Paired Many-to-Many 3-Disjoint Path Covers in Bipartite Toroidal Grids

Jung-Heum Park*
School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon, Korea
j.h.park@catholic.ac.kr

Abstract

Given two disjoint vertex-sets, $S=\left\{s_{1}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ in a graph, a paired many-to-many k-disjoint path cover joining S and T is a set of pairwise vertex-disjoint paths $\left\{P_{1}, \ldots, P_{k}\right\}$ that altogether cover every vertex of the graph, in which each path P_{i} runs from s_{i} to t_{i}. In this paper, we first study the disjoint-path-cover properties of a bipartite cylindrical grid. Based on the findings, we prove that every bipartite toroidal grid, excluding the smallest one, has a paired many-to-many 3-disjoint path cover joining $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ if and only if the set $S \cup T$ contains the equal numbers of vertices from different parts of the bipartition.

Category: Algorithms and Complexity
Keywords: Disjoint path; Path cover; Path partition; Cylindrical grid; Torus

I. INTRODUCTION

Let G be a finite, simple undirected graph whose vertex and edge sets are denoted by $V(G)$ and $E(G)$, respectively. A path from $v \in V(G)$ to $w \in V(G)$, referred to as a $v-w$ path, is a sequence $\left\langle u_{1}, \ldots, u_{l}\right\rangle$ of distinct vertices of G such that $u_{1}=v, u_{l}=w$, and $\left(u_{i}, u_{i+1}\right) \in E(G)$ for all $i \in\{1, \ldots, l-1\}$. If $l \geq 3$ and $\left(u_{l}, u_{1}\right) \in E(G)$, the sequence is called a cycle. A path that visits each vertex exactly once is a Hamiltonian path; a cycle that visits each vertex exactly once is a Hamiltonian cycle. A path cover of a graph G is a set of paths in G such that every vertex of G is contained in at least one path. A disjoint path cover (DPC for short) of G is a set of disjoint paths that altogether cover every vertex of G. This paper is concerned with a DPC in which each path runs from a prescribed source to a prescribed sink.

Given disjoint subsets $S=\left\{s_{1}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$
of $V(G)$ for a positive integer k, a many-to-many k disjoint path cover is a DPC composed of k paths that collectively join S and T; if each source $s_{i} \in S$ must be joined to a specific $\operatorname{sink} t_{i} \in T$, the DPC is called paired, and it is unpaired if no such constraint is imposed. Refer to Fig. 1 for examples.

There are two other DPC types: A one-to-many k disjoint path cover for $S=\{s\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ is a DPC made of k paths, each of which joins a pair of source s and sink $t_{i}, i \in\{1, \ldots, k\}$; when $S=\{s\}$ and $T=\{t\}$, a DPC composed of k paths, each of which joins s and t, is named a one-to-one k-disjoint path cover. As is intuitively clear, we will call the vertices in S and in T sources and sinks, respectively, which together form a set of terminals.

The existence of a disjoint path cover in a graph is closely related to the Hamiltonian properties, as well as the concept of vertex connectivity, which was characterized in terms of the minimum number of disjoint paths. For

[^0]

Fig. 1. Examples of many-to-many disjoint path covers.
instance, a Hamiltonian cycle forms a one-to-one 2-DPC joining $\{s\}$ and $\{t\}$ for every pair of distinct vertices s and t. Disjoint path cover problems are applicable in many areas such as software testing, database design, and code optimization [1, 2]. In addition, the problem is concerned with applications where the full utilization of network nodes is important [3]. The problems have been studied for various classes of graphs, such as interval graphs [4, 5], hypercubes [6-8], torus networks [9-12], dense graphs [13], and cubes of connected graphs [14, 15].

In the context of the Hamiltonian path problem, the rectangular grid first appeared in the literature in [16]. In the formal definition of the $m \times n$ rectangular grid, the vertices are often chosen from the points of the Euclidean plane with integer coordinates so that the vertices and edges form a rectangular grid with n vertices appearing in each of m rows and m vertices in each of n columns.

DEFINITION 1 (Rectangular grid). The $m \times n$ rectangular grid G is a graph such that $V(G)=\left\{v_{j}^{i}: 0 \leq i \leq m-1,0 \leq\right.$ $j \leq n-1\}$ and $E(G)=\left\{\left(v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}\right):\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|=1\right\}$.

Besides the rectangular grid graph, there are two related classes of grid graphs: The $m \times n$ cylindrical grid is constructed from the $m \times n$ rectangular grid by adding horizontal wrap-around edges (v_{n-1}^{i}, v_{0}^{i}) for $i \in\{0, \ldots$, $m-1\}$; the toroidal grid can be generated from the $m \times n$ cylindrical grid by adding vertical wrap-around edges $\left(v_{j}^{m-1}, v_{j}^{0}\right)$ for $j \in\{0, \ldots, n-1\}$.

DEFINITION 2 (Cylindrical grid). The $m \times n$ cylindrical grid G is a graph such that $V(G)=\left\{v_{j}^{i}: 0 \leq i \leq m-1,0 \leq j\right.$ $\leq n-1\}$ and $E(G)=\left\{\left(v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}\right):\left(j=j^{\prime} \&\left|i-i^{\prime}\right|=1\right)\right.$ or $\left.\left(i=i^{\prime} \& j^{\prime} \equiv j+1(\bmod n)\right)\right\}$, where $n \geq 3$.

DEFINITION 3 (Toroidal grid). The $m \times n$ toroidal grid G is a graph such that $V(G)=\left\{v_{j}^{i}: 0 \leq i \leq m-1,0 \leq j \leq\right.$ $\left.n^{-1}\right\}$ and $E(G)=\left\{\left(v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}\right):\left(j=j^{\prime} \& i^{\prime} \equiv i+1(\bmod n)\right)\right.$ or $\left.\left(i=i^{\prime} \& j^{\prime} \equiv j+1(\bmod n)\right)\right\}$, where $m, n \geq 3$.

The rectangular grid is a bipartite graph and thus its vertices may be colored in two colors, green and white, in such a way that every pair of adjacent vertices is colored
differently (hereafter, we will denote the color of vertex v by $c(v))$. In contrast, the $m \times n$ cylindrical grid is bipartite if and only if n is even; the $m \times n$ toroidal grid is bipartite if and only if both m and n are even. Each of the bipartite cylindrical and toroidal grids is balanced in a way that its two color classes have equal cardinality. We will also call a subset of $V(G)$ balanced if the number of vertices in the subset that belong to each of the two color classes is equal.

The existence of a paired (many-to-many) 2-DPC in a bipartite toroidal grid was studied, as shown below:

THEOREM 1 (Makino [17]). An $m \times n$ toroidal grid with $m, n \geq 4$, both even, has a paired 2-DPC for a pair of terminal sets S and T if and only if their union is balanced.

THEOREM 2 (Park and Ihm [18]). For an $m \times n$ toroidal grid G with $m, n \geq 4$, both even, and an arbitrary edge e_{f} of G, the subgraph, $G-e_{f}$, of G with e_{f} being deleted has a paired 2-DPC joining S and T if and only if $S \cup T$ is balanced.

Theorem 3 (Kim and Park [19]). For an $m \times n$ toroidal grid G with $m, n \geq 4$, both even, and an arbitrary vertex v_{f} of G, the subgraph, $G-v_{f}$, of G with v_{f} being deleted has a paired 2-DPC joining S and T if and only if one of the four terminals in $S \cup T$ has the same color as v_{f} and the other three have a different color from v_{f}.

In this paper, we prove that an $m \times n$ bipartite toroidal grid with $(m, n) \neq(4,4)$ has a paired 3-DPC joining $S=$ $\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ if and only if $S \cup T$ is balanced. The proof is based on certain disjoint-path-cover properties of a bipartite cylindrical grid (investigated in Section III), as well as the necessary and sufficient condition for a bipartite cylindrical grid to have a paired 2-DPC joining S and T (established in [18]).

