
Copyright 2018. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 12, No. 3, September 2018, pp. 106-114

Exploring GPU Data Cache Leakage Management Techniques
Hao Wen and Wei Zhang*

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

wenh2@vcu.edu, wzhang4@vcu.edu

Abstract
In this paper, we study how to reduce cache leakage energy efficiently for GPU data caches (L1 and L2). The access pattern

of GPU cache is different from that of the CPU, which usually has little locality and high miss rate. In addition, GPU can

hide memory latency more effectively due to multi-threading. Because of the above reasons, we find it is possible to

place cache lines of GPU data caches into the low power mode more aggressively than traditional leakage management

for CPU caches that can reduce more energy leakage without significant performance degradation. In some cases, we

find it is possible for the GPU to bypass the L1 data cache to save 100% energy leakage while generating better performance.

Also, we propose to combine the drowsy and gated-VDD techniques that can exploit short and long access intervals to

minimize energy leakage with insignificant performance overhead. Interestingly, we may achieve better performance for

some benchmarks due to the different cache access patterns after applying the leakage reduction method.

Category: Cloud Computing / High Performance Computing

Keywords: GPU; Cache; leakage reduction; Two-level low power mode

I. INTRODUCTION

Traditionally, dynamic energy dominates total energy

consumption of integrated circuits. However, as the size

of transistors is scaled down, the leaked energy becomes

a larger portion of the total energy consumption. Graphics

processing units (GPUs), originally designed for fast

graphical computation, have rapidly become a popular

choice for high-performance computing. To support the

concurrent execution of a massive number of threads, a

GPU consists of an array of highly threaded streaming

multiprocessors (SMs). Each SM has its own L1 cache

and usually shares an L2 cache. For example, in the

NVIDIA Fermi GTX480 architecture, there are 15 SMs.

They share a 768 kB L2 data cache and each SM has its

own L1 data cache that can be configured to 16 kB or

48 kB. L1 and L2 data caches occupy a large on-chip

area, which are good targets for energy leakage reduction.

GPUs are also promising for high-performance embedded

computing due to their high throughput and energy

efficiency. For example, GPUs have been used in com-

putation-intensive real-time and safety-critical applications

such as medical data processing [1], autonomous auto

navigation [2], and vision-based aircraft controls [3]. All

these applications must meet strict deadlines and require

high system throughput, making GPUs ideal computing

engines for them. For embedded systems powered by

battery, it is particularly critical to increase energy

efficiency of computing for extended battery lifetime.

Many techniques have been proposed in the past to

reduce CPU cache energy leakage with insignificant

performance gain and dynamic energy overheads, for

example, cache decay [4] and drowsy cache [5, 6]. In

cache decay, a cache line is supply-gated if it has not

been accessed for a period, which can completely remove

cache leakage dissipation but does not preserve the state

Received 28 March 2018; Revised 09 June 2018; Accepted 16 August 2018

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2018.12.3.106 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Exploring GPU Data Cache Leakage Management Techniques

Hao Wen and Wei Zhang 107 http://jcse.kiise.org

in the decayed cache line. In contrast, drowsy cache is a

state-preserving mechanism that uses dynamic voltage

scaling to reduce leakage in unused portions of the cache

memory.

Cache decay [4] and drowsy cache [5, 6], however, are

proposed based on CPU caches. Since GPU caches exhibit

quite different access patterns from CPU caches (e.g., little

locality, high miss rate, high memory level parallelism

due to multi-threading), existing leakage management

developed for CPU caches should be revisited or adapted

to specifically and efficiently reduce energy leakage for

the GPU cache.

