE primarily employs either

exponential (two-point modulo) or binomial (uniform)

crossover strategies. Generally, binomial crossover is

preferred since it does away with the inherent repre-

sentational bias in n-point crossover by simulating D

random trials. Moreover, a recent work [35] attributing to

the sensitivity of crossover to population size has reported

the exponential variant to be more prone as compared to

its binomial counterpart. Owing to the aforesaid observations,

here we employ binomial crossover to form the trial vector.

In order to implement the binomial crossover, the control

parameter Crossover rate (Cr) is set to a fixed value lying

in the range [0, 1] and then D independent random

numbers (between 0 and 1) are sampled uniformly and

compared with Cr to decide which component is to be

included in the trial vector. The components of the trial

vector are computed using Eq. (3).

(3)

where, jr is a randomly chosen index from {1, 2…D} and

it ensures that at least one component from the mutant

vector is present in the offspring produced.

D. Selection

Finally, a selection process is performed through a

one-to-one competition between the parent and the

offspring to maintain a constant population size. The

selection process can be defined using Eq. (4).

(4) 

where, f(.) is the objective function to be minimized.

III. DE BASED FEATURE SELECTION

In the paper, the concepts of DE are used to select the

most important features of the dataset that can fully

characterize the overall system.

A. Population Generation

As DE is a population based stochastic search algorithm,

the initial population for proposed method is created at

random. The dimension of population set is P×N where

P is the defined population size and N is the number of

features in the dataset.

B. Encoded Solution Representation

Binary string representation of potential solution is

opted in this work. The length of the string is the same as

the total number of features present in the dataset. Each

encoded population member consists only of two values,

where ‘1’ means that index feature is present in current

subset and ‘0’ means that index feature is absent in

current subset. So, a chromosome C1 of length K is

represented as {1 0 1 1 . . . 1 0 }.

C. Mutation Strategy

While traditional ‘vector difference based’ mutation

strategies are perfect for real values, this scheme is not

suitable for the proposed work where population of

binary strings is considered. To overcome this problem the

proposed method uses hamming distance [47] and binary

bitwise operation based mutation scheme. In this scheme,

for the difference vector two distinct population members

are selected from current population at unbiased manner.

Then hamming distance is calculated among these two

population members and a scaling parameter F [0.5, 2]

is multiplied with it and its ceiling value is considered as

the difference factor for proposed mutation scheme. Now

Xmax x1,max, x2,max ... xD,max[ ]= Xmin x1,min, x2,min ...[=

xD,min]

xi,j xj,min randi,j xj,max xj,min–( )×+=

Xr1,G Xr2,G–( )

Vi,G Xr
1
,G F Xr

2
,G Xr

3
,G–( )+=

Vi,G Xbest,G F Xr
2
,G Xr

3
,G–( )+=

Ui,G u1,i,G, u2,i,G, ... uD,i,G[ ]=

uj,i,G

vj,i,G, if  randi,j CR<   and  j jr= ,

xj,i,G otherwise⎩
⎨
⎧

=

Xi,G 1+

Ui, if  f Ui( ) f Xi( )≤ ,

Xi, otherwise⎩
⎨
⎧

=

 ∈
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from base vector a random string is generated, which has

the same hamming distance of difference factor with the

base vector.

D. Recombination Strategy

Here, binomial recombination [21] strategy is used

where each dimension of newly generated trial vector

comes from the corresponding dimension of either base

vector or mutant vector based on the control parameter

Cr. The value of Cr is chosen either 0 or 1 at random and

unique for each dimension of trial vector and finally the

standard binomial recombination is opted.

E. Set Dominance Relationship, Non-dominated
Set and Pareto Front

Dominance Relationship: A solution X1 dominates

other solution X2 and it is written as X1 ≥ X2 if both of the

following conditions are satisfied: 

(1) The solution X1 is no worse than X2 with respect to

all objective functions;

(2) The solution X1 is strictly better than X2 with

respect to at least one objective function.

Mathematically, X1 ≥ X2 iff fi(X1) ≥ fi(X2) for all M

objective functions f1, f2, …, fM and there exist at least one

objective function fj (for j = 1, 2, …, M) for which fj(X1) >

fj(X2). Dominance relation is not reflexive and symmetric

but transitive. Non-dominated set is the set among a set

of solutions R that are not dominated by any member of

the set R.