II. NOTATION AND PREVIOUS WORKS

For an $m \times n$ grid graph, whether rectangular, cylindrical, or toroidal, R_{i} denotes the vertex set $\left\{v_{j}^{i}: 0 \leq j \leq n-1\right\}$ of row i, whereas C_{j} denotes the vertex set $\left\{v_{j}^{i}: 0 \leq i \leq m-1\right\}$ of column j, implying that v_{j}^{i} is the vertex in both row i and column j. Based on these notations, we respectively indicate multiple rows and columns as $R_{i, i^{\prime}}=\mathrm{U}_{i \leq r \leq i^{\prime}} R_{r}$ if $i \leq i^{\prime} ; R_{i, i^{\prime}}=\emptyset$ otherwise, and $C_{j, j^{\prime}}=\bigcup_{j \leq r \leq j^{\prime}} C_{r}$ if $j \leq j^{\prime}$; $C_{j, j^{\prime}}=\emptyset$ otherwise. All arithmetic on the indices of vertices of the cylindrical and toroidal grids is done modulo n or m as needed.

The Hamiltonian properties of the rectangular and cylindrical grids have been revealed in previous studies, some of which will be effectively used to derive our results. A bipartite graph that is balanced is called Hamiltonianlaceable if there is a Hamiltonian path between any two
vertices from different color classes [20]. The concept of Hamiltonian-laceability has often been extended in such a way that a bipartite graph whose color classes may differ in cardinality by exactly one is also Hamiltonianlaceable if every pair of vertices from the same major color class can be joined by a Hamiltonian path. Finally, a bipartite graph G is called 1-fault Hamiltonian-laceable if G remains Hamiltonian-laceable, even if a single vertex or edge is deleted from G.

Lemma 1 (Chen and Quimpo [21]). Let G be an $m \times n$ rectangular grid with $m, n \geq 2$. (a) If $m n$ is even, then G has a Hamiltonian path from a corner vertex, i.e., a vertex of degree two, to any other vertex in the different color class. (b) If mn is odd, then G has a Hamiltonian path from a corner vertex to any other vertex in the same color class.

Lemma 2 (Tsai, Tan, Chuang, and Hsu [22]). An $m \times n$ cylindrical grid with $m \geq 2$ and even $n \geq 4$ is 1-fault Hamiltonian-laceable.

A necessary and sufficient condition was established by Park and Ihm [18] for an $m \times n$ bipartite cylindrical grid to have a paired 2-DPC joining disjoint terminal sets $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$; furthermore, inadmissible configurations of the four terminals which would not permit a paired 2-DPC in the cylindrical grid were classified as one of four cases: (i) $m \geq 4 \&$ even $n \geq 6$, (ii) $n=4$, (iii) $m=2 \&$ even $n \geq 6$, and (iv) $m=3 \&$ even $n \geq 6$, as shown in Lemmas 3 through 6 .

Lemma 3. For $m \geq 4$ and even $n \geq 6$, an $m \times n$ cylindrical grid G has a paired 2-DPC joining $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$ if and only if $S \cup \mathrm{~T}$ is balanced, and the four terminals in $S \cup T$ do not form an inadmissible configuration equivalent to $A 0, B 0$, or $C 0$:

A0: $s_{1}=v_{i}^{0}, s_{2}=v_{p}^{0}, t_{1}=v_{j}^{0}$, and $t_{2}=v_{q}^{0}$ for some i, j, p, and q such that $i<p<j<q$;
B0: $s_{1}=v_{i}^{r}, t_{1}=v_{i+1}^{r+1}, s_{2}=v_{i+1}^{r}$, and $t_{2}=v_{i}^{r+1}$ for some i and r;
C0: $s_{1}=v_{i}^{0}, t_{1}=v_{i+1}^{1}, t_{2}=v_{i+2}^{1}$, and $s_{2}=v_{i+3}^{0}$ for some i.
Lemma 4. For $m \geq 2$, an $m \times 4$ cylindrical grid G has a paired 2-DPC joining $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$ if and only if $S \cup T$ is balanced, and the four terminals in $S \cup T$ do not form an inadmissible configuration equivalent to A1, B0, or C1:

A1: $s_{1}, t_{1} \in R_{r_{1}}, s_{2}, t_{2} \in R_{r_{2}}$, and $c\left(s_{1}\right)=c\left(t_{1}\right) \neq c\left(s_{2}\right)=$ $c\left(t_{2}\right)$ for some r_{1} and r_{2};
C1: $s_{1}=v_{i}^{r}, t_{1}=v_{i+1}^{r+1}, t_{2}=v_{i+2}^{r+1}$, and $s_{2}=v_{i+3}^{r}$ for some i and r.

Lemma 5. For even $n \geq 6, a 2 \times n$ cylindrical grid G
has a paired 2-DPC joining $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$ if and only if $S \cup T$ is balanced, and the four terminals in $S \cup T$ do not form an inadmissible configuration equivalent to $A 0, B 2, C 2$, or D2:

B2: $S \cup T=\left\{v_{i}^{0}, v_{i}^{1}, v_{j}^{0}, v_{j}^{1}\right\}$ and $c\left(s_{1}\right)=c\left(t_{1}\right) \neq c\left(s_{2}\right)=$ $c\left(t_{2}\right)$ for some i and j with $i \neq j$;
C2: $s_{1}=v_{i}^{0}, t_{1}=v_{j}^{1}, s_{2}=v_{p}^{0}, t_{2}=v_{q}^{1}$, and $c\left(s_{1}\right)=c\left(t_{1}\right) \neq c\left(s_{2}\right)$ $=c\left(t_{2}\right)$ for some i, j, p, and q such that $i<p<j<q$.
D2: $s_{1}=v_{i}^{0}, s_{2}=v_{p}^{0}, t_{1}=v_{j}^{1}, t_{2}=v_{q}^{1}$, and $c\left(s_{1}\right)=c\left(s_{2}\right) \neq c\left(t_{1}\right)$ $=c\left(t_{2}\right)$ for some i, j, p, and q such that $i<p<j<q$.

LEMMA 6. For even $n \geq 6$, a $3 \times n$ cylindrical grid G has a paired 2-DPC joining $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{t_{1}, t_{2}\right\}$ if and only if $S \cup T$ is balanced, and the four terminals in $S \cup T$ do not form an inadmissible configuration equivalent to $A 0, B 0, C 3, D 3, E 3$, or F3:

C3: $s_{1}=v_{i}^{0}, t_{1}=v_{j}^{1}, t_{2}=v_{q}^{1}, s_{2}=v_{p}^{0}$, and $c\left(s_{1}\right)=c\left(t_{1}\right) \neq$ $c\left(s_{2}\right)=c\left(t_{2}\right)$ for some i, j, p, and q such that $i<j<$ $q<p, q=j+1$, and $(n-1-p)+i \geq 2$;
D3: $s_{1}=v_{i}^{1}, s_{2}=v_{p}^{1}, t_{1}=v_{j}^{1}, t_{2}=v_{q}^{1}$, and $c\left(s_{1}\right)=c\left(t_{2}\right) \neq$ $c\left(t_{1}\right)=c\left(s_{2}\right)$ for some i, j, p, and q such that $i<p<$ $j<q, p=i+1$, and $q=j+1$;
E3: $s_{1}=v_{i}^{0}, s_{2}=v_{p}^{0}, t_{2}=v_{q}^{2}, t_{1}=v_{j}^{2}$, and $c\left(s_{1}\right)=c\left(s_{2}\right) \neq$ $c\left(t_{1}\right)=c\left(t_{2}\right)$ for some i, j, p, and q such that $i<p<$ $q<j, q-p-1 \geq 2$, and $(n-1-j)+i \geq 2$;
F3: $s_{1}=v_{i}^{0}, t_{2}=v_{q}^{2}, s_{2}=v_{p}^{0}, t_{1}=v_{j}^{2}$, and $c\left(s_{1}\right)=c\left(t_{2}\right) \neq$ $c\left(s_{2}\right)=c\left(t_{1}\right)$ for some i, j, p, and q such that $q^{\prime}<j^{\prime}$, $j^{\prime}-q^{\prime}-1 \geq 2$, and $\left(n-1-p^{\prime}\right)+i^{\prime} \geq 2$, where $i^{\prime}=$ $\min \{i, q\}, q^{\prime}=\min \{i, q\}, j^{\prime}=\min \{j, p\}$, and $p^{\prime}=$ $\min \{j, p\}$.

