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Abstract
Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme com-

puting resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. There-

fore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable

gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition

application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA

design space. The techniques we used include memory access optimization and computing unit parallelism, and data

conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design opti-

mization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx.

Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and

GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solu-

tion for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.

Category: Artificial Intelligence

Keywords: Deep convolutional neural networks; Deep learning accelerator; FPGA optimal design; Hangul

character recognition 

I. INTRODUCTION

Deep convolutional neural network (DCNN) has been

widely employed in image recognition applications such

as face detection [1], image classification [2], and video

classification [3]. Due to the high computational accuracy

of DCNN, the development of a wide range of modern

applications based on DCNN algorithms is actively

underway.

However, the DCNN takes a lot of computation time to

get results because of its complicated architecture and

huge workload. To overcome this problem, hardware

accelerators based on GPGPU with CUDA is commonly

used [4] because GPGPU can provide parallel processing

and high computation performance. However, the

accelerators based on GPGPU consume much higher

energy compared to the CPU-based software. Therefore,

hardware accelerators based on field programmable gate

array (FPGA) have recently emerged as a new alternative

owing to advantages of high energy efficiency, good

performance, and reconfigurability [5].

Previous research on FPGA-based DCNN accelerators

mainly concentrated on optimizing the external memory

transfers or computational processing resources [6, 7].

There was research on a design space exploration

methodology that used roofline model, but it was only
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applied to convolution layers [8]. Suda et al. [9] presented

a systematic methodology for maximizing throughput of

an OpenCL-based FPGA accelerator to the entire DCNN

architectures including convolution layers, normalization

layers, pooling layers, and classification layers. 

In this work, we present FPGA design optimization

techniques for minimizing memory access time and

maximizing computational performance for all the layers

of DCNN network. We also demonstrate the effectiveness

of the presented approach by targeting hand-written

Hangul character recognizer implementation.

Our main contributions of this paper are summarized

as follows. (1) We show FPGA design optimization

techniques for DCNN including memory access optimization

and computation optimization toward minimizing total

execution time for any given DCNN model. (2) We propose

a systematic approach to minimize the total execution

time of any DCNN structure and to consume computational

resource under the FPGA resource limitation. (3) We

achieved the fastest and most accurate implementation

for the hand-written Hangul character recognizer in FPGA.

We applied our design techniques to the implementation

of the DCNN for handwritten Hangul recognition (HHR)

presented in [10] that has the best accuracy in the world.

Our HHR with world’s record implementation outperforms

CPUs in terms of execution time and GPGPU in terms of

energy efficiency. (4) We succeeded in implementing the

first handwritten Hangul character recognizer into FPGA

in the world. Therefore, we could not compare with other

state-of-the-art works in this reference. 

The rest of this paper is organized as follows. Section

II describes a background of DCNN, HHR, and SDAccel

development environment. Section III shows the design

techniques to optimize DCNN architectures into an FPGA-

based accelerator. Section IV presents the implementation

details. Section V makes experimental results and comparison

between our implementation and different implementation.

Section VI concludes the paper.

II. BACKGROUND

A. DCNN Basics

DCNN has produced remarkable outcomes in computer

vision fields for the past few years. Because of having

many layers including hidden layers, DCNN represents

much more efficient various nonlinear functions than

shallow neural networks [11]. Fig. 1 shows the overall

architecture of the DCNN. The DCNN is composed of

three types of layers: convolution layer, max-pooling

layer, and fully-connected layers. As you can  see in

Fig. 1, convolution layers and max-pooling layers are

composed of 2D planes, called feature maps. Each plane is

connected to one or more planes of the previous layer. The

planes are composed of nodes. Each node is connected to

a small region of connected input planes.

Convolution layer is the most complex layer in DCNN.

It is a process of extracting features from the input image

or the feature maps of the previous layer. Eq. (1) [10]

shows how each output node is calculated from the

previous input image or the feature maps of the previous

layer in the convolution layer.

 

(1)

In Eq. (1),  denotes the output of a node at

coordinate (i, j) on the pth plane of the nth layer, 

denotes the set of input planes is related to the pth plane of

the nth layer, Mn denotes the width and height of the mask

of layer n,  denotes the weight of the connection

from the input node to the activation node, 

denotes the node at coordinate  on the qth

plane of the (n–1)th layer, Sn denotes the stride size of the

nth layer,  is a bias, and f is an activation function.

