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Abstract
Human activities recognition is a challenging task due to its complexity of human movements and the variety performed

by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information gen-

erated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reduc-

ing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown

to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior per-

formance of our method over some existing methods.
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I. INTRODUCTION

Recognition of human activities has raised considerable

interest in the area of computer vision. The main goal

of this research is to achieve automatic analysis and

classification. In the past few decades, activities recognition

has involved using video sequences captured by color

cameras. However, the inherent limitation of this sensing

device seriously influences the recognition accuracy and

restricts previous methods [1-3]. For example, spatiotemporal-

based approaches are widely used in human activities

recognition by using traditional RGB sequences.

These approaches rely on the detection and representation

of spatiotemporal volumes. Based on Laplacian pyramid,

Shao and Zhen [4] decompose videos into a series of sub-

band feature 3D volumes and present a novel descriptor,
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called spatiotemporal Laplacian pyramid coding, for

holistic human action representation. Laptev et al. [5] do

action recognition by extracting spatiotemporal interesting

points (STIPs) based on the Harris and Stephens’ interest

point operators. They extend the Harris corner function

defined for the 2D spatial domain into the 3D spatio-

temporal domain and employ distinct spatial scale σ and

temporal scale τ. Although vision-based activities recognition

approaches continue to progress [6-9], their performance

is still limited because RGB data is highly sensitive to

various factors like illumination changes, variations in

viewpoint, occlusions and background clutter [10]. 

As imaging technology advances and with the release

of a low-cost sensor of Microsoft Kinect, it has become

possible to capture human skeletal information in real-

time from depth sequences by using Kinect for Windows

SDK 2.0 [11]. We can represent the human body as an

articulated system of rigid segments connected by joints.

Therefore, we can consider this activity as a continuous

evolution of the spatial configuration of these rigid segments

[12].

In this paper, we present an algorithm for human

activities recognition from skeleton sequences. We test

the effectiveness of our method from the perspective of

recognition accuracy. Kinect captures skeletal data. We

normalize the skeletal joints coordinates in orientation

and scale and then produce the skeleton motion map

(SMM) generated by accumulating skeleton trajectories.

We project skeleton motion map in three projective views,

including front view, side view and top view, to reduce

computational complexity and improve computational

efficiency. By experimental testing and analysis, the most

effective projective information is selected and used as

feature descriptor. Sparse representation is a hot research

topic in recent years [13-15]. Motivated by its success in

face classification, we design a fast sparse representation

classifier with regularized least square for human activities

recognition. We can summarize our contributions as follows:

first, we present an algorithm to produce skeleton motion

map. Second, we present using a histogram of gradient

(HOG) of SMM as a descriptor for skeletal structure

information and use temporal difference feature as sequence

constraint. Third, the improved sparse representation

classification algorithm cannot only compress the dictionary

and reduce the complexity, but also ensure the recognition

performance at the same time. 

We have organized the rest of the paper as follows: in

Section II, we review previous work related to human

activities recognition from a skeleton. We introduce our

feature extraction algorithm in Section III. In Section IV,

we introduce an improved classifier with dictionary

optimization based on sparse representation. In Section

V, the experimental results demonstrate the effectiveness

of our proposed framework with comparisons to other

published results. Finally, we conclude the paper in

Section VI.

II. RELATED WORKS

Skeleton-based approaches have become popular thanks

to the work of Shotton, who proposed an algorithm to

accurately estimate the 3D locations of skeletal body

joints in super real-time from single depth images [16,

17], and the release of Microsoft Kinect. Roughly, the

existing skeleton-based methods may be divided into two

categories: joint-based approaches and body part-based

approaches [18]. Joint-based approaches consider the

human skeleton simply as a set of points. The 3D point

positions are often used as features; either the x, y, z

coordinates are used directly without any post-processing

[19], or they are normalized to be invariant to orientation

and scale [20, 21]. 

On the other hand, body part-based approaches consider

the human skeleton as a connected set of rigid segments

(body parts). These approaches either model the temporal

evolution of individual body parts or focus on (directly)

connected pairs of body parts and model the temporal

evolution of joint angles [18, 22].

Based on skeletons extracted from depth maps, many

methods are proposed to classify. In [23] the bag of

words approach is used to model the action sequence and

extract features from the entire sequence and quantize

them using k-means. 

The distance of each feature is computed and classification

is done by computing (dis)similarity between two sequences.

Furthermore, Ofli et al. [22, 23] also used multiple kernels

learning (MKL) to compute the optimal linear combination

of multi-view similarities for the task of action recognition.