REMARK 1. The four terminals in $S \cup T$ form an inadmissible configuration in a bipartite cylindrical grid only if each row contains an even number of terminals.

III. DISJOINT PATH COVERS IN BIPARTITE CYLINDRICAL GRIDS

Suppose that disjoint source and sink sets $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ are given in an $m \times n$ bipartite toroidal grid. If we divide the toroidal grid into two cylindrical grids, $m_{1} \times n$ and $m_{2} \times n$ cylindrical grids for some m_{1}, m_{2} ≥ 2 with $m_{1}+m_{2}=m$, then each cylindrical grid may have an "incomplete" terminal set in a sense that s_{i} is contained in its terminal set but t_{i} is not for some $i \in\{1,2,3\}$, and vice versa. In this section, we derive certain useful properties of a disjoint path cover in a bipartite cylindrical grid with an incomplete terminal set, where the notion of a disjoint path cover is "generalized" in a way that allows for a one-vertex path (Note that a disjoint path cover joining disjoint terminal sets S and T contains no onevertex path). A boundary row in an $m \times n$ cylindrical grid hereafter refers to row 0 or row $m-1$.

THEOREM 4. Let G be an $m \times n$ cylindrical grid with $m \geq 2$ and even $n \geq 4$, in which three distinct terminals s_{1}, $s_{2} \in S$ and $t_{1} \in T$ are given such that not all the three are of the same color. Then, there exist two disjoint paths, $s_{1}-t_{1}$ and $s_{2}-x$ paths, possibly $x=s_{2}$, that altogether cover all the vertices of G

- for every vertex x in one boundary row and for at least one vertex x in the other boundary row such that $\left\{s_{1}, t_{1}, s_{2}, x\right\}$ is balanced, or
- for every vertex x except one in one boundary row and for at least two vertices x in the other boundary row such that $\left\{s_{1}, t_{1}, s_{2}, x\right\}$ is balanced.

Proof. Suppose we are given three distinct terminals s_{1}, t_{1}, and s_{2} in G such that the three are not of the same color. Then, there is a terminal with a color different from the other two, so $\left\{s_{1}, t_{1}, s_{2}, x\right\}$ is balanced if and only if x has the same color as the terminal. In addition, inspecting the inadmissible configurations in each of the four cases, where (i) $m \geq 4 \&$ even $n \geq 6$, (ii) $n=4$, (iii) $m=2 \&$ even $n \geq 6$, and (iv) $m=3 \&$ even $n \geq 6$, can reveal that there exists an inadmissible configuration Z such that for every vertex $x \in V(G) \backslash\left\{s_{1}, t_{1}, s_{2}\right\}$, the four terminals in $\left\{s_{1}, t_{1}\right.$, $\left.s_{2}, x\right\}$ do not form an inadmissible configuration, or form an inadmissible configuration equivalent only to Z , i.e., the four terminals do not form an inadmissible configuration not equivalent to Z .

First, suppose $m \geq 4 \&$ even $n \geq 6$. From Lemma 3, there exists a paired 2-DPC, made of $s_{1}-t_{1}$ and $s_{2}-x$ paths, in G for every vertex $x \in\left(R_{0} \cup R_{m-1}\right) \backslash\left\{s_{1}, t_{1}, s_{2}\right\}$ such that $\left\{s_{1}, t_{1}, s_{2}, x\right\}$ is balanced and the four terminals in $\left\{s_{1}, t_{1}\right.$, $\left.s_{2}, x\right\}$ do not form an inadmissible configuration equivalent to A0, B0, or C0. Also, if $c\left(s_{1}\right)=c\left(t_{1}\right)$ and $s_{2} \in R_{0} \cup R_{m-1}$, then there exist two disjoint $s_{1}-t_{1}$ and $s_{2}-x$ paths that cover all the vertices of G for $x=s_{2}$, because G is 1 -fault Hamiltonian-laceable by Lemma 2. Inspecting each of the three inadmissible configurations each leads to the conclusion that two disjoint $s_{1}-t_{1}$ and $s_{2}-x$ paths exist, provided $\left\{s_{1}, t_{1}, s_{2}, x\right\}$ is balanced, for every vertex x in one boundary row and at least one vertex x in the other boundary row, as required. Analogously, we can prove the theorem in each of the remaining three cases from Lemmas 4 through 6, and Lemma 2. Note that if the inadmissible configuration Z is not equal to F 3 (where m $=3 \&$ even $n \geq 6$), there exist required disjoint paths, $s_{1}-t_{1}$ and $s_{2}-x$ paths, for every vertex x in one boundary row and at least one vertex x in the other boundary row such that $\left\{s_{1}, t_{1}, s_{2}, x\right\}$ is balanced; otherwise, the required disjoint paths exist for every vertex x except one in one boundary row and at least two vertices x in the other boundary row such that $\left\{s_{1}, t_{1}, s_{2}, x\right\}$ is balanced. This completes the proof. \square

REMARK 2. The number of such vertices x in Theorem 4 is at least $\frac{n}{2}+1$.

THEOREM 5. For distinct terminals $s_{1}, s_{2}, s_{3} \in S$ and t_{1} $\in T$ in an $m \times n$ cylindrical grid G with $m \geq 2$ and even $n \geq 4$ such that not all the four are of the same color, there exist vertices x and y in the boundary rows, possibly $x=s_{2}$ and/or $y=s_{3}$, such that G has three disjoint paths, $s_{1}-t_{1}, s_{2}-x$, and $s_{3}-y$ paths, that altogether cover all the vertices of G.

Proof. The proof will proceed by induction on m. Let $m=2$ for the base step, where the two rows of G are both boundary ones. If $c\left(s_{2}\right) \neq c\left(s_{3}\right)$, then a Hamiltonian $s_{2}-s_{3}$ path exists in G since G is 1 -fault Hamiltonian-laceable by Lemma 2. It suffices to divide the Hamiltonian path, represented as $<s_{2}, \ldots, x, s_{1}^{\prime}, \ldots, t_{1}^{\prime}, y, \ldots, s_{3}>$, where $\left\{s_{1}^{\prime}\right.$, $\left.t_{1}^{\prime}\right\}=\left\{s_{1}, t_{1}\right\}, x$ is the predecessor of s_{1}^{\prime}, and y is the successor of t_{1}^{\prime}, into three subpaths: $\left\langle s_{2}, \ldots, x\right\rangle,\left\langle s_{1}^{\prime}, \ldots\right.$, $t_{1}^{\prime}>,<y, \ldots, s_{3}>$. If $c\left(s_{2}\right)=c\left(s_{3}\right)$, then $c\left(s_{1}\right) \neq c\left(s_{2}\right)$ or $c\left(t_{1}\right) \neq$ $c\left(s_{2}\right)$, so we assume w.l.o.g. $c\left(s_{1}\right) \neq c\left(s_{2}\right)$. Then, there exists a Hamiltonian $s_{2}-s_{3}$ path in $G-s_{1}$ by Lemma 2. For a neighbor v of s_{1} other than s_{2} and s_{3}, the Hamiltonian path can be represented as $<s_{2}, \ldots, x, v^{\prime}, \ldots, t_{1}^{\prime}, y, \ldots, s_{3}>$, where $\left\{v^{\prime}, t_{1}^{\prime}\right\}=\left\{v_{1}, t_{1}\right\}$. It suffices to divide the Hamiltonian path into three subpaths, $\left\langle s_{2}, \ldots, x\right\rangle,\left\langle v^{\prime}, \ldots\right.$, $\left.t_{1}^{\prime}\right),<y, \ldots, s_{3}>$, and to combine the one-vertex path $<s_{1}>$ with the second subpath through the edge (s_{1}, v).