Max-pooling layer plays a role in sampling from the

previous layer by choosing the maximum value among

the input features. Eq. (2) [10] shows how output nodes

of the max-pooling layer are calculated.

( ) (2)

where , Mn, and  denote the same

meaning as the convolution layer.

Fully-connected layer combines the results from the

previous layers and produced classification classes from

the combined results. Eq. (3) [10] shows how each node

is computed in the fully-connected layer.

(3)

where  denotes the node on the pth plane of the nth
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Fig. 1. The overall architecture of the DCNN.
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input node to the activation node, and  denotes the

node on the qth plane of the (n−1)th layer.

B. Overview on the Target Application:
Handwritten Hangul Recognizer

We applied our new design technique for DCNN to the

DCNN-based HHR [10] for demonstration purposes. Our

HHR [10] can recognize 2,350 different handwritten Hangul

characters which achieved the world-best recognition rate

on SERI95a and PE92. Our DCNN-based HHR is

composed of 10 layers: 4 convolution layers, 4 max-

pooling layers, and 2 fully-connected layers. Table 1

shows the details of the HHR structure and the complexity.

Input feature maps are 64×64. Odd layers are convolution

layers, and even layers are max-pooling layers except the

last two layers which are fully-connected layers.

C. FPGA Development Environment

We use Xilinx SDAccel Development tool to implement

the design expressed in C/C++ into a FPGA. SDAccel

tool includes an optimized compiler that translates C

codes into digital hardware system and makes efficient

use of on-chip FPGA resources for hardware implementation.

And, this tool also supports OpenCL and high-level

synthesis (HLS) C, C++ libraries. Therefore, we can

easily manipulate and optimize application source codes

in C/C++ targeting HHR implementation. In this work,

we use HLS C library for the optimal FPGA-based

hardware implementation.

III. ACCELERATOR DESIGN OPTIMIZATION
TECHNIQUES

A. Memory Access Optimization

There are several types of memory access overhead in

FPGA-based accelerators. For example, there are data

transmission and reception latency between the host

processor and the FPGA-based accelerator. Also, off-chip

global memory and on-chip local memory inside FPGA

chip have different access delay time. The memory

transfer time between off-chip and on-chip memory is

significant. Therefore, optimizing the memory access

pattern is critical for shortening the overall execution

time. We suggest two approaches for minimizing the

execution time of memory transfer: memory localization

and embedding constant weights in local memory.

1) Memory Localization

Memory localization is to optimize data transmission

for computation. Because all of the data to be used are in

the off-chip global memory, the burst data transfer from

the off-chip memory into the local on-chip memory

before the computation can drastically reduce the overall

time as shown in Fig. 2.

2) Embedding Constant Weights in Local Memory

Embedding constant weights in the local memory alle-

viates the communication overhead caused by accessing

the global memory while fetching the operands. We use

Xq

n 1–

Table 1. Our DCNN structure and complexity for HHR

Layer Layer type
# of input 

feature maps

# of output 

feature maps

Input feature 

map size
Window size Stride # of weight # of operations

C1 Convolution 1 64 64 × 64 5 × 5 1 1,664 5,760,000

P2 Max-pooling 64 64 60 × 60 2 × 2 2 0 230,400

C3 Convolution 64 64 30 × 30 5 × 5 1 102,464 69,222,400

P4 Max-pooling 64 64 26 × 26 2 × 2 2 0 43,264

C5 Convolution 64 128 13 × 13 4 × 4 1 131,200 13,107,200

P6 Max-pooling 128 128 10 × 10 2 × 2 2 0 12,800

C7 Convolution 128 256 5 × 5 4 × 4 1 524,544 2,097,152

P8 Max-pooling 256 256 2 × 2 2 × 2 2 0 1,024

F9 Fully-connected 256 512 1 × 1 N/A N/A 131,584 131,584

F10 Fully-connected 512 2350 1 × 1 N/A N/A 1,205,550 1,205,550

Fig. 2. The experimental result of memory access optimization.
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this constant embedding technique effectively because

there are many constant weights in our CNN model.

3) The Experimental Result of Memory Access Opti-

mization

Fig. 2 illustrates the experimental result of the memory

access optimization techniques in case of the first convolution

layer in our DCNN model. In Fig. 2, memory localization

resulted in 86% reduction in run time while a 3.5×

increase in the BRAM usage. As a result of applying both

localization and embedding constant weights, 92% of the

execution time is reduced, while BRAM usage is increased

106 times compared to the original implementation. 