In [11], the authors propose a representation of human

pose by the histogram of 3D joints (HOJ3D). They project

the sequence of histograms using linear discriminant

analysis (LDA) and label each posture using the k-means

algorithm. Each posture label from a sequence is fed into

a discrete hidden Markov model (HMM) that gives the

matching probability for each action [21]. 

Qiao et al. [24] define the trajectorylet as a novel local

descriptor that captures static and dynamic information in

a short interval of joint trajectories, and exemplar-SVM

(ESVM) is used to learn a large set of detectors for a large

number of sampled trajectorylets, one for each sampled

trajectorylet. 

Then for each action instance, they select a few

discriminative trajectorylet detectors as candidate detectors

of discriminative trajectorylet. Evaluating on standard

datasets demonstrated that this method obtains superior

results over existing approaches under various experimental

setups. 

Sparse representation (sparse coding) has been successfully

used for solving many classification problems [25-27]. 

For example, in [28], sparse linear representation for

dictionary-based classification is applied to the log-

covariance matrices to recognize human activities from

video data. Yuan et al. [29] propose a novel Multi-Task
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Sparse Learning (MTSL) model combined with beta

process prior to human action recognition. The MTSL

model enforces the robustness in coefficient estimation

compared with performing each task independently.

Besides, the sparseness is achieved via the beta process

formulation. In our work, we applied a sparse coding-

based approach to human activities recognition from

skeletal data. The experiments show that our classifier

performs very favorably against other commonly used

classifiers on recognition accuracy.

III. SKELETON FEATURES EXTRACTION

A. Human Body Skeletal Data Acquisition

A Kinect sensor can capture both RGB video and depth

information, and extract skeletal data in real-time from

depth sequences by using Kinect SDK. Fig. 1 shows some

skeleton examples of the action ‘draw circle (clockwise)’

from UTD Multimodal Human Action Dataset (UTD-

MHAD) dataset [30]. Fig. 2 shows the definition of a 3D

skeleton with 20 tracked skeleton joints. A skeletal image

can provide human body structural information as depth

maps. Furthermore, skeleton joints position and angle

values can provide more abundant and effective information

for action classification. 

In the process of movement, parts of human body are

in a constantly changing state. Therefore, the selection of

benchmark coordinate system is crucial for features

extraction based on skeletal data. Inspired by the work in

[19], we select the first frame with movements as the

standard skeleton, and use its coordinates as the common

basis, then transform all the other motion skeletons in the

sequence to it. Note that the first frame with movement

may not be the first frame in the sequence for there are

some static frames at the beginning. On the other hand,

we only selected motion frames for two reasons. First, the

static skeletal data does not contribute to the motion

characteristics of the video sequence and second, for the

consideration of reducing calculation cost. 

B. Skeleton Motion Map 

Skeleton sequences can provide abundant information

for activities recognition, such as shape, structure, position

and, angles. In this paper, we propose a novel feature

extraction method based on skeleton motion changing for

recognition. We accumulate skeletons in an action

sequence, and define it as skeleton motion map (SMM).

Fig. 1. Skeleton examples of the action ‘draw circle’ (clockwise).

Fig. 2. Skeleton with 20 tracked joints.



Journal of Computing Science and Engineering, Vol. 12, No. 1, March 2018, pp. 1-11

http://dx.doi.org/10.5626/JCSE.2018.12.1.1 4 Suolan Liu et al.

SMM can be seen as a record of action state, so it won't

be influenced by the speed.

We projected a skeleton motion map in three projective

views defined as front view map (SMMf), side view map

(SMMs), and top view map (SMMt) to reduce computational

complexity and extract the more effective information for

classification. Two examples of SMM and its three projected

maps are shown in Fig. 3 and Fig. 4 produced from two

different activities of ‘draw circle (clockwise)’ and ‘walking

in place’. We render these map images over time by

setting line width as two and colors as blue, blue-green,

green, yellow, red, and fuchsia for every 15 frames from

the first frame to the last one to facilitate observation.

Here we set 6 different colors because the average number

of skeleton frames in action from the used dataset is

about 70. Compared with visual results, we can find that

SMMt has the lowest impact on classification, and SMMf

can partly capture body movement but also lost some

important information. For example, it can express upper

limbs movement of draw circle (clockwise) and walking

in place, but for walking in place we can hardly extract

the lower limbs movement. On the contrary, SMMs can

effectively capture the global motion information.

Distinguishable characters between different activities are

also very distinct. 