Strong dominance solution is the solution X1 which

strongly dominates another solution X2, i.e., X1 > X2 if

solution X1 is strictly better than solution X2 in all M

objective functions. 

Algorithm 1 of proposed DE based feature selection

method or DEFS is given below.

F. Objective Functions

The proposed bi-objective feature selection algorithm

uses approximation accuracy of rough set theory and

relational algebra based score as searching criteria for

selecting the most relevant and noise-insensitive feature

subset from a large feature set. To calculate lower bound

approximation for any target set X with respect to an

attribute subset P, universe of discourse U is partitioned

into equivalence classes [x]p using indiscernible relation

IND(P), defined in Eq. (5).

(5)

where, f is the function that represents attribute value of

an object. Similarly, equivalence classes [x]D are formed

using Eq. (5) for the subset D consisting of decision

attributes. Thus, two different partitions U/P and U/D of

equivalence classes [x]P and [x]D are obtained. Now, each

class [x]D in U/D is considered to be the target set X, i.e.,

X  U/D. The lower approximation PX of X under P is

computed using Eq. (6), for all X  U/D which contains

the set of objects that positively belong to the target set X.

The positive region POSP(D) is obtained by taking the

union of the lower approximations PX under P for all X in

U/D, using Eq. (7), dependency value of D on P (i.e.,

γP(D)) is obtained using Equation 8 which signifies how

much the decision attribute depends on the condition

attribute set P. If D is fully dependent on P, i.e., if γP(D) = 1

then P is the sufficient to represent the decision system

and remaining attributes are irrelevant in the sense that

Algorithm 1 DEFS (U,NP,FV,CRV,D,IM)

IND P( ) x,y( ) U U×( ) a∀∈{ P,fa x( )∈ fa y( )= =

∈
∈
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they do not contribute any significant information about

the system.

(6) 

POSP(D) = (7) 

(8)

The relational algebra operation division (÷), defined

in Definition 1, has been used to compute the second

objective function of proposed method. For each present

feature Ci in any population member, S(Ci) is calculated

according to Eq. (9.)

(9)

Final score of any given population member is calculated

by taking average of all individual Ci scores, where

i=1,2,…,N.

Minimum score of Ci implies that there is a maximum

number of objects having feature values similar to Ci,

which can uniquely take the decisions. Thus, the

population member with minimum average score is of

maximum importance and so lower score implies higher

possibility of becoming a member of reduct.

DEFINITION 1: Relational algebra operation division

(÷) is a binary operation applied on two relations R1 (P)

and R2 (Q) and produce another relation R (P – Q) where

, where P, Q are set of attributes of R1, R2, respectively.

So, R (i.e., R1 ÷ R2) contains set of all tuples t such that

for any tuple t1 and t2 of R1 and R2, respectively, following

conditions hold.

                                                             ● t [P-Q] = t1 [P-Q]

                                                             ● t1 [P-Q] = t2 [Q]

Hence, to find most compact feature set first objective

namely set approximation accuracy, is to ‘be maximized’

and second objective function relational algebra based

score is to be minimized; in implementation negative of

second objective is considered so now both objective

values are to be maximized.

IV. EXPERIMENTAL RESULTS
 

Extensive experiments are done to evaluate proposed

feature selection method using some well-known machine

learning datasets from UCI ML repository [38]. Details

of datasets are given in Section IV-A and a performance

comparison of proposed method with FSFS, LSFS and

MCFS. DSFS is opted from [41] for comparison reason,

results of IMoDEFS [45] on those datasets are taken from

[45]. For LSFS and MCFS, neighborhood size is taken as

default (=5). The details of these benchmark datasets,

used classifiers and experimental results are given in this

section. Parameters for proposed DE based feature

selector is given underneath, population size is taken to

be 100, maximum number of function evaluation is set to

D×104, where D is the problem dimensionality; for

comparative study all parameters are taken as respective

algorithms in the literature.