The major contributions of this paper include the

following:
● We find that in the GPU architecture, the cache lines

(L1 and L2) can be placed into the low power modes

more aggressively (e.g., putting the cache line into

the drowsy mode immediately after it is accessed) to

reduce more energy leakage without incurring

significant performance overhead.
● We re-evaluate a hybrid drowsy-gated VDD (HDG)

technique proposed for a hybrid SPM-cache archi-

tecture [7], which can put cache lines into the drowsy

mode for short idle intervals and put the cache lines

into the decay mode for long idle intervals to

maximize leaked energy reduction.
● There are some interesting GPU data cache behaviors

different from CPU that favor cache leakage reduction

for GPUs. For example, (1) bypassing the L1 cache

to entirely save energy leakage while also have better

performance, and (2) after the leakage reduction

method is applied, GPU will have a different access

pattern due to warp scheduling that may improve

performance based on the benchmarks we studied.

The remainder of the paper is organized as follows.

Section II presents different cache leakage management

techniques. The evaluation methodology is described in

Section III and the experimental results are given in

Section IV. We discuss related work in Section V. Finally,

we make conclusions in Section VI.

II. EXPLORING CACHE LEAKAGE REDUCTION
TECHNIQUES

Energy leakage is primarily caused by small amount of

current that leaks between source and drain terminals of a

transistor. So in general, cache energy leakage can be

reduced by either completely turning off the supply

voltage or scaling down the supply voltage to a low

power mode. The former is a state-destroying mechanism

that can maximally reduce energy leakage, but the valid

data of the gated cache line are lost, and so it may

introduce extra cache misses. In contrast, the voltage

scaling down technique is a state-preserving mechanism

that puts cache lines into the drowsy mode to reduce

energy leakage by lowering the supply voltage level

while the content of the cache line remains valid. When

the drowsy cache line is accessed in the future, it must be

awakened from the drowsy mode first, which only takes

1 or 2 clock cycles. So compared to the state-destroying

mechanism, the state-preserving mechanism has a

relatively smaller performance penalty, but allows less

leaked energy in the same period of time.

A. Periodic Drowsy Method

In drowsy cache [5], a drowsy circuit associated with

each cache line is used to turn the cache line into a low

power drowsy mode. In the drowsy mode, most of the

leaked energy is saved while the content of the cache line

is preserved but cannot be accessed immediately. To

access a drowsy cache line, it has to be awakened from

the drowsy mode first. The activation process takes 1 or 2

cycles. So if there is a cache hit on the drowsy cache line,

it generally introduces performance penalty. But if the

access is a miss on the drowsy cache line, the wake up

penalty can be hidden behind miss handling processes.

The periodic drowsy (PD) method puts all cache lines

into the drowsy mode periodically, for example, every

2,000 cycles. The drowsy cache line is awakened whenever

it is accessed. Choosing a drowsy period is important

because the tradeoff between leaked energy reduction

and performance overhead must be considered. Shorter

drowsy periods can put cache lines into the drowsy mode

for a longer period of time, which can save more leaked

energy at the cost of larger performance overhead due to

the larger number of cache activations from the drowsy

mode. A longer drowsy period keeps more cache lines in

the active mode, so less energy leakage is saved, but it

also reduces performance overhead.

For the CPU cache, the drowsy period cannot be too

short for performance consideration, and so some

opportunities to minimize leakage consumption are lost.

However, the GPU cache generally has a higher miss rate

to hide the drowsy line activation latency, indicating that

the PD method can be applied to the GPU cache more

aggressively.

B. Cache Decay

Instead of scaling down supply voltage, cache decay

[4] is a gated-VDD method that completely turns off

supply voltage. This method tries to fully remove leakage

consumption at the dead time of cache generations [8]. A

cache generation begins at a cache miss on a cache line,

then a number of accesses will hit that cache line after a

new memory block is filled into the cache line because of

temporal locality. A cache generation ends when the

cache line is evicted and a new generation begins. As

shown in Fig. 1, the access interval is the duration

between two consecutive accesses during live time, whereas

Journal of Computing Science and Engineering, Vol. 12, No. 3, September 2018, pp. 106-114

http://dx.doi.org/10.5626/JCSE.2018.12.3.106 108 Hao Wen and Wei Zhang

the duration between the last hit and the beginning of the

next generation is called dead time. During the dead time,

which is typically a long interval, since there is no access

to that cache line, supply voltage can be gated to save

energy leakage.