C. SMMs–HOG Descriptor 

HOG introduced by Dalal and Triggs [31] are currently

one of the most effective and widely used methods for

feature expression [32]. We introduce HOG under skeleton

motion map as a novel feature extraction method. It

follows the same procedure as HOG on intensity image.

Since the feature extraction is based on SMMs, we define

Fig. 3. Skeleton motion maps of ‘draw circle’. (a) SMM, (b) SMMf, (c) SMMs, and (d) SMMt.

Fig. 4. Skeleton motion maps of ‘walking in place’. (a) SMM, (b) SMMf, (c) SMMs, and (d) SMMt.
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it as an SMMs–HOG descriptor.

It is known that different action sequences may have

different sizes.

Although lower resolutions can reduce computational

cost in calculating HOG, we extract HOG descriptors only

from SMMs, instead of each frame. So for each sequence,

the difference of computational time between different

sizes is limited. Due to its computational simplicity, the

size of 200×100 suggested in [33] is adopted in this work.

The resized SMMs is denoted by . For each ,

we define 20×10 non-overlapping cells and 8 gradient

orientation bins. The block is composed of 2×2 cells.

Therefore, each SMMs generates a descriptor HOG with

the dimension of (20–1)×(10–1) ×2×2×8=5472. Fig. 5 shows

features of SMMs–HOG produced from ‘draw circle’ and

‘walking in place’.

D. Feature of Temporal Constraint 

By analysis, we find that some distinct activities may

be very similar to each other on SMM and SMMs. For

example, Fig. 6 shows SMM and SMMs of two different

activities of ‘sit to stand’ and ‘stand to sit’. The high

similarity of skeleton maps will result in a serious possibility

of failure classification. They contain almost identical

frames but reversed in time. Therefore, we need to

calculate the time difference of skeleton sequences as

temporal constraint and extract it as a kind of feature,

which can effectively help to distinguish different activities.

For the feature of temporal constraint extraction, we employ

the method described in [19] due to its low computational

complexity. Lastly, we produce the final feature vector by

concatenating this feature with SMMs–HOG.

IV. CLASSIFICATION BASED ON SPARSE
REPRESENTATION 

The basic idea of classification is to discriminate its

category of a new test sample on the condition that C

classes of training samples are already labeled. Training

samples of the ith object class can be expressed as follows

SMMs SMMs

Fig. 5. Features of SMMs–HOG descriptor: (a) ‘draw circle’ (clockwise) and (b) ‘walking in place’.

Fig. 6. Examples of SMM and SMMs. (a) SMM of ‘sit to stand’, (b) SMMs of ‘sit to stand’, (c) SMM of ‘stand to sit’, and (d) SMMs of ‘stand to sit’.
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to classify based on sparse representation:

(1)

We can describe all training samples of C classes as a

matric A:

(2)

Any new test sample  from the same class will

approximately lie in the linear span of the training

samples. We can write the linear representation of y in

terms of all training samples as: 

(3)

where  is a

coefficient vector whose entries are zero except for those

associated with the ith class. 

We can obtain the vector x0 by solving the linear system

of equations y = Ax. However, in activities recognition

the system y = Ax is underdetermined since the condition

of m>n is always not satisfied. We can express it as the

following l1-norm minimization problem to reach a solution:

subject to Ax = y (4)

In sparse representation based classification (SRC), the

l1-norm sparsity constraint is imposed on x to make the

solution stable. 

However, as described in [34], it is the collaborative

representation but not the l1-norm sparsity constraint that

improves the classification accuracy. The l2-regularized

approach can generate similar classification results but

with a significantly lower computational complexity.

Therefore, we can express it as: 

(5)

where λ is the regularization parameter. Furthermore, we

can derive the Eq. (5) as:

(6)

Collaborative representation can effectively reduce

computational cost while keeping high recognition rate

[34, 35]. In this work, A can be seen as a redundant

dictionary composed by a feature vector of skeleton

sequences of all training samples.

So, if we can significantly downscale the redundant

dictionary, we can further reduce computational complexity.

Here, we propose an improved algorithm based on inter-

class dispersion matrix and intra-class dispersion matrix

to downscale dictionary by reducing atoms. Intra-class

dispersion matrix and inter-class dispersion matrix are

defined as follows: 

, 

(7)

where ui is the mean of ith class training sample Ai. ni is

the statistical probability of ith class activities to all training

samples. u is the total mean of all samples. An objective

function is constructed by using SB and SW.

(8)

Lagrange multiplier can be used to solve the optimal

problem of J(A), and the optimal solution is the downscaled

feature vector, expressed as Aopt.