A. Used Dataset

The proposed method is validated using seven publicly

available datasets, namely, Ionosphere, Sonar, Spambase,

WDBC, Isolet, Multiple Features and Spectf, collected

from UCI ML repository. A detailed description of all

these datasets is given in (Table 1). The datasets are

normalized using max-min normalization and all features

are sealed into [0, 1] interval. These datasets are specifically

chosen for some characteristics like large sample size

(isolet, multiple features, spambase,) small feature size

(ionosphere, sonar, spectf), two class (spambase, ionosphere,

wdbc, sonar, spectf) and multiclass (multiple features,

isolet) which are ideal to demonstrate effectiveness of the

feature selection algorithm.

B. Classifiers Used

Five classifiers, namely Naïve-Bayes (NB) [48], support

vector machine (SVM) [49], K-nearest neighbors (k-NN)

[48], AdaBoost_Naive Bayes [50], C4.5 [51], are used to

compare and contrast classification accuracy of the

different feature selection algorithms.

SVM is used with RBF Kernel, k value of k-NN is set

to the square root of sample size of data. Ten-fold cross-

validation is used for this classification performance

evaluation. All these classifiers are used with WEKA tool. 

C. Evaluation Criteria

Five evaluation criteria are used for all these datasets

for every classifier, as follows:

PX x x[ ]P X⊆{ }=

⊃

X U∈ D⁄ PX

γP D( )
POSP D( )

U 
------------------------=

S Ci( ) ΠC
i

D∪ DS( ) ΠD DS( )÷=

Q P⊂

Table 1. Characteristics of datasets

Dataset Features Samples Class

Multiple features 649 2000 10

Isolet 617 6238 26

Spambase 57 4601 2

Ionosphere 34 351 2

Wdbc 30 569 2

Sonar 60 208 2

Spectf 44 80 2
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MCC 

where TP, TN, FP, FN stand for true positives, true

negatives, false positives, and false negatives, respectively.

MCC stands for Mathew’s correlation coefficient. For all

test datasets proposed method is executed 10 times and

average values of those evaluation criteria’s are reported

here. For multiple features and Isolet dataset only

accuracy is taken as evaluation criteria as these datasets

are multi class in nature.

D. Comparative Study

To show the effectiveness of the proposed method

rigorous test has been done and the result of those test are

listed in (Table 3) for comparison purpose. For these tests

following parameter values are used: Population number

= 100, Max Iteration = 500, CR = [0, 1], F = [2, 0.5].

Comparative accuracy for different degree of proposed

feature selection method and other methods are given in

Tables 2–6. Each entry of the table is average taken over

10 independent runs.   

Acc
TP TN+

TP TN FP FN+ + +
--------------------------------------------=

Recall
TP
P
------- TP

TP FN+
-------------------= =

Fall_out
FP
N
------- FP

FP TN+
-------------------= =

Specificity
TN
N
------- TN

FP TN+
------------------- 1 Fall_out–= = =

F1_score
2 TP×

2 TP FP FN+ +×
----------------------------------------=

TP TN FP FN×–×
TP FP+( ) TP FN–( ) TN FP+( ) TN FN+( )( )

---------------------------------------------------------------------------------------------------------=