B. Computation Optimization

There are six types of optimization for computation

time reduction. It is noteworthy to mention that the

combination of these techniques can achieve further

reduction in execution time.

1) Data Type Conversion to Fixed Point

In the original software code in C/C++, we used

floating point data type for the HHR DCNN engine.

However, the integer operation fits to FPGA compared to

the floating point operation. Floating point operator

needs more FPAG resources and consumes computing

time. According to our experimental observation, data

type conversion from floating point to fixed point may be

beneficial in terms of resource saving and execution time

reduction. However, to maintain the computing accuracy,

we should preserve the fractional part of floating point

data when converting data types as much as possible.

Therefore, for higher accuracy, we need to multiply the

input floating point values by a constant factor to move

some fractional part digits to mantissa part. We describe

this process of finding the best multiplication constant

value for optimal bit length to obtain better accuracy and

faster execution time.

a) Conversion from floating point to fixed point: The

conversion process from a floating-point value to a fixed-

point value is performed by simple multiplication of a

constant, 2F, as shown in Eq. (4).

     FixedPoint Value = FloatingPoint Value × 2F

FixedPoint Value = FloatingPoint Value << F (4)

where F is the fractional bit length in the floating-point

data that needs to be preserved after the type conversion.

Depending on the F value, the accuracy of fixed-point

value changes. Smaller F requires less resource overhead

but it has less accuracy. However, if F becomes larger,

the resource requirement increases and the accuracy gets

higher. Therefore, we need to find the optimal F value,

which maximizes accuracy while minimizing resource

overhead.

Furthermore, we need to carefully consider the situation

where two converted values are multiplied together to

calculate the output nodes in convolution layers or fully-

connected layers. Eq. (5) clearly shows this problem.

output_node = Fixed_input_node × Fixed_weights

= Floating_input_node × 2F × Fixed_weights × 2F

= Floating_input_node × Floating_weights × 22F (5)

As you can see in Eq. (5), if we multiply the input node

and weight will result into fixed-point values, we cannot

get the proper output node value because the output node

is multiplied by F twice. Therefore, in this case, we have

to divide the output node value by 2F in order to obtain

the correct output as shown by Eq. (6).

outputNode = 

outputNode = FixedInputNode × FixedWeights >> F

(6)

b) Finding the optimal F value for type conversion:

As described previously, there is a trade-off in accuracy

and resource requirement with different F value choices.

We performed experiments with two types of variables:

32 bits and 64 bits integer type variables. The experimental

results are shown in Fig. 3.

With the 64 bits integer variables, the accuracy is

saturated when F is 10, and higher F value does not much

contribute to the accuracy improvement. On the other hand,

with the 32 bits integer type variables, if F is 10, the

recognition rate becomes higher and decreases drastically

with larger F because the bit length 32 cannot cover the

whole valid integer value ranges used for the operations

in our HHR model. Based on the analysis on the experiments,

we choose 10 for the F value and 32 bits integer type.

FixedInputNode FixedWeights×

2
F

---------------------------------------------------------------------------------

Fig. 3. The recognition rate between 16 bits, 32 bits, and 64 bits.
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In Table 2, we compare the implementation results for

the fixed-point with F=10 and floating-point in case of

the max-pooling layer of our HHR model. As you can see

in Table 2 below, the execution time of a fixed point is

22% less than that of floating point.

2) Loop Pipelining

The loop pipelining technique allows operations in a loop

to be implemented in a concurrent manner. Therefore, it

improves the throughput of the loop iterations. In the

HLS C library, we simply write ‘#pragma HLS PIPELINE’

right after loop initial declaration to apply the loop

pipeline technique. 

You can see the effectiveness of loop pipelining in

Fig. 4. We applied two different conditions to the last

fully-connected layer. By the loop pipeline technique,

the computation time reduced to 7 ms, achieving 85%

computing time reduction for the fully-connected layer

implementation.

3) Loop Unrolling

The loop unrolling technique is a way of reducing a

number of sequential iterations by building operators in

the loop of several hardware instances processing in a

parallel manner. We simply write ‘#pragma HLS factor = #’

as a similar way as loop pipelining to do loop unrolling.

In Fig. 5, we can see the experimental result of loop

unrolling comparing two different conditions to the first

convolutional layer. The execution time is reduced by

63% from 4.09 ms to 1.54 ms. 