For a query activity sample, the class label of y can be

obtained by following formula:

(9)

where  is the reconstruction error. It is

used as discriminant factor, which means that the smallest

error is favored.

V. EXPERIMENTAL RESULTS 

We conduct experiments on the public UTD-MHAD

dataset with the skeletal data captured by a Kinect sensor

to evaluate the performance of our approach. Our method

is then compared with existing methods in the literature.

All the experiments are conducted on a PC equipped with

Intel Xeon 3.4 GHz CPU and 16 GB RAM.

A. UTD-MHAD Dataset 

We choose UTD-MHAD to test the proposed activities

recognition approach. We collected the UTD-MHAD

dataset using a Microsoft Kinect sensor and a wearable

inertial sensor in an indoor environment. The dataset

contains 27 actions performed by 8 subjects (4 females

and 4 males). Each subject repeated each action four

times. The subjects were required to face the camera

during the performance. After removing three corrupted

sequences, the dataset includes 861 data sequences. The

27 actions are: right arm swipe to the left, right arm swipe

to the right, right hand wave, two hand front clap, right

arm throw, cross arms in the chest, basketball shoot, right

hand draw x, right hand draw circle (clockwise), right hand

draw circle (counter clockwise), draw triangle, bowling

(right hand), front boxing, baseball swing from right,

tennis right hand forehand swing, arm curl (two arms),

tennis serve, two hand push, right hand knock on a door,

right hand catch an object, right hand pick up and throw,

jogging in a place, walking in a place, sit to stand, stand
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to sit, forward lunge (left foot forward), and squat (two

arms stretch out). We recorded four data modalities of

RGB videos, depth videos, skeleton joint positions, and

the inertial sensor signals. In this paper, we only use the

data of skeleton points. Some examples of this dataset are

shown in Fig. 1.

B. Subsets Setup 

In our test, we divided the activities in UTD-MHAD

into two subsets as shown in Table 1: stationary and

locomotive. In the stationary action subset, we did not

need the subject to make moves, such as right hand wave,

right hand knock on door. On the other hand, locomotive

subset requires the subjects to have a distinct movement

of lower limbs; typical examples include jogging in a

place and a forward lunge. For each action subset, we

performed two different tests. In test one, for each action

and each subject, we used the first two action sequences

as training samples and the rest as test samples. In test

two, subjects #1, 2, 3 and 4 are used for training and

subjects #5, 6, 7 and 8 are used for testing.

C. Preprocessing and Parameter Selection

For each skeleton sequence, we first need to preprocess

it for neglecting static frames. We consider two consecutive

frames at a time and remove the first one if total distance

shift between all corresponding skeletal joint points is

lower than a set threshold. The purpose of this processing

is that the approximate static skeletal data does not

contribute to any motion characteristics of the action

sequence. Then, we accumulated the preserved frames

and extracted the features as described in Section III.

In l2-regularized approaches, the parameter λ affects

the activities recognition accuracy [34, 36]. To find the

best value of λ, we did tests on both Subset1 and Subset2

by using methods of test one and test two. The accuracies

of different values of λ are shown in Fig. 7. From this

figure, one can see that with the increase of sparsity (λ
varies from 10-6 to 0.1), we obtain a quite stable and good

recognition rate. While λ>0.1, recognition accuracy shows

great changes in test two. 

Based on this analysis, we set λ = 0.001 to all experiments

in this research.

D. Comparison with Other Classifiers 

We also experimented with other classification algorithms

and recorded the obtained classification accuracies to

assess the effectiveness of the approach proposed in this

paper. We selected three algorithms: first, an algorithm

from literature [19] where we used an extreme learning

machine to classify, which belongs to the class of single-

hidden layer feed-forward neural networks. We extracted

skeleton joints position and temporal information from

skeletal data. Second, an algorithm from literature [20],

where 15 direction cosine angle values are concatenated

as a feature vector and multi-class support vector machines

are used to classify different activities. Third, an algorithm

from literature [12], where skeletal data is expressed as

lie group representation and lie group network is used to

do action recognition. 

The classification accuracies of the developed approach

and compared algorithms are shown in Table 2. The best

recognition results are highlighted in bold. By comparison,

it can be seen that our approach achieves higher accurate

rates than other methods reported in [20] and [12] in all

tests. However, in Test one and Subset1, our algorithm

produces 97.2% accuracy, which is slightly lower than

Chen’s method of 97.9%. In test two our method

outperforms the other three methods.