Table 2. Performance comparison on Ionosphere and Sonar dataset

Ionosphere Sonar

NB SVM K-NN Boosting C4.5 NB SVM k-NN Boosting C4.5

FSFS

Accuracy (%) 73.70 91.80 75.41 85.93 80.10 70.83 80.24 68.51 77.16 70.11

Recall 0.740 0.920 0.756 0.863 0.810 0.712 0.808 0.692 0.779 0.702

Fallout 0.260 0.080 0.246 0.142 0.200 0.289 0.202 0.317 0.231 0.298

Specificity 0.740 0.920 0.754 0.858 0.800 0.712 0.798 0.683 0.769 0.702

F1 score 0.740 0.920 0.756 0.860 0.800 0.712 0.804 0.689 0.775 0.702

MCC 0.480 0.840 0.510 0.721 0.610 0.423 0.606 0.375 0.548 0.404

LSFS

Accuracy (%) 76.80 91.40 84.67 88.83 82.90 71.88 81.01 67.98 75.67 75.25

Recall 0.770 0.920 0.851 0.891 0.830 0.721 0.817 0.683 0.760 0.760

Fallout 0.230 0.090 0.153 0.114 0.170 0.279 0.192 0.317 0.240 0.240

Specificity 0.770 0.910 0.847 0.886 0.830 0.721 0.808 0.683 0.760 0.760

F1 score 0.770 0.920 0.849 0.889 0.830 0.721 0.813 0.683 0.760 0.760

MCC 0.540 0.830 0.698 0.778 0.660 0.442 0.625 0.365 0.519 0.519

MCFS

Accuracy (%) 87.90 94.20 82.11 90.46 88.20 67.36 82.45 70.14 77.21 73.12

Recall 0.880 0.940 0.824 0.909 0.890 0.683 0.827 0.702 0.779 0.740

Fallout 0.120 0.060 0.177 0.097 0.120 0.327 0.173 0.298 0.231 0.269

Specificity 0.880 0.940 0.823 0.903 0.880 0.673 0.827 0.702 0.769 0.731

F1 score 0.880 0.940 0.824 0.906 0.880 0.679 0.827 0.702 0.775 0.737

MCC 0.760 0.890 0.647 0.812 0.770 0.356 0.654 0.404 0.548 0.471

DSFFC

Accuracy (%) 89.10 94.10 82.54 90.85 87.50 69.42 82.21 70.83 79.09 71.01

Recall 0.890 0.940 0.829 0.909 0.880 0.702 0.827 0.721 0.798 0.712

Fallout 0.110 0.060 0.176 0.091 0.130 0.308 0.183 0.279 0.212 0.289

Specificity 0.890 0.940 0.824 0.909 0.880 0.692 0.817 0.721 0.789 0.712

F1 score 0.890 0.940 0.826 0.909 0.880 0.699 0.823 0.721 0.794 0.712

MCC 0.780 0.890 0.652 0.818 0.760 0.394 0.644 0.442 0.587 0.423
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Table 2. Continued