Let $m \geq 3$ for the inductive step. We assume w.l.o.g. that R_{0} contains no fewer terminals than R_{m-1}, i.e., $\left|R_{0} \cap(S \cup T)\right| \geq\left|R_{m-1} \cap(S \cup T)\right|$. There are several possible cases depending on the distribution of terminals.

Case 1: There is a boundary row that contains no terminal, i.e., $R_{m-1} \cap(S \cup T)=\emptyset$. By the induction hypothesis, there are two vertices $x, y \in R_{0} \cup R_{m-2}$ that admit three disjoint $s_{1}-t_{1}, s_{2}-x$, and $s_{3}-y$ paths that cover all the vertices of the subgraph $G\left[R_{0, m-2}\right]$ induced by $R_{0, m-2}$. If exactly one of x and y is contained in R_{m-2}, say $x \in R_{0}$ and $y \in R_{m-2}$, it suffices to extend the $s_{3}-y$ path to cover the vertices of R_{m-1}, i.e., concatenate the $s_{3}-y$ path and a Hamiltonian $w-y^{\prime}$ path of the subgraph $G\left[R_{m-1}\right]$ induced by R_{m-1} for the neighbor $w \in R_{m-1}$ of y and a neighbor y^{\prime} $\in R_{m-1}$ of w. If $x, y \in R_{m-2}$, then it suffices to extend the $s_{2}-x$ and $s_{3}-y$ paths to cover the vertices of R_{m-1}. That is, for the neighbor $u \in R_{m-1}$ of x and the neighbor $w \in R_{m-1}$ of y, we extract two disjoint $u-x^{\prime}$ and $w-y^{\prime}$ paths from a Hamiltonian cycle of $G\left[R_{m-1}\right]$, then concatenate the $s_{2}-x$ and $u-x^{\prime}$ paths and concatenate again the $s_{3}-y$ and $w-y^{\prime}$ paths.

Finally, suppose $x, y \notin R_{m-2}$, i.e., $x, y \in R_{0}$. If there is a nonterminal vertex v in R_{m-2}, i.e., $v \notin\left\{s_{1}, t_{1}, s_{2}, s_{3}\right\}$, then one of the three disjoint paths, $\left\{s_{1}-t_{1}, s_{2}-x\right\}$, and $s_{3}-y$ paths, of $G\left[R_{0, m-2}\right]$ passes through v, hence passes through an edge (v, w) of $G\left[R_{m-2}\right]$. It suffices to reroute the path, instead of passing through the edge (v, w), to traverse a Hamiltonian $v^{\prime}-w^{\prime}$ path of $G\left[R_{m-1}\right]$ for the neighbors v^{\prime}, $w^{\prime} \in R_{m-1}$ of v and w, respectively. Now, let every vertex
in R_{m-2} be a terminal, i.e., $R_{m-2}=\left\{s_{1}, t_{1}, s_{2}, s_{3}\right\}$ and $n=4$. For the neighbors $s_{1}^{\prime}, t_{1}^{\prime}, s_{2}^{\prime} \in R_{m-3}$, respectively, of s_{1}, t_{1}, and s_{2}, there are two disjoint $s_{1}^{\prime}-t_{1}^{\prime}$ and $s_{2}^{\prime}-x$ paths for some $x \in R_{0}$ that cover $G\left[R_{0, m-3}\right]$ (The existence is by Theorem 4 if $m \geq 4$; the existence is obvious if $m=3$). It suffices to concatenate the one-vertex path $\left\langle s_{1}\right\rangle$, the $s_{1}^{\prime}-t_{1}^{\prime}$ path, and $<t_{1}>$ into an $s_{1}-t_{1}$ path, then concatenate again the one-vertex path $<s_{2}>$ and the $s_{2}^{\prime}-x$ path, and extend $<s_{3}>$ to cover R_{m-1}.

Case 2: There is a boundary row, say R_{m-1}, that contains a single terminal in $\left\{s_{2}, s_{3}\right\}$, say s_{3}, whose color is the same as at least one of the other terminals. That is, R_{m-1} $\cap(S \cup T)=\left\{s_{3}\right\}$ and the three terminals $s_{1}, t_{1}, s_{2} \in R_{0, m-2}$ are not of the same color. Then, for some $x \in R_{0}$, there exist disjoint $s_{1}-t_{1}$ and $s_{2}-x$ paths that cover $G\left[R_{0, m-2}\right]$ by Theorem 4. It suffices to build a Hamiltonian $s_{3}-y$ path of $G\left[R_{m-1}\right]$ for some y.

Case 3: $R_{0} \cap(S \cup T)=\left\{s_{1}, s_{2}, s_{3}\right\}$. Assume w.l.o.g. that the three terminals in $\left\{s_{1}, t_{1}, s_{2}\right\}$ are not of the same color. It suffices to divide the Hamiltonian cycle $<s_{1}, \ldots, u, s_{2}$, $\ldots, x, s_{3}, \ldots, v>$ of $\mathrm{G}\left[R_{0}\right]$ into three paths $<s_{1}, \ldots, u>,<s_{2}$, $\ldots, x>$, and $\left\langle s_{3}, \ldots, v>\right.$, and then build two disjoint $u^{\prime}-t_{1}$ and $v^{\prime}-y$ paths that cover $G\left[R_{1, m-1}\right]$ for some $y \in R_{m-1}$, where $u^{\prime}, v^{\prime} \in R_{1}$ are the neighbors of u and v, respectively. Note that $c\left(u^{\prime}\right)=c\left(s_{2}\right)$ and $c\left(v^{\prime}\right)=c\left(s_{1}\right)$, meaning that the three vertices of $\left\{u^{\prime}, v^{\prime}, t_{1}\right\}$ are not of the same color.

Case 4: $R_{0} \cap(S \cup T)=\left\{s_{1}, t_{1}, s_{2}\right\}$. From the hypotheses of Cases 1 and 2 , we can assume that $s_{3} \in R_{m-1}$ and $c\left(s_{1}\right)=$ $c\left(t_{1}\right)=c\left(s_{2}\right) \neq c\left(s_{3}\right)$. The proof is similar to that of Case 3. Dividing the Hamiltonian cycle $<s_{1}, \ldots, u, t_{1}, \ldots, v, s_{2}, \ldots$, $x>$ of $\mathrm{G}\left[R_{0}\right]$ into $\left\langle s_{1}, \ldots, u\right\rangle,\left\langle t_{1}, \ldots, v\right\rangle$, and $\left\langle s_{2}, \ldots, x\right\rangle$ paths and building two disjoin $u^{\prime}-v^{\prime}$ and $s_{3}-y$ paths that cover $\mathrm{G}\left[R_{1, m-1}\right]$ for some $y \in R_{m-1}$ leads to a requirement of three paths, where $u^{\prime}, v^{\prime} \in R_{1}$ are the neighbors of u and v, respectively.

Case 5: $R_{0} \cap(S \cup T)=\left\{s_{2}, s_{3}\right\}$. Similar to Case 3, assume w.l.o.g. that the three terminals in $\left\{s_{1}, t_{1}, s_{2}\right\}$ are not of the same color. It suffices to divide the Hamiltonian cycle of $G\left[R_{0}\right]$, represented as $<s_{2}, \ldots, x, s_{3}, \ldots, u>$ with $\left(u, s_{1}\right),(u$, $\left.t_{1}\right) \notin E(G)$, into two paths $\left\langle s_{2}, \ldots, x\right\rangle$ and $\left(s_{3}, \ldots, u\right)$, and then build two disjoint $s_{1}-t_{1}$ and $u^{\prime}-y$ paths that cover $G\left[R_{1, m-1}\right]$ for some $y \in R_{m-1}$, where $u^{\prime} \in R_{1}$ is the neighbor of u (Note that R_{1} contains at most one terminal from the hypothesis of Case 1).