E. Recognition Rates

The confusion matrix of our proposed scheme for the

Table 1. Two activities subsets from UTD-MHAD dataset

Subset1 “1” right arm swipe to the left, “2” right arm swipe to the right, “3” right hand wave, “4” two hand front clap, “5” right arm 

throw, “6” cross arms in the chest, “7” basketball shoot, “8” right hand draw x, “9” right hand draw circle (clockwise), “10” 

right hand draw circle (counter clockwise), “11” draw triangle, “13” front boxing, “14” baseball swing from right, “15” 

tennis right hand forehand swing, “16” arm curl (two arms), “17” tennis serve, “18” two hand push, “19” right hand knock 

on a door, “20” right hand catch an object

Subset2 “12” bowling (right hand), “21” right hand pick up and throw, “22” jogging in place, “23” walking in place, “24” sit to 

stand, “25” stand to sit, “26” forward lunge (left foot forward), “27” squat (two arms stretch out)

Fig. 7. Recognition accuracy of different values of λ.
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UTD-MHAD dataset is shown in Fig. 8 for Subset1 of

test one and Fig. 9 for Subset2 of test two. As shown in

Fig. 8 some activities have a high recognition rate of

100%, for example, cross arms on the chest and front

boxing. On the contrary, misclassifications occurred on

activities such as the right hand wave, tennis right hand

forehand swing and right hand catch an object. The main

reason of the latter phenomenon may be analyzed as

follows: intra-class variations existed in the same activities

since they were performed by different subjects. In Fig. 9,

low accuracies of 68.8% occurred in jogging in place and

81.2% walking in place activities. In the process of

activities collection, some subjects confused these two

activities as jogging in low speed and walking in high

speed, and they performed the walking activity as running;

therefore, the difference was nearly eliminated. 

For a better view, we use numbers to represent each

activity category, i.e., “1” right arm swipe to the left, “2”

right arm swipe to the right, “3” right hand wave, “4” two

hand front clap, “5” right arm throw, “6” cross arms on

the chest, “7” basketball shoot, “8” right hand draw x,

“9” right hand draw circle (clockwise), “10” right hand

draw circle (counter clockwise), “11” draw triangle, “13”

front boxing, “14” baseball swing from right, “15” tennis

right hand forehand swing, “16” arm curl (two arms),

“17” tennis serve, “18” two hand push, “19” right hand

knock on a door, “20” right hand catch an object, “12”

bowling (right hand), “21” right hand pick up and throw,

“22” jogging in place, “23” walking in place, “24” sit to

stand, “25” stand to sit, “26” forward lunge (left foot

forward), and “27” squat (two arms stretch out).

F. Running Time

There are four main components in our method: the

SMMs generation for each skeleton sequence, the computation

of temporal constraint for each skeleton sequence,

SMMs–HOG feature generation, and action recognition

(using classifier with dictionary optimization). To illustrate

the effectiveness of the proposed dictionary optimization

approach, we compare it with the normal l2-regularized

algorithm without optimization. The statistical average

running time for every component is displayed in Table 3.

The total time needed for our method is 22.8 ms. The

frame rate in the dataset is 30 frames per second. This

means that the processing time for each frame should not

Table 2. Comparison of recognition accuracies (%)

Chen and Koskela [19] Zhu and Cao [20] Vemulapalli et al. [12] Our

Test One

Subset1 97.9 88.5 95.0 97.2

Subset2 92.5 80.7 82.4 95.7

Average 95.2 84.6 88.7 96.5

Test Two

Subset1 94.5 88.1 89.7 95.7

Subset2 91.3 73.7 84.1 93.0

Average 92.9 80.9 86.9 94.4

Fig. 9. Confusion matrix of our method for Subset2 of Test Two.

Fig. 8. Confusion matrix of our method for Subset1 of Test One.
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exceed 33.3 ms. Therefore, our method meets the requirement.

Although dictionary optimization needs some computational

cost, the speed of classification has been improved to

about 18.4% compared to a normal classifier. It implies

that when more classes and samples are needed to

discriminate, our approach will show better performance

in the processing time from one-time optimization which

will be benefiting to all tests on the subset. 

VI. CONCLUSION 

In this work, we presented a new framework for human

activities recognition using only skeleton joints extracted

from depth maps. We extracted features from skeleton

motion maps and temporal sequence information. We

also introduced a fast classification method based on

sparse representation, which improved the structure of

redundant dictionary by reducing its scale and enhanced

the sparsity. An average recognition rate of about 95.5%

on the UTD-MHAD dataset was achieved. The comparison

outcomes of the experimentation indicated the superior

performance of our method over the compared algorithms.
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