Ionosphere Sonar

NB SVM K-NN Boosting C4.5 NB SVM k-NN Boosting C4.5

CFS

Accuracy (%) 77.300 78.60 79.88 80.00 68.30 60.12 59.35 70.11 68.25 67.00

Recall 0.780 0.790 0.801 0.801 0.630 0.606 0.596 0.702 0.683 0.673

Fallout 0.230 0.220 0.200 0.200 0.370 0.394 0.404 0.298 0.317 0.327

Specificity 0.770 0.780 0.800 0.800 0.630 0.606 0.596 0.702 0.683 0.673

F1 score 0.780 0.790 0.801 0.801 0.630 0.606 0.596 0.702 0.683 0.673

MCC 0.550 0.570 0.601 0.601 0.27 0.212 0.192 0.404 0.365 0.346

CON

Accuracy (%) 67.60 63.20 70.00 72.35 63.00 61.29 63.55 69.53 62.39 65.00

Recall 0.680 0.630 0.703 0.726 0.630 0.615 0.644 0.702 0.625 0.654

Fallout 0.320 0.370 0.301 0.278 0.370 0.385 0.365 0.308 0.375 0.346

Specificity 0.680 0.630 0.699 0.722 0.630 0.615 0.635 0.692 0.625 0.654

F1 score 0.680 0.630 0.701 0.724 0.630 0.615 0.641 0.699 0.625 0.654

MCC 0.360 0.270 0.402 0.447 0.270 0.231 0.279 0.394 0.250 0.308

PSO 

search

Accuracy (%) 70.00 70.30 73.93 78.05 73.00 70.00 69.53 62.39 76.55 70.33

Recall 0.700 0.710 0.743 0.783 0.730 0.702 0.702 0.625 0.769 0.712

Fallout 0.300 0.300 0.261 0.222 0.270 0.298 0.308 0.375 0.231 0.298

Specificity 0.700 0.700 0.739 0.778 0.730 0.702 0.692 0.625 0.769 0.702

F1 score 0.700 0.710 0.741 0.781 0.730 0.702 0.699 0.625 0.769 0.708

MCC 0.400 0.410 0.482 0.561 0.460 0.404 0.394 0.250 0.539 0.414

Genetic 

search

Accuracy (%) 75.300 79.00 78.09 72.33 72.00 65 63.11 70.29 61.00 56.09

Recall 0.760 0.790 0.794 0.726 0.720 0.654 0.635 0.712 0.615 0.577

Fallout 0.250 0.210 0.210 0.278 0.280 0.346 0.365 0.298 0.394 0.433

Specificity 0.750 0.790 0.790 0.722 0.720 0.654 0.635 0.702 0.606 0.567

F1 score 0.760 0.790 0.792 0.724 0.720 0.654 0.635 0.708 0.612 0.574

MCC 0.510 0.58 0.584 0.447 0.440 0.308 0.269 0.414 0.221 0.144

IMoDEFS

Accuracy (%) 90.10 93.70 83.87 91.28 90.60 68.77 84.18 75.05 81.83 73.99

Recall 0.900 0.940 0.841 0.915 0.910 0.692 0.846 0.760 0.827 0.740

Fallout 0.100 0.060 0.160 0.086 0.090 0.308 0.154 0.250 0.183 0.260

Specificity 0.900 0.940 0.840 0.914 0.910 0.692 0.846 0.750 0.817 0.740

F1 score 0.900 0.940 0.841 0.915 0.910 0.692 0.846 0.756 0.823 0.740

MCC 0.810 0.88 0.681 0.829 0.820 0.385 0.692 0.510 0.644 0.481

Proposed

Accuracy (%) 89.70 93.10 84.89 84.11 87.10 73.56 83.65 79.98 76.65 79.12

Recall 0.900 0.930 0.851 0.846 0.870 0.74 0.837 0.808 0.769 0.798

Fallout 0.100 0.070 0.153 0.159 0.130 0.26 0.164 0.202 0.231 0.212

Specificity 0.900 0.930 0.847 0.841 0.870 0.74 0.837 0.798 0.769 0.789

F1 score 0.900 0.930 0.849 0.843 0.870 0.74 0.837 0.804 0.769 0.794

MCC 0.800 0.860 0.698 0.687 0.740 0.481 0.673 0.606 0.539 0.587
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Table 3. Performance comparison on Spam and WDBC dataset