Case 6: $R_{0} \cap(S \cup T)=\left\{s_{1}, s_{2}\right\}$. Unless $c\left(s_{1}\right) \neq c\left(t_{1}\right)=$ $c\left(s_{2}\right)=c\left(s_{3}\right)$, it suffices to divide the Hamiltonian cycle $<s_{1}, \ldots, u, s_{2}, \ldots, x>$ of $G\left[R_{0}\right]$, represented in a way that the neighbor $u^{\prime} \in R_{1}$ of u is not a terminal, into $s_{1}-u$ and $s_{2}-x$ paths, and then build two disjoint $u^{\prime}-t_{1}$ and $s_{3}-y$ paths that cover $G\left[R_{1, m-1}\right]$ for some $y \in R_{m-1}$. Suppose
$c\left(s_{1}\right) \neq c\left(t_{1}\right)=c\left(s_{2}\right)=c\left(s_{3}\right)$ now. If $R_{m-1} \cap(S \cup T)=\left\{t_{1}, s_{3}\right\}$, then we can also build the three required paths symmetrically, so we assume that R_{m-1} contains a single terminal. If $\left(s_{1}, s_{2}\right) \in E(G)$, it suffices to divide the Hamiltonian cycle of $G\left[R_{0}\right]$ into $\left\langle s_{2}, x>\right.$ and $s_{1}-u$ paths for some $x, u \in R_{0}$, and then build two disjoint $u^{\prime}-t_{1}$ and $s_{3}-y$ paths that cover $G\left[R_{1, m-1}\right]$ for some $y \in R_{m-1}$, where $u^{\prime} \in$ R_{1} is the neighbor of u. If $\left(s_{1}, s_{2}\right) \notin E(G)$, it suffices to divide the Hamiltonian cycle $<s_{1}, \ldots, u, x, s_{2}, y, \ldots, v>$ of $G\left[R_{0}\right]$ into three paths $\left.\left.<s_{1}, \ldots, u\right\rangle,<x, s_{2}\right\rangle$, and $<y, \ldots$, $v>$, and then build a paired 2-DPC of $G\left[R_{1, m-1}\right]$, made of $u^{\prime}-t_{1}$ and $s_{3}-v^{\prime}$ paths, where $u^{\prime}, v^{\prime} \in R_{1}$ are the neighbors of u and v, respectively. The paired 2-DPC exists because R_{m-1} contains an odd number of terminals.

Case 7: $R_{0} \cap(S \cup T)=\left\{s_{1}, t_{1}\right\}$. From the hypotheses of Cases 1, 2, and 5, we can assume that $R_{m-1} \cap(S \cup T)=\left\{s_{3}\right\}$ and $c\left(s_{1}\right)=c\left(t_{1}\right)=c\left(s_{2}\right) \neq c\left(s_{3}\right)$. From the Hamiltonian cycle of $G\left[R_{0}\right]$, we extract two disjoint paths, $s_{1}-t_{1}$ and $u-$ v paths, that cover $G\left[R_{0}\right]$ for some $u, v \in R_{0}$, such that the neighbor $u^{\prime} \in R_{1}$ of u is different from s_{2}. It suffices to build two disjoint $s_{2}-u^{\prime}$ and $s_{3}-y$ paths that cover $G\left[R_{1, m-1}\right]$ for some $y \in R_{m-1}$.

Case 8: $R_{0} \cap(S \cup T)=\left\{s_{2}\right\}$ and $R_{m-1} \cap(S \cup T)=\left\{s_{3}\right\}$. This case is reduced to Case 2.

Case 9: $R_{0} \cap(S \cup T)=\left\{s_{1}\right\}$ and $R_{m-1} \cap(S \cup T)=\left\{s_{3}\right\}$. We assume $c\left(s_{1}\right)=c\left(t_{1}\right)=c\left(s_{2}\right) \neq c\left(s_{3}\right)$ from the hypothesis of Case 2. Let $t_{1} \in R_{i}$ and $s_{2} \in R_{j}$ for some $i, j \in\{1, \ldots, m-2\}$. If $i<j$, then for some edge (u, v) with $u \in R_{i}, v \in R_{i+1}$, and $c(u)=c\left(s_{3}\right)$, it suffies to build two disjoint $s_{1}-t_{1}$ and $u-x$ paths that cover $G\left[R_{0, i}\right]$ for some $x \in R_{0}$, and build two disjoint $s_{2}-v$ and $s_{3}-y$ paths that cover $G\left[R_{i+1, m-1}\right]$ for some $y \in R_{m-1}$. Analogously, if $j<i$, for some edge (u, v) with u $\in R_{j}, v \in R_{j+1}$, and $c(u)=c\left(s_{3}\right)$, we can build two disjoint $s_{1}-u$ and $s_{2}-x$ paths that cover $G\left[R_{0, j}\right]$ for some $x \in R_{0}$, and build two disjoint $v-t_{1}$ and $s_{3}-y$ paths that cover $G\left[R_{j+1, m-1}\right]$ for some $y \in R_{m-1}$.

Finally, suppose $i=j$. Let s_{1}, t_{1}, and s_{2}, respectively, be contained in columns C_{p}, C_{q}, and C_{r}. Assume w.l.o.g. $q \leq$ $p \leq r$ and $q=0$.

Claim 1. There exist three disjoint $s_{1}-t_{1}, s_{2}-u$, and $v-x$ paths that cover $G\left[R_{0, i}\right]$, where $u=v_{1}^{i}, v=v_{n-1}^{i}$, and $x=v_{p+1}^{0}$. Furthermore, each of the $\frac{n}{2}-1$ edges $\left(v_{a}^{i}, v_{a+1}^{i}\right)$ for odd $a \in\{1,3, \ldots, n-3\}$ is visited by one of the three paths.

Proof of Claim 1. It holds true that $c(u)=c(v)=c(x) \neq$ $c\left(s_{1}\right)=c\left(t_{1}\right)=c\left(s_{2}\right)$. If i is even, then $R_{0, i}$ has an odd number of rows, so possibly $p \in\{0, r\}$; if i is odd, then $R_{0, i}$ has an even number of rows, so $0<p<r$ (Refer to Fig. 2). An $s_{1}-t_{1}$ path is obtained by concatenating a Hamiltonian $s_{1}-v_{0}^{i-1}$ path of $G\left[R_{0, i-1} \cap C_{0, p}\right]$ and the onevertex path $\left\langle t_{1}\right\rangle$; set an $s_{2}-u$ path to be $\left\langle v_{r}^{i}, v_{r-1}^{i}, \ldots, v_{1}^{i}\right\rangle$;

Fig. 2. Three disjoint $s_{1}-t_{1}, s_{2}-u$, and $v-x$ paths in $G\left[R_{0, j}\right]$.
in addition, a $v-x$ path is obtained from concatenating a Hamiltonian $v_{n-1}^{i}-v_{n-2}^{i}$ path of $G\left[R_{0, i} \cap C_{n-2, n-1}\right]$, .., a Hamiltonian $v_{r+3}^{i}-v_{r+2}^{i}$ path of $\mathrm{G}\left[R_{0, i} \cap C_{r+2, r+3}\right]$, the onevertex path $\left\langle v_{r+1}^{i}\right\rangle$, and a Hamiltonian $v_{r+1}^{i-1}-v_{p+1}^{0}$ path of $\mathrm{G}\left[R_{0, i-1} \cap C_{p+1, r+1}\right]$. The existence of the Hamiltonian paths in the induced subgraphs that are isomorphic to rectangular grids is due to Lemma 1(a). Thus, the claim is proven. \square