In the cache decay, a counter is associated with each

cache line to count time that has elapsed since the last

access. The counter has a pre-determined decay interval

value, to predict if a cache line enters dead time.

Whenever a cache line is accessed, the corresponding

counter will be reset and begins counting simulation

cycles. If the interval between two consecutive accesses

is greater than the decay interval, the counter will reach

the decay interval and switch off the cache line voltage

supply. Hardware and energy overheads of counter-based

cache decay were shown to be small [4].

The ideal case of cache decay is to switch off the cache

line after the last hit within a cache generation that will

not introduce extra misses. Otherwise, the processor must

fetch data from the lower level memory that takes much

longer than accessing the L1 cache. Extra accesses to the

lower level memory also introduce dynamic energy

overhead. To reduce the probability of pre-maturely

putting a cache line into the decay mode while its content

must be accessed again, the decay interval is usually set

long. Conversely, if the decay interval is too long, we will

lose the opportunity to save more energy leakage.

C. Aggressive Method

The GPU data caches usually have little locality and

high miss rate, indicating that we can put the cache line

into the drowsy mode more frequently than the CPU cache

without incurring significant performance degradation. In

the extreme case, we propose to use an aggressive (AG)

method that activates a cache line whenever it is accessed

and turn it into the drowsy mode immediately after the

access. The reason is that the activation penalty is small,

and it can be hidden behind the cache miss handling

cycles. The higher the miss rate, the more activation

penalties are hidden, and therefore the AG method does

not significantly increase overall performance overhead.

Table 1 shows the L1 and L2 cache miss rates of different

benchmarks, most of which are high as compared to

typical CPU cache miss rates.

Multi-threading and warp scheduling also contribute to

insignificant performance overhead of the aggressive

method. If many threads hit the drowsy cache line at the

same cycle, the activation penalties overlap and it may

contribute only 1 cycle to overall performance overhead.

The warp is the unit of thread scheduling in SMs. An SM

is designed to execute all threads in a warp following the

same instruction but operating on multiple data (SIMD

model). When an instruction executed by the warp must

wait for the result of a previous long-latency operation

(e.g., wait for memory), this warp will not be executed.

Instead, another warp will be selected for execution. This

mechanism can tolerate memory latency with work from

other threads. When we apply the leakage management

method, data needed for the thread may be delayed (in a

drowsy cache, we have to activate the drowsy cache line

first, and in the decay mode, we may get extra cache

misses). So, the warp dependent on the delayed warp will

not be selected for execution at the time when it would

have been executed in the original order without using

the leakage management technique. As a result, another

ready warp is executed instead. So the access pattern is

changed, which may lead to counter-intuitive performance

results. For example, previous work [5, 6] demonstrates

that drowsy techniques applying on the CPU cache

always have positive performance overhead, but on the

GPU cache, our experimental results indicate that it will

actually improve performance for some benchmarks.

Take the BFS benchmark for example. Consider a

simple graph as shown in Fig. 2, The BFS searches all the

vertices starting from source vertex 0. For simplicity,

suppose we have a GPU that only has two cores, each of

which can only execute one thread. In the first round, one

thread finds all the neighbors of vertex 0 (vertices 1, 3,

and 4). In the second round, assume that two threads

search neighbors of vertex 1 and vertex 3 concurrently

and vertex 2 is found. In the third round, vertex 5 is

discovered. So 3 rounds are needed to finish the BFS

Fig. 1. Cache generations.

Table 1. GPU data cache miss rate (%)

Benchmark L1 miss rate L2 miss rate

BFS 69.26 5.40

CP 50.00 24.87

LIB 66.83 79.33

LPS 70.51 36.37

MUM 15.46 17.75

HOTSPOT 94.36 23.56

NN 1.90 4.30

NW 97.69 97.42

BACKPROP 36.85 27.99

LUD 60.88 2.52

Exploring GPU Data Cache Leakage Management Techniques

Hao Wen and Wei Zhang 109 http://jcse.kiise.org

search. After the leakage management method is applied,

discovery of vertex 3 may be delayed because of activation

from the low power mode. So different from the original

scheduling order, one thread is scheduled to search from

vertex 4 in the second round and only two rounds are

needed to touch all the vertices. So, overall performance

is improved.