Note that in a nested loop case, if the inner loop fails to

be unrolled, the unrolling of outer loop will not work

hence the effect of the unrolling technique will be halved.

 4) Loop Partitioning

This approach is effective in optimizing memory

bandwidth. The loop partitioning technique splits a bigger

memory into multiple smaller memories. To be specific,

arrays are usually implemented in an FPGA by on-chip

memory (BRAM) which has two data ports, the maximum,

limiting the throughput of a read/write (or load/store)

intensive algorithm. The on-chip memory bandwidth can

be improved by splitting the array (a single big BRAM)

into multiple smaller arrays (multiple small BRAMs),

effectively increasing the number of access ports.

The loop partitioning technique should be applied with

loop unrolling. Because of the memory bandwidth problem,

operators within a loop that are synthesized with loop

unrolling technique cannot access on-chip memory in

parallel because there are only two data ports with a

BRAM. Therefore, loop unrolling should be used with

loop partitioning to achieve better performance. To apply

loop unrolling with loop partitioning, we should use both

pragma commands: both memory partitioning pragma

and loop unrolling pragma. 

Table 3 shows the comparison between loop unrolling

and combination of loop unrolling and loop partitioning

for the last fully-connected layer. With applying only the

loop unrolling technique, the execution time results in

39.98 ms. On the other hand, with the combination of

loop unrolling and loop partitioning, the execution time

results in 0.75 ms. The combination of the two techniques

showed 54 times faster than loop unrolling alone. In

addition, we found that if the number of parallel divisions

of the loop and the number of partitions of on-chip memory

are the same in number, the performance becomes the

highest. Therefore, we apply the same number to the loop

unrolling factor and memory partitioning factor.

Table 2. Comparison between floating point and fixed point

Floating point Fixed point

Time (ms) 5.24 4.09

FF 1975 1828

LUT 2439 2043

DSP 0 0

BRAM 14 14

Fig. 4. The experimental result of loop pipelining.

Fig. 5. The experimental result of loop unrolling.
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5) Loop Reordering

The loop reordering technique is for reordering the loops

in the nested loops. Because optimization techniques for

the loop can be applied sequentially from the innermost

loop first, nested loops should be reordered so that the

loop which applies the optimization techniques can be

placed on the innermost part of loops. 

We utilize data sharing relations proposed by Zhang et

al. [8] to apply the loop reordering technique. The study

classifies the buffer and processing element (PE) relations

into four categories: relevant, irrelevant, dependent, and

independent [8]. The irrelevant relation means broad

connections between buffers and PEs. The dependent

relation means there are complex connections between

buffers and PEs. The independent relation means direct

one-to-one connections between buffers and PEs. Therefore,

if we want to optimize to the fullest, the loop without

dependent relations should be placed on the innermost.

Based on data sharing relations, we apply loop reordering

technique to the convolutional layer as shown in Fig. 6.

You can see that ‘ip’ loop variable has independent

relation with input and weights, and irrelevant relation

with output. Therefore, we locate ‘ip’ loop in the innermost

part of the loop for optimization. 

Loop reordering itself is not powerful than computational

optimization. However, if this approach combines with

the previously introduced techniques such as loop pipelining

or loop unrolling, it can be greatly effective in computational

optimization.

6) Loop Tiling

The loop tiling technique is a way of dividing the loop

into smaller iteration units. As the number of loop iterations

increases, more hardware resources are consumed. Due

to the limitation of FPGA resource, if the number of loop

iterations exceeds a certain threshold, the technique

cannot be effective. To overcome the problem, we engage

loop tiling technique.

The experimental result of loop tiling is shown in Fig. 7.

After applying loop tiling with the other loop optimization

techniques, only 651 units of BRAM are consumed. It

means that we can apply additional optimization approaches

to this layer and other layers.

As shown in Fig. 6, a significant improvement is achieved

compared to the case of applying only localization into the

fully-connected layer. Furthermore, the execution time

with loop tiling is drastically reduced from 110.87 ms to

0.41 ms.

IV. IMPLEMENTATION DETAILS

A. Implementation Environment

In Fig. 8, we briefly illustrate Xilinx SDAccel framework

that is the target platform for our HHR application to be

Table 3. The comparison between loop unrolling and combination of loop unrolling and loop partitioning

Fully connected layer (10th) speed comparison

Recognition time (ms) Speed comparison

Partial localization + loop unrolling (Factor: 513) 39.98 ×1

Partial localization + loop unrolling (Factor: 513) + memory partitioning (Factor: 513) 0.75 ×54

Fig. 6. Pseudo code of convolution layer after loop reordering.