Spam WDBC

NB SVM k-NN Boosting C4.5 NB SVM k-NN Boosting C4.5

 FSFS

Accuracy (%) 66.70 79.00 80.81 66.85 77.00 91.11 94.41 93.22 94.22 95.55

Recall 0.670 0.790 0.808 0.669 0.770 0.912 0.947 0.933 0.944 0.958

Fallout 0.330 0.210 0.192 0.332 0.230 0.088 0.056 0.067 0.056 0.046

Specificity 0.670 0.790 0.808 0.668 0.770 0.912 0.944 0.933 0.944 0.954

F1 score 0.670 0.790 0.808 0.669 0.770 0.912 0.946 0.933 0.944 0.956

MCC 0.330 0.580 0.617 0.337 0.540 0.824 0.891 0.866 0.888 0.912

LSFS

Accuracy (%) 69.30 83.80 82.86 69.28 69.10 93.71 96.87 95.87 95.85 90.29

Recall 0.690 0.840 0.827 0.693 0.690 0.940 0.972 0.961 0.961 0.905

Fallout 0.310 0.160 0.173 0.307 0.310 0.063 0.032 0.042 0.042 0.098

Specificity 0.690 0.840 0.827 0.693 0.690 0.937 0.968 0.958 0.958 0.902

F1 score 0.690 0.840 0.827 0.693 0.690 0.939 0.970 0.960 0.960 0.903

MCC 0.390 0.680 0.654 0.386 0.380 0.877 0.940 0.919 0.919 0.807

MCFS

Accuracy (%) 65.30 80.00 82.27 65.25 72.60 93.39 96.68 96.22 95.11 88.69

Recall 0.650 0.800 0.823 0.653 0.730 0.937 0.968 0.965 0.954 0.888

Fallout 0.350 0.200 0.177 0.347 0.270 0.067 0.031 0.039 0.049 0.113

Specificity 0.650 0.800 0.823 0.653 0.730 0.933 0.968 0.961 0.951 0.887

F1 score 0.650 0.800 0.823 0.653 0.730 0.935 0.968 0.963 0.953 0.888

MCC 0.310 0.600 0.646 0.305 0.450 0.87 0.937 0.926 0.905 0.775

DSFFC

Accuracy (%) 75.60 86.70 84.31 75.71 69.90 94.34 96.82 95.73 96.22 91.23

Recall 0.760 0.870 0.844 0.757 0.700 0.944 0.968 0.958 0.965 0.916

Fallout 0.240 0.130 0.157 0.243 0.300 0.056 0.032 0.042 0.039 0.088

Specificity 0.760 0.870 0.843 0.757 0.700 0.944 0.968 0.958 0.961 0.912

F1 score 0.760 0.870 0.843 0.757 0.700 0.944 0.968 0.958 0.963 0.914

MCC 0.510 0.730 0.687 0.515 0.400 0.888 0.937 0.916 0.926 0.828

CFS

Accuracy (%) 76.30 79.10 78.59 70.00 70.10 90.00 91.22 93.31 92.56 92.32

Recall 0.760 0.790 0.786 0.700 0.700 0.902 0.916 0.933 0.926 0.926

Fallout 0.240 0.210 0.214 0.300 0.300 0.099 0.088 0.067 0.074 0.077

Specificity 0.760 0.790 0.786 0.700 0.700 0.901 0.912 0.933 0.926 0.923

F1 score 0.760 0.790 0.786 0.700 0.700 0.902 0.914 0.933 0.926 0.924

MCC 0.530 0.580 0.572 0.400 0.400 0.803 0.828 0.866 0.852 0.849

CON

Accuracy (%) 70.00 70.00 69.03 68.95 65.10 88.59 89.56 90.23 91.69 89.99

Recall 0.700 0.700 0.691 0.690 0.650 0.888 0.898 0.905 0.919 0.902

Fallout 0.300 0.300 0.31 0.310 0.350 0.113 0.105 0.098 0.084 0.099

Specificity 0.700 0.700 0.69 0.690 0.650 0.887 0.895 0.902 0.916 0.901

F1 score 0.700 0.700 0.691 0.690 0.650 0.888 0.896 0.903 0.917 0.902

MCC 0.400 0.400 0.381 0.379 0.300 0.775 0.793 0.807 0.835 0.803

PSO 

search

Accuracy (%) 73.50 79.10 81.00 72.35 76.00 91.29 92.35 91.36 90.25 89.89

Recall 0.740 0.790 0.810 0.724 0.760 0.916 0.926 0.916 0.905 0.901

Fallout 0.270 0.210 0.190 0.277 0.240 0.088 0.077 0.088 0.098 0.102

Specificity 0.740 0.790 0.810 0.277 0.760 0.912 0.923 0.912 0.902 0.898

F1 score 0.740 0.790 0.810 0.724 0.760 0.914 0.924 0.914 0.903 0.900

MCC 0.470 0.580 0.620 0.447 0.520 0.828 0.849 0.828 0.807 0.800
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From Table 6, it is clear that proposed method works

better than FSFS, LSFS, MCFS, DSFFC, CFS, CON,

PSO search, Genetic search, and is a close contender of

IMoDEFS method and in some cases outperforms them.

The experiments are carried out in MATLAB using

workstation having 5 GHz octa-core CPU and 32 GB of

RAM. 