Let $u^{\prime}, v^{\prime} \in R_{i+1}$ be the neighbors of u and v, respectively. If $i \leq m-3$, it suffices to build two disjoint $u^{\prime}-v^{\prime}$ and $s_{3}-y$ paths that cover $G\left[R_{i+1, m-1}\right]$ for some $y \in R_{m-1}$, which exist by Theorem 4, and combine them with the three disjoint paths of Claim 1. So, let $i=m-2$ now, where u^{\prime} $=v_{1}^{m-1}, v^{\prime}=v_{n-1}^{m-1}$, and $s_{3}=v_{b}^{m-1}$ for some even $b \in\{0, \ldots$, $n-2\}$ because $c\left(s_{3}\right) \neq c\left(u^{\prime}\right)=c\left(v^{\prime}\right)$. If $b=0$, it suffices to set $s_{3}-y$ and $u^{\prime}-v^{\prime}$ paths to be $<\nu_{0}^{m-1}>$ and $<v_{1}^{m-1}, v_{2}^{m-1}$, $\ldots, v_{n-1}^{m-1}>$, respectively, and combine the two with the three paths of Claim 1. If $b \geq 2$, we set an $s_{3}-y$ path be $<v_{b}^{m-1}, v_{b-1}^{m-1}, \ldots, v_{2}^{m-1}>$ and set a $u^{\prime}-v^{\prime}$ path to be $<u^{\prime}$, $v_{0}^{m-1}, v^{\prime}>$. To deal with the vertices $v_{b+1}^{m-1}, \ldots, v_{n-2}^{m-1}$ not visited until now, we use the fact shown in Claim 1 that every edge $\left(v_{a}^{i}, v_{a+1}^{i}\right)$ for odd $a \in\{1,3, \ldots, n-3\}$ is visited by one of the three disjoint paths of $G\left[R_{0, i}\right]$. To cover each pair of unvisited vertices v_{c}^{m-1} and v_{c+1}^{m-1} for odd $c \in\{b+1, \ldots, n-3\}$, it suffices to reroute the path that visits the edge $\left(v_{c}^{m-2}, v_{c+1}^{m-2}\right)$ to traverse $<v_{c}^{m-2}, v_{c}^{m-1}$, $v_{c+1}^{m-1}, v_{c+1}^{m-2}>$.

Case 10: $R_{0} \cap(\mathrm{~S} \cup \mathrm{~T})=\left\{s_{1}\right\}$ and $R_{m-1} \cap(\mathrm{~S} \cup \mathrm{~T})=\left\{t_{1}\right\}$. Let $s_{2} \in R_{i}$ and $s_{3} \in R_{j}$ for some $i, j \in\{1, \ldots, m-2\}$. Assume w.l.o.g. that the three terminals t_{1}, s_{2}, and s_{3} are not of the same color. If $i<j$, we first pick up an edge (u, v) with $u \in R_{i}$ and $v \in R_{i+1}$ such that $c(u) \neq \mathrm{c}\left(s_{2}\right)$ and $v \neq s_{3}$. Then, the three vertices of $\left\{s_{1}, s_{2}, u\right\}$ are not of the same color; also, the three vertices of $\left\{t_{1}, s_{3}, v\right\}$ are not of

Fig. 3. Three disjoint $u-t_{1}, s_{a}-v$, and $s_{b}-y$ paths that cover $G\left[R_{m-}\right.$ $\left.{ }_{2, m-1}\right]$ for some $(a, b) \in\{(2,3)$, $(3,2)\}$, where $c\left(s_{2}\right)=c\left(s_{3}\right)$ for (a), (b), and (c); $c\left(s_{2}\right) \neq c\left(s_{3}\right)$ for (d), (e), and (f).
the same color because $c(v)=c\left(s_{2}\right)$. It suffices to build two disjoint $s_{1}-u$ and $s_{2}-x$ paths that cover $G\left[R_{0, i}\right]$ for some $x \in R_{0}$, and combine them with the two disjoint $v-t_{1}$ and $s_{3}-y$ paths that cover $G\left[R_{i+1, m-1}\right]$ for some $y \in R_{m-1}$. The case where $j<i$ is symmetric to the case where $i<j$, so we consider the remaining case where $i=j$ hereafter.

CLAIM 2. There exists an edge (u, v) of $G\left[R_{i}\right]$ with $\left(v, s_{1}\right) \notin E(G)$ such that for some $y \in R_{m-1}$, the subgraph $G\left[R_{i, m-1}\right]$ contains three disjoint paths, composed of either $u-t_{1}, s_{2}-v$, and $s_{3}-y$ paths, or $u-t_{1}, s_{3}-v$, and $s_{2}-y$ paths, that cover all the vertices of $G\left[R_{i, m-1}\right]$.

Proof of Claim 2. If $i \leq m-3$, then $G\left[R_{i, m-1}\right]$ contains three or more rows. For an edge (u, v) of $G\left[R_{i}\right]$ with $u \in\left\{s_{2}, s_{3}\right\}$ and $\left(v, s_{1}\right) \notin E(G)$, it suffices to decompose the Hamiltonian cycle of $G\left[R_{i}\right]$, represented as $<u, \ldots, w$, $s_{3}, \ldots, z, s_{2}, \ldots, v>$, into three paths $\langle u, \ldots, w\rangle,\left\langle s_{3}, \ldots\right.$, $z>$, and $\left\langle s_{2}, \ldots, v\right\rangle$, and then build disjoint $w^{\prime}-t_{1}$ and $z^{\prime}-y$ paths that cover $G\left[R_{i+1, m-1}\right]$ for some $y \in R_{m-1}$, where w^{\prime}, $z^{\prime} \in R_{i+1}$ are the neighbors of w and z, respectively. Note that $c\left(w^{\prime}\right)=c\left(s_{3}\right)$ and $c\left(z^{\prime}\right)=c\left(s_{2}\right)$, so the vertices of $\left\{t_{1}\right.$, $\left.w^{\prime}, z^{\prime}\right\}$ are not of the same color. Now, suppose $i=m-2$, where $G\left[R_{i, m-1}\right]$ contains exactly two rows. Let $t_{1} \in C_{p}, s_{2}$ $\in C_{q}$, and $s_{3} \in C_{r}$ for some $p, q, r \in\{0, \ldots, n-1\}$.

For the first case, suppose $c\left(s_{2}\right)=c\left(s_{3}\right)$, so $c\left(s_{2}\right)=c\left(s_{3}\right)$ $\neq c\left(t_{1}\right)$ from our assumption. We further assume w.l.o.g. that $q<p \leq r$ and $r=n-1$ (See Fig. 3(a)-(c)). If $p \neq n-1$, it suffices to set an $s_{2}-y$ path to be a Hamiltonian $s_{2}-v_{q}^{m-1}$ path of $G\left[R_{m-2, m-1} \cap C_{0, q}\right]$, and then decompose the $s_{3}-t_{1}$ path, built by concatenating a Hamiltonian $s_{3}-v_{p+1}^{m-2}$ path of $G\left[R_{m-2, m-1} \cap C_{p+1, n-1}\right]$ and a Hamiltonian $v_{p}^{m-2}-t_{1}$ path of $G\left[R_{m-2, m-1} \cap C_{q+1, p}\right]$, by deleting an edge $(u, v)=\left(v_{p-1}^{m-2}\right.$, $\left.v_{p}^{m-2}\right)$ or $\left(v_{p}^{m-2}, v_{p+1}^{m-2}\right)$ so that $\left(v, s_{1}\right) \notin E(G)$. If $p=n-1$, the required three paths are obtained in one of the following two ways: (i) set an $s_{2}-y$ path to be a Hamiltonian $s_{2}-v_{q}^{m-1}$ path of $G\left[R_{m-2, m-1} \cap C_{0, q}\right]$, and then
decompose the Hamiltonian $s_{3}-t_{1}$ path of $G\left[R_{m-2, m-1} \cap\right.$ $\left.C_{q+1, n-1}\right]$ through $(u, v)=\left(v_{n-2}^{m-2}, v_{n-1}^{m-2}\right)$; or (ii) concatenate $<s_{3}>$, a Hamiltonian $v_{0}^{m-2}-v_{q-1}^{m-1}$ path of $G\left[R_{m-2, m-1} \cap C_{0, q-1}\right]$, and $\left\langle v_{q}^{m-1}\right\rangle$ into an $s_{3}-y$ path, and then decompose the $s_{2}-t_{1}$ path, built by concatenating $\left\langle s_{2}\right\rangle$, a Hamiltonian $\nu_{q+1}^{m-2}-$ v_{n-2}^{m-1} path of $G\left[R_{m-2, m-1} \cap C_{q+1, n-2}\right]$ and $\left.<t_{1}\right\rangle$, through $(u, v)=\left(v_{q+1}^{m-2}, v_{q}^{m-2}\right)$.