D. Hybrid Drowsy-Gated VDD (HDG)

Hybrid drowsy-gated VDD (HDG) [7] is a hybrid

method that combines advantages of drowsy cache and

cache decay techniques. This is because a decay interval

cannot capture short dead times, which will lose oppor-

tunities for leakage reduction during dead time. Although

adaptive decay [4] works better than fixed decay interval

for this situation, it cannot reduce energy leakage during

live time and waiting time (waiting time is the decay

interval after the last hit, during which the cache line is

kept active until the decay interval elapses). Ideally, an

optimal method should be able to switch off the cache

line immediately after the last hit.

Effectiveness of leakage management techniques is

dependent on cache access patterns. As an example, Fig. 3

shows the access pattern of different GPU L1 data cache

lines monitored from BFS. Access intervals between

consecutive hits are usually thousands of cycles (i.e.,

short idle intervals). The interval between the last hit and

the next miss is usually 10 thousand cycles (i.e., long idle

intervals. e.g., the interval between 227424 and 243707 in

the second graph is 16283 cycles). Decay interval is

chosen to be longer than most of the short idle intervals

but smaller than the long idle interval so that it will not

introduce many cache misses. However, we lose the

opportunity to save energy leakage of short idle intervals.

To save more energy leakage by taking advantage of

various access intervals of live time and waiting time,

two-level low power modes are used. The first level is the

drowsy mode for short idle intervals, and the second level

is gated-VDD for long idle intervals. In previous work

[7] for CPU caches, two different decay intervals are

proposed, when the counter reaches the short interval (for

example, 1k cycles), the cache line is placed into the

drowsy mode by scaling down supply voltage, and the

counter keeps increasing. When the counter reaches the

longer decay interval (for example, 16k cycles), it switches

off power to the cache line. Instead of using the short

interval, we propose to use the AG method on the first-

level low power mode for GPU data caches, which puts

the cache line into the drowsy mode immediately after

the cache line is accessed. Since the first-level drowsy

mode preserves content in the cache line, no extra misses

are introduced. The decay mode works on the second

level and switches off the cache line.

III. EVALUATION METHODOLOGY

We use GPGPU-Sim [9] to implement and evaluate

different methods to reduce energy leakage. The configuration

for GPGPU-Sim is based on Fermi GTX480 architecture.

Detailed architectural parameters of the GPU can be seen

in Table 2. Energy results are obtained by using the

GPUWattch [10]. Benchmarks are chosen from ISPASS2009

[11] and Rodinia 2.4 [12].

Periodic method and AG method operate on the drowsy

cache. Performance overhead is caused by waking up a

drowsy line. HDG may have extra cycles of waking up a

drowsy cache line and accessing next level memory.

Different GPU access patterns also have impact on overall

Fig. 2. BFS example.

Fig. 3. Access pattern of different cache lines monitored from
BFS benchmark. Horizontal coordinates are execution time in
cycles.

Table 2. Default GPGPU-Sim configuration

Number of SMs 15

Size of L1 data cache per SM (kB) 48

L1 & L2 data cache block size (B) 128

L1 data cache associativity 4

Size of shared memory per SM (kB) 16

Size of L2 cache (kB) 768

L2 data cache associativity 8

Core clock frequency (MHz) 700

Journal of Computing Science and Engineering, Vol. 12, No. 3, September 2018, pp. 106-114

http://dx.doi.org/10.5626/JCSE.2018.12.3.106 110 Hao Wen and Wei Zhang

performance that may improve or degrade performance.

Energy overhead of the drowsy cache includes two parts.