Fig. 7. The experimental result of loop tiling. 

Fig. 8. SDAccel framework.



Journal of Computing Science and Engineering, Vol. 12, No. 1, March 2018, pp. 24-35

http://dx.doi.org/10.5626/JCSE.2018.12.1.24 30 Park et al.

developed and tested.

In the SDAccel environment, host processor (×86

processor) and devices (accelerator, FPGA board) are

connected by PCIe bus. The device consists of a set of

compute units, which are again divided into many PEs.

The processing elements play a key role in executing

operations and achieving the computational parallelism.

Kernel means a function executed by the device. Due to

the limitation of FPGA resources, only the parts that

needs computing acceleration by hardware are usually

synthesized into FPGA device. In this work, only the

DCNN model of our HHR is implemented into device.

B. Exploring Design Space by Optimization
Techniques Combination 

As mentioned in the previous section, combining the

optimization techniques can significantly reduce the

execution time of DCNN layer. We found each of the

layer has 11, 11, 13, 7, 15, 7, 11, 11, 14, and 16 number of

synthesizable combinations, respectively as shown in

Fig. 9. The graphs in Fig. 9 show design space within

each layer by different combinations of the optimization

techniques. The x-axis of the graph is the FPGA BRAM

resource usage and the y-axis of the graph is the

execution time for each space within each layer by

different combinations of optimization techniques. The x-

axis of the graph is the FPGA BRAM resource usage and

the y-axis of the graph is the execution time for each

combination. Each dot in the graph represents a design

alternative obtained by the combination of a set of

optimization techniques, and we confirmed each of the

synthesis result meets the FPGA resource limitation by

the synthesis. In Fig. 9, all the feasible design options are

listed including the original design. We can see that using

more FPGA resource utilization generally reduces the

execution time of the operations.

In Eq. (7), we formalize the design space which shows

combination of optimization techniques for each layer.

(7)

where Li denotes the combination for ith layer, P1 denotes

memory localization, P2 denotes embedding constant

weights, P3 denotes loop reordering, P4 denotes loop

pipelining, P5 denotes loop unrolling, P6 denotes loop

tiling, and P7 denotes memory partitioning.

We mark 0 or 1 in P1, P2, P3, and P4. Zero means the

specific optimization techniques is not applied to Li

while 1 means this optimization technique is applied to

Li P1,P2,P3,P4,P5,P6,P7( )=

Fig. 9. The execution time and utilization BRAM for each layer when we apply various optimization approach in each layer.
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Li. We mark (N,M) for P5 and P6. N means the order of

loop, and M means unrolling factors. N=0 and M=0

means no application of the optimization technique. We

mark memory partitioning factors in P7. We assume that

when we mark loop tiling technique with the same

unrolling factors is applicable. Table 4 shows the feasible

parameter sets for each layer. Configurations come from

Table 4. To build the whole DCNN, we should find a

configuration by choosing one combination for each

layer.

The objective is to minimize the execution time of HHR

accelerators by choosing the best combination of each

layer from the view of global optimality while satisfying

the FPGA resource limitation. 

Let us give a few examples to show how to find the

optimal design configuration for the minimal execution

time. We figure out the costs (BRAM resource) and benefits

(execution time) for each different set of optimization

techniques for each layer. For the explanation purpose,

here, we mention only three layers. Tables 5–7 show the

costs of each optimization technique in the first convolution

layer, the first max-pooling layer, and the first fully-

connected layer, respectively. In Tables 5–7, Ci, Mi, and

Fi represent a combination of convolution layer, max-

pooling layer, and fully-connected layer, respectively. We

considered four optimization techniques. In Tables 5–7,

P4, P5, P6, and P7 denote loop pipelining techniques, loop

unrolling factor, loop tiling factor, and memory partitioning

factor, respectively. For all cases, we assume that memory

Table 4. Parameter sets of each layer 

Layer P1 P2 P3 P4 P5 P6 P7

L1 0 or 1 0 or 1 0 or 1 0 or 1 (4,16), (4,32), or (4,64) (3,10), or (3,15) 10, 15, 16, 32, or 64