For the second case, suppose $c\left(s_{2}\right) \neq c\left(s_{3}\right)$. Assume w.l.o.g. that $c\left(t_{1}\right)=c\left(s_{2}\right) \neq c\left(s_{3}\right)$ and moreover, $q<p \leq r=$ $n-1$ (See Fig. 3(d)-(f)). If $p \neq n-1$, the three required paths are obtained in one of the following two ways: (i) set an $s_{2}-y$ path to be a Hamiltonian $s_{2}-\nu_{p-1}^{m-1}$ path of $G\left[R_{m-2, m-1} \cap C_{0, p-1}\right]$, and then decompose the Hamiltonian $s_{3}-t_{1}$ path of $G\left[R_{m-2, m-1} \cap C_{p, n-1}\right]$ through $(u, v)=\left(v_{p}^{m-2}\right.$, v_{p+1}^{m-2}); or (ii) concatenate a Hamiltonian $s_{3}-v_{q-1}^{m-1}$ path of $G\left[R_{m-2, m-1} \cap\left(C_{0, q-1} \cup C_{p+1, n-1}\right)\right]$ and $\left\langle\nu_{q}^{m-1}\right\rangle$ into an $s_{3}-y$ path, and then decompose the $s_{2}-t_{1}$ path, built by concatenating $\left\langle s_{2}\right\rangle$ and a Hamiltonian $v_{q+1}^{m-2}-t_{1}$ path of $G\left[R_{m-2, m-1} \cap C_{q+1, p}\right]$, through $(u, v)=\left(v_{q+1}^{m-2}, v_{q}^{m-2}\right)$. If $p=$ $n-1$, assuming w.l.o.g. $q \neq n-2$, it suffices to set an $s_{2}-$ y path to be a Hamiltonian $s_{2}-v_{q}^{m-1}$ path of $G\left[R_{m-2, m-1} \cap\right.$ $\left.C_{0, q}\right]$ and then decompose the Hamiltonian $s_{3}-t_{1}$ path of $\mathrm{G}\left[R_{m-2, m-1} \cap C_{q+1, n-1}\right]$ through an edge $(u, v)=\left(v_{n-3}^{m-2}, v_{n-2}^{m-2}\right)$ or $\left(v_{n-2}^{m-2}, v_{n-1}^{m-2}\right)$. Thus, the claim is proven. \square

Let $u^{\prime}, v^{\prime} \in R_{i-1}$ be the neighbors of u and v, respectively. Two disjoint $s_{1}-u^{\prime}$ and $v^{\prime}-x$ paths that cover $G\left[R_{0, i-1}\right]$ for some $x \in R_{0}$ remain to be built. If $i \geq 2$, the two disjoint paths exist by Theorem 4; if $i=1$, dividing the Hamiltonian cycle $<s_{1}, \ldots, u^{\prime}, v^{\prime}, \ldots, x>$, where $v^{\prime} \neq s_{1}$, of $G\left[R_{0}\right]$ results in two paths $<s_{1}, \ldots, u^{\prime}>$ and $\left.<v^{\prime}, \ldots, x\right\rangle$, as required. If we combine the two paths of $G\left[R_{0, i-1}\right]$ with the three paths of Claim 2, we obtain the required three paths that cover G. This completes the entire proof. \square

REMARK 3. If distinct terminals $s_{1}, s_{2} \in S$ and $t_{1}, t_{2} \in T$ (instead of $s_{1}, s_{2}, s_{3} \in S$ and $t_{1} \in T$) are given in an $m \times n$ cylindrical grid with $m \geq 2$ and even $n \geq 4$, then there exist three disjoint paths, $s_{1}-t_{1}, s_{2}-x$, and $t_{2}-y$ paths (instead of $s_{1}-t_{1}, s_{2}-x$, and $s_{3}-y$ paths), that altogether cover all the vertices.

IV. PAIRED 3-DPC IN BIPARTITE TOROIDAL GRIDS

In this section, we will show that every $m \times n$ bipartite toroidal grid with $(m, n) \neq(4,4)$ has a paired 3-DPC joining S and T for any disjoint source and sink sets $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $\mathrm{T}=\left\{t_{1}, t_{2}, t_{3}\right\}$ such that $S \cup T$ is balanced. The 6×4 and 6×6 toroidal grids admit a paired 3-DPC joining S and T for any such terminal sets S and T, while the 4×4 toroidal grid does not, as shown in Fig. 4 . Lemma 7 below was verified from a computer program that exhaustively searches for DPCs. The source code may be downloaded from http://tcs.catholic.ac.kr/~jhpark/ papers/toroidal_grid.zip.

Fig. 4. A conguration that does not admit a paired 3-DPC. Every $s_{i}-t_{i}$ path that does not pass through a terminal as an intermediate vertex contains at least 6 vertices, whereas the toroidal grid has fewer than 18 vertices.

Lemma 7. Let G be a 6×4 or 6×6 toroidal grid, in which disjoint source and sink sets $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=$ $\left\{t_{1}, t_{2}, t_{3}\right\}$ are given. Then, G has a paired 3 -DPC joining S and T if $S \cup T$ is balanced.

One of the natural approaches would be the reduction of our problem to a problem on a smaller bipartite toroidal grid. This is possible if there are two consecutive rows that contain no terminal as follows:

LEMMA 8 (Row reduction). An $m \times n$ bipartite toroidal grid G with $m \geq 6$ has a paired 3-DPC joining $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ if (i) $S \cup T$ is balanced, (ii) there are two consecutive rows R_{p} and R_{p+1} that contain no terminal, and (iii) an $(m-2) \times n$ toroidal grid has a paired $3-D P C$ joining S^{\prime} and T^{\prime} for any disjoint terminal sets S^{\prime} and T^{\prime} such that $S^{\prime} \cup T^{\prime}$ is balanced.

Proof. Let H denote the $(m-2) \times n$ toroidal grid, obtained from G by deleting the vertices of $R_{p, p+1}$ and adding n virtual edges $\left(v_{j}^{p-1}, v_{j}^{p+2}\right)$ for $j \in\{0, \ldots, n-1\}$, as shown in Fig. 5(a). Then, by hypothesis (iii) of the lemma, H has a paired 3-DPC joining S and T. If none of the virtual edges is passed through by a path in the 3-DPC of H (see Fig. 5(b)), then for an edge in row $p-1$ or $p+2$, say $\left(v_{j}^{p-1}, v_{j+1}^{p-1}\right)$ w.l.o.g., that is covered by the 3-DPC of H, replacing the edge with a path obtained by concatenating $\left\langle\nu_{j}^{p-1}\right\rangle$, a Hamiltonian $v_{j}^{p}-\nu_{j+1}^{p}$ path of $G\left[R_{p, p+1}\right]$, and $\left\langle\nu_{j+1}^{p-1}\right\rangle$ results in a paired 3-DPC of G. Now, suppose that there is a virtual edge that is covered by the 3-DPC of H (see Fig. 5(c)). Let $\left\{\left(v_{j}^{p-1}, v_{j}^{p+2}\right)\right.$: $\left.j \in\left\{j_{1}, \ldots, j_{q}\right\}\right\}$ be the set of such virtual edges, and assume $j_{1}<\cdots<j_{q}$. A paired 3-DPC of G can be built by replacing the virtual edge $\left(v_{j_{i}}^{p-1}, v_{j_{i}}^{p+2}\right)$ with a path obtained by concatenating $\left\langle v_{j_{i}}^{p-1}\right\rangle$, a Hamiltonian $v_{j_{i}}^{p}-v_{j_{i}}^{p+1}$ path of $G\left[R_{p, p+1} \cap C_{j_{i} j_{i+1}-1}\right]$, and $<v_{j_{i}}^{p+2}>$ if $i<q$; with a path obtained by concatenating $\left\langle v_{j_{q}}^{p-1}\right\rangle$, a Hamiltonian $v_{j_{q}}^{p}-v_{j_{q}}^{p+1}$ path of $G\left[R_{p, p+1} \cap\left(C_{j_{q} n-1} \cup C_{0, j_{1}-1}\right)\right]$, and $\left\langle\nu_{j_{q}}^{p+2}>\right.$ if $i=q$. Thus, the lemma is proven. \square

An $m \times n$ bipartite toroidal grid with $m \geq 6$ is said to be row-reducible if there are two consecutive rows R_{p} and

Fig. 5. Illustrations of the row reduction, where $R_{1,2}$ contains no terminal.
R_{p+1} that contain no terminals. Besides the row reduction of Lemma 8, we can try a partition of the $m \times n$ toroidal grid into two cylindrical grids, each having at least two rows, so as to build a paired 3-DPC in the toroidal grid. Three types of such partitions are investigated in Lemmas 9,10 , and 11 below and illustrated in Fig. 6.