The first is extra energy leakage consumption during

extra execution cycles. The second is the dynamic energy

of transition between active and drowsy modes. In the

gated-VDD technique, besides extra energy leakage

consumption during extra execution cycles, energy overhead

is mainly caused by extra dynamic energy to access next

level memory. In HDG methods, dynamic energy caused

by counters is negligible when using gray code counters

to tick at a much coarser level [4].

In this paper, normalized leakage reduction (NLR) is

calculated by Eq. (1), wherein N is the number of cache

lines, T is the original execution cycles without using any

leakage management method, T
i
 and are execution

cycles of the i-th cache line in the active and drowsy mode,

respectively, E is original energy leakage consumption,

and is extra dynamic energy of transition between

active and drowsy modes. We assume that when a cache

line is in drowsy mode, it only consumes 10% of original

leaked energy [13]. In this equation, we only focus on the

NLR for the cache and do not consider dynamic energy

overhead of accessing next level memory. Dynamic energy

overhead is included by measuring total GPU energy

consumption. Overall normalized energy consumption

after applying leakage reduction methods is illustrated in

Section IV-B.

(1)

Normalized performance overhead (NPO) is calculated

by Eq. (2), wherein T
e
 is the extra execution cycles after the

leakage reduction method is applied (may be negative).

(2)

IV. EXPERIMENT RESULTS

A. HDG Method

Fig. 4 shows how decay intervals influence the miss

rate and total GPU energy consumption. We apply the

HDG method on L1 and L2 independently to yield results

separately. Although a shorter decay interval can save

more energy leakage (This is shown in Figs. 5 and 6), it

also increases the miss rate and total GPU energy.

Increased energy mainly comes from dynamic energy to

access lower level memory. So it is important to choose

the decay interval. If it is too short, there is too much

dynamic energy overhead due to extra misses, and if it is

too long, we lose the opportunity to save more energy

leakage.

Decay intervals do not impact on CP and L1 cache of

LPS. This is the situation that all the access intervals

between hits are shorter than 1k cycles, so the HDG

method does not introduce extra misses.

Since the access pattern is changed after the HDG

method is applied, total energy may not strictly follow

the trend of miss rate (e.g., L1 of LIB, L2 of LPS). The

different access pattern may improve overall performance

and so is more energy efficient. This behavior is different

from previous research on the CPU cache that a shorter

decay interval always increases dynamic energy overhead

[4].

Figs. 5 and 6 show the NLR and NPO of the HDG

method on the L1 and L2 caches, respectively. Shorter

decay intervals can reduce more energy leakage. Also, on

average, it increases performance overhead. For L1 cache,

average NLR only increases 94.81% to 96.12% while

average NPO increases -0.04% to 11.51% as the decay

interval decreases from 10k to 1k. Obviously, 10k is a

proper decay interval for L1. L2 cache is similar, where

average NLR increases 94.56% to 98.83% as the decay

interval decreases from 15k to 1k, but average NPO

increases 0.73% to 3.69%.

For some benchmarks, performance overhead increases

dramatically when decay interval is decreased. The reason

is that the miss rate increases significantly. For example,

the miss rate of the MUM on L1 increases 13.36% to

32.63% when the decay interval decreases 10k to 1k and

the miss rate of the LUD on L2 increases 2.53% to 26.25%

when the decay interval decreases 15k to 1k. Note that

the increased miss rate may not totally contribute to

overall performance overhead, because the warp scheduling

may hide memory latency well. For example, in Fig. 4,

we observe that the miss rate of MUM on L2 increases

significantly when the decay interval is decreased, but

performance overhead only increases 0.71% to 2.27%.