L2 0 or 1 0 or 1 0 or 1 0 or 1 (2,30), (2,60), (2,90), or 

(2,150)

(2,30), (2,60), (2,90), or 

(2,150)

30, 60, 90, or 150

L3 0 or 1 0 or 1 0 or 1 0 or 1 (4,16), (4,32), (4,64), 

(3,13), or (3,26)

(3,13), or (3,26) 13, 26, 16, 32, or 64

L4 0 or 1 0 or 1 0 or 1 0 or 1 (2,13), or (2,169) (2,13) 13 or 169

L5 0 or 1 0 or 1 0 or 1 0 or 1 (4,16), (4,32), (4,64), (3,5), 

(3,10), or (3,25)

(3,5), (3,10), or (3,25) 5, 10, 16, 25, 32, or 64

L6 0 or 1 0 or 1 0 or 1 0 or 1 (2,5), or (2,25) (2,5) 5 or 25

L7 0 or 1 0 or 1 0 or 1 0 or 1 (4,16), (4,32), (4,64), 

(4,128), or (3,4)

(0,0) 4, 16, 32, 64, or 128

L8 0 or 1 0 or 1 0 or 1 0 or 1 (2,16), (2,32), (2,64), 

(2,128), or (2,256)

(2,16) or (2,32) 16, 32, 64, 128, or 256

L9 0 or 1 0 or 1 0 or 1 0 or 1 (2,16), (2,32), (2,64), 

(2,128), or (2,256)

(2,16), (2,32), (2,64), or 

(2,128)

16, 32, 64, 128, or 256

L10 0 or 1 0 or 1 0 or 1 0 or 1 (2,16), (2,32), (2,64), 

(2,128), (2,256), or (2,512)

(2,16), (2,32), (2,64), 

(2,128), or (2,256)

16, 32, 64, 128, 256, or 

512

Table 5. The costs of each combination of the first convolution
layer (possible L1 configurations) 

Combination P4 P5 P6 P7

Time 

(ms)

BRAM 

(unit)

C1 1 - - 59.10 424

C2 0 (4,16) - 16 242.55 470

C3 0 (4,32) - 32 238.90 516

C4 0 (4,64) - 64 147.55 580

C5 1 (4,64) - 64 61.46 422

C6 1 - (3,10) 10 1.97 731

C7 1 - (3,15) 15 2.27 995

Table 6. The costs of each combination of the first max-pooling
layer (possible L2 configurations)

Combination P4 P5 P6 P7

Time

(ms)

BRAM

(unit)

M1 1 - - - 2.64 14

M2 0 (2,30) - 30 1.54 64

M3 0 (2,60) - 60 1.51 124

M4 0 (2,90) - 90 1.52 182

M5 0 (2,150) - 150 2.75 6

M6 1 - (2,30) 30 1.63 66

M7 1 - (2,60) 60 1.63 126

M8 1 - (2,90) 90 1.63 186

M9 1 - (2,150) 150 1.49 4
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localization, embedding constant weights, and loop

reordering techniques are applied by default.

Table 8 shows the search results to find proper

configurations by combining the optimization techniques.

For the purpose of explanation, let us assume that the

maximum BRAM size is 900 and we have only 3 layers.

As shown in Table 8, C6 + M9 + F7 configuration seems to

be the best solution for minimum latency. However, C6 +

M9 + F7 cannot be chosen as a solution because the BRAM

size of the configuration exceeds the BRAM size limitation.

Therefore, we choose C6 + M9 + F10 as a feasible answer.

The optimal configuration search problem can be

formalized as shown in Eq. (8).

Find ω = {L
i|i = 1, ..., 10} s.t. minimize Σd(i, Li)

while satisfying ΣR(i, Li) < MaxR (8)

Table 7. The costs of each combination for the first convolution
layer (possible L9 configurations)

Combination P4 P5 P6 P7

Time 

(ms)

BRAM

(unit)

F1 1 - - - 0.73 88

F2 0 (2,16) - 16 0.47 86

F3 0 (2,32) - 32 0.28 97

F4 0 (2,64) - 64 0.17 111

F5 0 (2,128) - 128 0.12 133

F6 0 (2,256) - 256 0.076 262

F7 1 (2,256) - 256 0.05 262

F8 1 - (2,16) 16 0.12 86

F9 1 - (2,32) 32 0.11 97

F10 1 - (2,64) 64 0.1 111

F11 1 - (2,128) 128 0.1 133

Table 8. The results of configuration for each layer

Configuration Time (ms) BRAM (unit)

C1 + M1 + F1 62.47 526

C1 + M1 + F2 62.21 524

… … …

C6 + M9 + F7 3.51 997

... … …

C6 + M9 + F10 3.56 846

… … …

C7 + M9 + F11 3.86 1,132

Fig. 10. Proposed recursive algorithm for finding configuration with minimum latency.
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where d(i, Li) denotes the latency time of the ith layer by

the Li
 combination of optimization technique.