V. CONCLUSIONS
 

In this work, an algorithm for feature selection using

modified binary differential evolution is proposed. For this

purpose two objective functions, namely division based

Table 3. Continued
Spam WDBC

NB SVM k-NN Boosting C4.5 NB SVM k-NN Boosting C4.5

Genetic 

search

Accuracy (%) 70.20 62.10 63.39 69.99 70.10 90.29 90.35 89.39 88.36 85.78

Recall 0.700 0.620 0.634 0.700 0.700 0.905 0.905 0.895 0.884 0.860

Fallout 0.300 0.380 0.366 0.300 0.300 0.098 0.095 0.106 0.116 0.141

Specificity 0.700 0.620 0.634 0.700 0.700 0.902 0.905 0.894 0.884 0.859

F1 score 0.700 0.620 0.634 0.700 0.700 0.903 0.905 0.895 0.884 0.860

MCC 0.410 0.240 0.268 0.400 0.400 0.807 0.81 0.789 0.768 0.719

IMoDEFS

Accuracy (%) 76.10 87.80 85.47 75.99 91.80 93.18 96.38 95.73 96.27 95.20

Recall 0.760 0.880 0.855 0.760 0.920 0.933 0.965 0.958 0.965 0.954

Fallout 0.240 0.120 0.145 0.240 0.080 0.067 0.035 0.042 0.039 0.049

Specificity 0.760 0.880 0.855 0.760 0.920 0.933 0.965 0.958 0.961 0.951

F1 score 0.760 0.880 0.855 0.760 0.920 0.933 0.965 0.958 0.963 0.953

MCC 0.520 0.760 0.710 0.520 0.840 0.866 0.93 0.916 0.926 0.905

Proposed

Accuracy (%) 78.90 92.50 91.22 88.56 90.70 95.37 85.66 96.89 92.23 95.72

Recall 0.790 0.080 0.913 0.886 0.910 0.954 0.859 0.972 0.923 0.958

Fallout 0.210 0.930 0.088 0.114 0.090 0.046 0.144 0.032 0.078 0.042

Specificity 0.790 0.930 0.912 0.886 0.910 0.954 0.856 0.968 0.923 0.958

F1 score 0.790 0.930 0.912 0.886 0.910 0.954 0.858 0.97 0.923 0.958

MCC 0.580 0.850 0.825 0.771 0.810 0.909 0.715 0.94 0.845 0.916

Table 5. Performance comparison (accuracy, %) on Isolet dataset

Isolet

NB SVM k-NN Boosting C4.5

FSFS 66.00 88.20 71.42 65.78 61.70

LSFS 76.00 93.00 82.60 75.53 76.60

MCFS 82.00 95.80 87.99 81.99 78.30

DSFFC 84.00 95.30 86.19 84.82 79.60

CFS 80.00 82.30 83.69 84.81 81.20

CON 80.00 78.20 70.11 76.25 71.20

PSO search 80.00 81.30 82.55 83.92 69.00

Genetic search 70.00 68.20 71.55 68.99 75.30

IMoDEFS 86.00 95.50 87.79 86.03 80.70

Proposed 86.00 96.00 89.46 85.45 85.00

Table 4. Performance comparison (accuracy, %) on Spectf and Multiple features dataset

Spectf Multiple features

NB SVM k-NN Boosting C4.5 NB SVM K-NN Boosting C4.5

FSFS 73.63 73.38 66.00 65.50 65.50 96.00 97.90 94.49 96.54 91.00

LSFS 72.79 74.00 69.63 69.00 62.33 94.00 97.70 93.02 96.15 92.00

MCFS 72.13 71.88 66.38 72.75 63.21 96.00 98.10 95.58 97.06 94.00

DSFFC 79.75 76.88 68.13 76.88 76.12 94.00 98.40 95.61 96.22 91.00

CFS 70.23 71.11 70.21 69.22 60.29 92.00 94.60 93.99 96.55 92.00

CON 70.11 63.33 61.39 65.55 60.00 93.00 94.60 93.99 96.55 92.00

PSO search 71.11 72.19 70.11 61.15 65.59 92.00 90.20 93.55 90.00 90.00

Genetic search 61.00 62.00 63.35 59.99 60.10 90.00 91.50 88.92 89.99 90.00

IMoDEFS 85.75 73.88 66.8 74.63 66.25 95.00 98.20 95.99 96.21 95.00

Proposed 79.20 76.69 72.50 72.35 79.00 99.00 97.20 96.44 97.84 97.00
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feature score and set lower boundary approximation, are

introduced to be used along with proposed global version

of binary differential evolution algorithm. Effectiveness

of proposed algorithm is shown by comparing it with

other several state of the art feature selection methods by

means of different statistical accuracy measures. Compu-

tational complexity of proposed method is relatively

higher than other compared algorithms but on average

proposed method gives significantly better result. The

proposed method used Pareto-based approach to tackle

two objective optimization, thus there are several other

approaches to tackle this kind of problem in future appli-

cability of those methods along with proposed differential

evolution algorithm. Finally, a detailed sensitivity analysis

of the feature selection technique with various algorithmic

parameter need to be done in future.
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