B. Comparison of Different Methods

In order not to introduce too much dynamic energy, we

must select a proper decay interval that introduces

insignificant extra misses for GPU caches. We choose

10k cycles for the L1 data cache and 15k cycles for the

L2 cache. Decay interval for L2 is longer because the L2

cache is accessed less frequently, so access intervals

between L2 hits are longer. For the PD method, in the

previous study of [5], a drowsy period of 4,000 cycles

(determined empirically) reaches a reasonable compromise

between leakage energy savings and performance on CPU

caches. But for GPU caches, our experiment suggests that

a shorter period of 1,000 cycles is a more reasonable choice

(it can save more energy leakage without introducing

significant performance overhead due to the reasons

discussed in Section II-C). Since access patterns may be

changed and the HDG method may increase dynamic

energy consumption to lower level memory, to compare

different methods, we subtract the saved leaked energy

from the measured total GPU energy and then normalize

Ti′

E′

Lr 1
Σi 1=

N

Ti

E

NT
-------⋅ Σi 1=

N

Ti′
0.1E
NT
-----------⋅ E′+ +

E
--–=

Po Te T⁄=

Exploring GPU Data Cache Leakage Management Techniques

Hao Wen and Wei Zhang 111 http://jcse.kiise.org

them to the original total GPU energy.

Figs. 7 and 8 are the normalized energy and performance

overhead results of different methods on L1 cache and L2

cache, respectively. For the GPU L1 data cache, the HDG

method is the most energy-efficient, and performance

overhead is -0.04% (i.e., improved) on average. For the L2

cache, the PD method leads to the least energy consumption.

While AG and HDG methods can reduce total energy

consumption for all benchmarks except BFS, they may lead

to more dynamic energy consumption to access lower-

level memory (which is especially significant for BFS).

The HDG method is less effective on L2 cache in two

ways: first, it loses opportunities to save more energy

leakage in the drowsy mode due to the longer decay

interval; second, extra misses of L2 introduced by the

HDG method result in accesses to main memory, which are

more energy inefficient than extra misses of L1 that will

access the L2 (possibly will access main memory too).

Fig. 4. Miss rate and total GPU energy consumption results of different benchmarks for the HDG method. Horizontal coordinates are
different decay intervals in cycles.

Journal of Computing Science and Engineering, Vol. 12, No. 3, September 2018, pp. 106-114

http://dx.doi.org/10.5626/JCSE.2018.12.3.106 112 Hao Wen and Wei Zhang

C. Bypass the L1 Cache

While the L1 data cache can generally reduce the

number of accesses to the lower-level memory hierarchy

if there are sufficient data locality, in GPU architecture,

loading data into the L1 data cache may increase memory

Fig. 5. Comparison of the normalized leakage reduction (NLR)
and normalized performance overhead (NPO) of the HDG
method on L1 data cache with different decay intervals.

Fig. 6. Comparison of the normalized leakage reduction (NLR)
and normalized performance overhead (NPO) of the HDG
method on L2 data cache with different decay intervals.

Fig. 7. Comparison of the normalized total GPU energy (NGE)
and normalized performance overhead (NPO) when different
methods applied to L1 data cache.

Fig. 8. Comparison of the normalized total GPU energy (NGE)
and normalized performance overhead (NPO) when different
methods applied to L2 data cache.

Exploring GPU Data Cache Leakage Management Techniques

Hao Wen and Wei Zhang 113 http://jcse.kiise.org

bandwidth pressure and degrade performance. This is

because in the CUDA programming model, if required

data are cached in the L1 and L2 data caches, memory

accesses are done by 128-byte transactions. However, if

data are only stored into the L2 cache (i.e., bypassing the

L1 data cache), 32-byte transactions are used instead

[14]. So, if data are not successfully reused for the cache,

using only 32-byte transactions can reduce over-fetching

of useless data and decrease memory traffic. Bypassing

the L1 data cache for such kinds of load operations may

be a better choice to reduce memory bandwidth pressure

and attain better performance. Also, it’s more energy

efficient.

Fig. 9 shows normalized energy and performance results

for bypassing the L1 cache. LIB, LPS, HOTSPORT, NW

and LUD have better performance and less energy

consumption when the L1 cache is bypassed.

V. RELATED WORK

Cache leakage energy reduction has been studied

extensively in the past. Besides cache decay [4] and

drowsy cache techniques [5, 6], there are also other

studies. Meng et al. [15] also combine the drowsy mode

and the gated-VDD to reduce cache energy leakage.