R(i, Li) is the FPGA resource usage when the Li

configuration is applied to the ith layer. MaxR is the

maximum resource of the FPGA chip. FPGA resource

may mean LUT, FF, DSP, BRAM, and so on. 

Theoretically, we can enumerate 31,336,425,120

configurations by choosing one of the combinations from

each layer of our HHR. The greedy algorithm that searches

the design space exhaustively is not feasible. Therefore,

in Fig. 10, we propose a dynamic-programming style

search algorithm to solve the search problem.

In the algorithm shown in Fig. 10, the array B variable

saves the configuration index of each layer. MinT denotes

the current minimum execution time found. Total time

denotes the sum of the execution time of previous layers,

total resource denotes the sum of resource utilization of

previous layers. The single array L denotes the number of

optimization technique applied to each layer. The array T

denotes the execution time of indexth approach in ith layer.

The array R denotes the resource utilization of indexth

approach in i th layer, and MaxR denotes the maximum

resource of the FPGA chip.

Using this algorithm, we can find the optimal design

configuration for all layers with least execution time of

DCNN.

V. EVALUATION

A. Experimental Setup

We implement the HHR into PEA-C8K1-115 FPGA

board from COTS Technology. On the FPGA board Xilinx

FPGA Kintex XCKU115 is mounted. Its working

frequency is 200 MHz, it has Block BRAM of 2,160 unit.

We use SDAccel Development tools (v16.1). For the

comparison with the FPGA-based accelerator, we also

implemented our HHR algorithm with both GPGPU and

CPU. GPGPU implementation runs on NVIDIA GTX

780 Ti. The CPU-based software implementation runs on

an Intel i7-4790k (@ 4.00 GHz).

B. Experimental Results

Table 9 shows the FPGA resource utilization of HHR

implementation by FPGA. As shown in Table 8, BRAM

is the most limiting resources, which means larger

BRAM is needed for further optimization.

Table 10 shows the comparison of the experimental

results among different implementation environments. We

measured the recognition time, power consumption, and

energy consumption. In Table 10, CPU columns contain

the results of CPU-based approach with 1 or 10 threads;

meaning only single thread CPU execution and 10 multiple

thread CPU execution time, respectively. GPGPU column

means GPGPU-based results, and FPGA column means

FPGA-based execution results. The samples per second and

samples per Joule mean execution speed and energy

efficiency, respectively.

As shown in Table 9, samples per second of FPGA are

only 29% of GPGPU, while the energy efficiency (samples

per Joule) of FPGA approach is 500% better than GPGPU

and 580% better than 10-thread CPU. In summary, the

total energy consumption requirement is in the order of

FPGA < GPGPU < CPU.

VI. CONCLUSION

In this paper, we implemented DCNN architecture into

the FPGA-based accelerator by using various optimization

techniques. We have introduced our design space search

algorithm for finding minimum latency design under the

environment of limited resource in FPGA. Using the

proposed algorithm, we achieved the energy efficiency

with FPGA-based implementation 5× and 5.8× times

Table 9. FPGA resource utilization

Resource FF LUT DSP BRAM

Used 342,068 258,813 3,273 1,365.5

Available 1,326,720 663,360 5,520 2,160

Utilization (%) 25.78 39.02 58.64 63.22

Table 10. Experimental results

CPU (i7-4790k 4.00 GHZ) GPGPU

(GTX 780 Ti)

FPGA

(XCKU115)1 thread 10 threads

Type Floating point Floating point Floating point Fixed point

Time (ms) 74.47 22.00 3.30 11.19

Power (W) 22 66 374 22

Energy (J) 1.64 1.45 1.23 0.25

Samples per second 13.43 45.45 303.03 89.37

Samples per Joule 0.61 0.69 0.81 4.06
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superior to the energy efficiency of CPU and GPGPU-

based implementation approaches.
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