However, their study is an offline method that assumes

perfect knowledge of cache access patterns such that data

can be pre-fetched just before needed to avoid performance

overhead. With this assumption, it becomes possible to

separate the power consumption problem from the

performance problem, enabling theoretical study of the

limits of leakage reduction on caches. In contrast, our

study is an online and more realistic method that considers

leakage reduction and performance overhead, without

perfect knowledge of cache access patterns. Particularly,

we focus on GPU caches that have different access pattern

from the CPU caches.

For GPU energy efficiency based on cache management,

Chen et al. [16] applied bypass policy based on dynamically

detecting cache contention, coordinated with warp

throttling, to improve performance and energy efficiency.

Wang et al. [17] proposed run-time power-gating to put

the L1 data cache into the low-leakage sleep mode when

there are no ready threads to be scheduled and to put the

L2 cache into the sleep mode when there is no memory

request. In their study, caches are put into the off mode

(gated-VDD) when an SM finishes its workload. In

contrast, our method directly exploits access intervals of

each cache line, so we do not need extra work to detect

cache inactivity.

VI. CONCLUSION

Reducing cache energy leakage is critical for conserving

total energy dissipation for microprocessors. While there

are many studies on optimizing energy leakage consumption

for CPU cache memories, it is largely unknown how to

minimize cache energy leakage in the GPU architecture

wherein cache access patterns and impact on performance

can be quite different.

In this paper, we study effectiveness of using traditional

cache leakage management techniques including drowsy

cache and cache decay to reduce energy leakage for GPU

data caches. While these techniques are useful, we find

that we can aggressively put GPU cache lines into the

low power mode without significant overhead due to the

memory latency tolerance ability of GPU architectures.

We also explore the possibility of bypassing the L1 data

cache to obtain better performance while saving 100% of

the energy leakage.

We re-evaluate the HDG techniques aggressively, which

can exploit short and long idle intervals to put cache lines

into the drowsy and decay mode, respectively. Our

experiments indicate that the HDG method can reduce

energy leakage equivalent to 2.44% and 1.66% of the

total GPU energy on L1 and L2 caches, respectively, with

the performance overhead -0.04% on L1 and 0.73% on

L2 on average.

ACKNOWLEDGMENTS

This study was funded in part by the NSF grant (No.

CNS-1421577).

REFERENCES

1. U. Verner, A. Schuster, and M. Silberstein, “Processing data

streams with hard real-time constraints on heterogeneous

systems,” in Proceedings of the International Conference on

Supercomputing, Tucson, AZ, 2011, pp. 120-129.

2. G. A. Elliott and J. H. Anderson, “Robust real-time multi-

processor interrupt handling motivated by GPUs,” in

Fig. 9. Normalized energy and performance (NEP) results for
bypassing L1 data cache.

Journal of Computing Science and Engineering, Vol. 12, No. 3, September 2018, pp. 106-114

http://dx.doi.org/10.5626/JCSE.2018.12.3.106 114 Hao Wen and Wei Zhang

Proceedings of the 24th Euromicro Conference on Real-Time

Systems (ECRTS), Pisa, Italy, 2012, pp. 267-276.

3. A. Kurdila, M. Nechyba, R. Prazenica, W. Dahmen, P.

Binev, R. DeVore, and R. Sharpley, “Vision-based control of

micro-air-vehicles: progress and problems in estimation,” in

Proceedings of the 43rd IEEE Conference on Decision and

Control, Nassau, Bahamas, 2004, pp. 1635-1642.

4. S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay:

exploiting generational behavior to reduce cache leakage

power,” in Proceedings of the 28th Annual International

Symposium on Computer Architecture, Goteborg, Sweden,

2001, pp. 240-251.

5. K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,

“Drowsy caches: simple techniques for reducing leakage

power,” in Proceedings of the 29th Annual International

Symposium on Computer Architecture, Anchorage, AK,

2002, pp. 148-157.

6. N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy

instruction caches: leakage power reduction using dynamic

voltage scaling and cache sub-bank prediction,” in Proceedings

of the 35th Annual IEEE/ACM International Symposium on

Microarchitecture, Istanbul, Turkey, 2002, pp. 219-230.

7. H. Wen and W. Zhang, “Reducing cache leakage energy for

hybrid SPM-cache architectures,” in Proceedings of the 2014

International Conference on Compilers, Architecture and

Synthesis for Embedded Systems, New Delhi, India, 2014.

8. D. A. Wood, M. D. Hill, and R. E. Kessler, “A model for

estimating trace-sample miss ratios,” ACM SIGMETRICS

Performance Evaluation Review, vol. 19, no. 1, pp. 79-89, 1991.

9. GPGPU-Sim, http://www.gpgpu-sim.org/.

10. GPUWattch Energy Model Manual, http://www.gpgpu-sim.org/

gpuwattch/.

11. A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.

Aamodt, “Analyzing CUDA workloads using a detailed GPU

simulator,” in Proceedings of IEEE International Symposium

on Performance Analysis of Systems and Software, Boston,

MA, 2009, pp. 163-174.

12. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee,

and K. Skadron, “Rodinia: a benchmark suite for heterogeneous

computing,” in Proceedings of IEEE International Symposium

on Workload Characterization, Austin, TX, 2009, pp. 44-54.

13. CACTI Homepage, http://quid.hpl.hp.com:9081/cacti/.

14. NVIDIA CUDA Programming Guide version 5.5, https://

developer.nvidia.com/cuda-toolkit-55-archive.

15. Y. Meng, T. Sherwood, and R. Kastner, “On the limits of

leakage power reduction in caches,” in Proceedings of the

11th International Symposium on High-Performance Computer

Architecture, San Francisco, CA, 2005, pp. 154-165.

16. X. Chen, L. W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and

W. M. Hwu, “Adaptive cache management for energy-

efficient GPU computing,” in Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture,

Cambridge, UK, 2014, pp. 343-355.

17. Y. Wang, S. Roy, and N. Ranganathan, “Run-time power-

gating in caches of GPUs for leakage energy savings,” in

Proceedings of 2012 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Dresden, Germany, 2012,

pp. 300-303.

Hao Wen

Hao Wen is a Ph.D. student at the Department of Electrical and Computer Engineering of Virginia
Commonwealth University. He received his Bachelor’s degree in Electrical Engineering in July 2007 from
Southeast University, Nanjing, China, and Master’s degree in microelectronics in July 2010 from Peking
University, Beijing, China. He worked as an IC verification engineer in VIMICRO (Beijing) and Spreadtrum
(Shanghai) from 2010 to 2013. His research focuses on computer architectures, and GPU computing.

Wei Zhang

Dr. Wei Zhang is a professor in the Department of Electrical and Computer Engineering at Virginia
Commonwealth University. Dr. Wei Zhang received his Ph.D. from the Pennsylvania State University in 2003.
From August 2003 to July 2010, Dr. Zhang worked as an assistant professor and then as an associate
professor (tenured) at Southern Illinois University Carbondale. His research interests are in embedded and
real-time computing systems, computer architecture, compiler, and low-power systems. Dr. Zhang has
received numerous awards such as the 2016 Engineer of the Year award from RJEC (Richmond Joint
Engineering Council), the 2009 SIUC Excellence through Commitment Outstanding Scholar Award for the
College of Engineering, and 2007 IBM Real-time Innovation Award etc. Dr. Zhang has received 7 research
grants from the National Science Foundation as the PI. In addition, his research and educational efforts have
been supported by industry including leading IT companies such as IBM, Intel, Motorola, and Altera. Dr.
Zhang has published more than 150 papers in refereed journals and conference proceedings. He is a senior
member of the IEEE, and an associate editor of two international journals. He has served as a member of the
organizing or program committees for several IEEE/ACM international conferences and workshops.