LEMMA 9 (Type-A partition). An $m \times n$ bipartite toroidal grid G has a paired 3-DPC joining $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ if $S \cup T$ is balanced and there are $r, 2 \leq r \leq$ $m-2$, consecutive rows R_{p}, \ldots, R_{p+r-1} that contain four terminals $s_{a} t_{a}$, s_{b}, and t_{b} for some $a, b \in\{1,2,3\}$ in total such that the subgraph $G\left[R_{p, p+r-1}\right]$ induced by $R_{p, p+r-1}$ has a paired 2-DPC composed of $s_{a}-t_{a}$ and $s_{b}-t_{b}$ paths.

Proof. The subgraph $G-R_{p, p+r-1}$ contains two terminals s_{c} and t_{c} with $c\left(s_{c}\right) \neq c\left(t_{c}\right)$, so there exists a Hamiltonian $s_{c}-t_{c}$ path in the subgraph by Lemma 2. A paired 2-DPC of $G\left[R_{p, p+r-1}\right]$ along with the Hamiltonian path form a paired 3-DPC of G. \square

Lemma 10 (Type-B partition). An $m \times n$ bipartite toroidal grid G has a paired 3-DPC joining $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ if $S \cup T$ is balanced and there are $r, 2 \leq$ $r \leq m-2$, consecutive rows R_{p}, \ldots, R_{p+r-1} that contain three terminals s_{a}, t_{a}, and s_{b}, for some $a, b \in\{1,2,3\}$ in total such that the three are not of the same color.

Proof. In the subgraph $G\left[R_{p, p+r-1}\right]$, there are two disjoint $s_{a}-t_{a}$ and $s_{b}-x$ paths for some $x \in R_{p} \cup R_{p+r-1}$ that cover all

Fig. 6. Three types of partitions of a toroidal grid into two cylindrical grids.
the vertices of the subgraph; moreover, the number of such vertices x is at least $\frac{n}{2}+1$ by Theorem 4. Consider the subgraph H of G induced by $R_{0, p-1} \cup R_{p+r, n-1}$ now (i.e., $\left.H=G-R_{p+, n-1}\right)$, in which there are three terminals s_{c}, t_{c}, and t_{b} for some $c \in\{1,2,3\}$ with $c \neq a, b$. Also, the three terminals of H are not of the same color, so there exist two disjoint $s_{c}-t_{c}$ and $t_{b}-y$ paths that cover H for at least $\frac{n}{2}+1$ choices of $y \in R_{p-1} \cup R_{p+r}$ by Theorem 4 again. It follows that there is an edge (x, y) of G, where $x \in$ $R_{p} \cup R_{p+r-1}$ and $y \in R_{p-1} \cup R_{p+r}$, that admits not only a 2DPC, made of $s_{a}-t_{a}$ and $s_{b}-x$ paths, of $\mathrm{G}\left[R_{p, p+r-1}\right]$ but also a 2-DPC, made of $s_{c}-t_{c}$ and $t_{b}-y$ paths, of H, because $c(x) \neq c(y)$ and there are at least $\frac{n}{2}+1$ choices of each of x and y. It suffices to combine the $s_{b}-x$ path with the $t_{b}-y$ path into an $s_{b}-t_{b}$ path through the edge (x, y), completing the proof.

LEmMA 11 (Type-C partition). An $m \times n$ bipartite toroidal grid G has a paired 3-DPC joining $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ if $S \cup T$ is balanced, G is not rowreducible, and there are $r, 2 \leq r \leq m-2$, consecutive rows R_{p}, \ldots, R_{p+r-1} that contain two terminals α and β in total such that

- $c(\alpha)=c(\beta)$ or $\alpha, \beta \notin R_{p} \cup R_{p+r-1}$ when $r \geq 4$,
- $c(\alpha)=c(\beta) \&\left|\{\alpha, \beta\} \cap R_{p+1}\right|=1$
or $c(\alpha)=c(\beta) \&(\alpha, \beta) \in \mathcal{K} \&\left|\{\alpha, \beta\} \cap R_{p}\right|=\mid\{\alpha, \beta\} \cap$
$R_{p+2}=1$,
or $c(\alpha)=c(\beta) \&(\alpha, \beta) \notin \mathcal{K} \& \alpha, \beta \in R_{p+1}$
or $c(\alpha) \neq c(\beta) \&(\alpha, \beta) \notin \mathcal{K} \& \alpha, \beta \in R_{p+1} \&(\alpha, \beta) \notin$ $E(G)$ when $r=3$,

$$
c(\alpha)=c(\beta) \&(\alpha, \beta) \notin \mathcal{K} \&\left|\{\alpha, \beta\} \cap R_{p}\right|=1 \text { when } r=2
$$

where $\mathcal{K}=\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right)\right\}$.
Proof. Let H be the subgraph $G-R_{p, p+r-1}$ induced by $R_{0, p-1} \cup R_{p+r, n-1}$, in which there are four terminals, say $s_{a}, t_{a}, \alpha^{\prime}$, and β^{\prime} for some $a \in\{1,2,3\}$, so that $S \cup T=$ $\left\{s_{a}, t_{a}, \alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right\}$, where $\left(\alpha, \alpha^{\prime}\right),\left(\beta, \beta^{\prime}\right) \in \mathcal{K}$, or $(\alpha$, β), $\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathcal{K}$, or $\left(\alpha, \beta^{\prime}\right),\left(\alpha^{\prime}, \beta\right) \in \mathcal{K}$. The four terminals of H are not of the same color since $S \cup T$ is balanced. So, from Theorem 5, there exist three disjoint $s_{a}-t_{a}, \alpha^{\prime}-x$, and $\beta^{\prime}-y$ paths that cover H for some $x, y \in$ $R_{p-1} \cup R_{p+r}$.

Let $x^{\prime}, y^{\prime} \in R_{p} \cup R_{p+r-1}$ be the neighbors of x and y, respectively.

Claim 3. For the two terminals α and β of $G\left[R_{p, p+r-1}\right]$ satisfying the hypothesis of the lemma, (i) $\left\{x^{\prime}, y^{\prime}\right\} \cap$ $\{\alpha, \beta\}=\emptyset$; moreover, (ii) $G\left[R_{p, p+r-1}\right]$ has three kinds of paired 2-DPCs, a DPC made of $\alpha-x^{\prime}$ and $\beta-y^{\prime}$ paths, a DPC made of $\alpha-y^{\prime}$ and $\beta-x^{\prime}$ paths, and a DPC made of $\alpha-\beta$ and $x^{\prime}-y^{\prime}$ paths.

Proof of Claim 3. Within the scope of this proof, x^{\prime} and y^{\prime} as well as α and β are said to be terminals. Observing that $\left\{\alpha, \beta, x^{\prime}, y^{\prime}\right\}$ is balanced, we prove the assertion (i) first. If $c(\alpha)=c(\beta)$, then $c\left(x^{\prime}\right)=c\left(y^{\prime}\right) \neq c(\alpha)$ $=c(\beta)$, so $\left\{x^{\prime}, y^{\prime}\right\} \cap\{\alpha, \beta\}=\emptyset$; if $\alpha, \beta \notin R_{p} \cup R_{p+r-1}$, then $\left\{x^{\prime}, y^{\prime}\right\} \cap\{\alpha, \beta\}=\emptyset$ obviously. Inspecting the hypothesis of the lemma leads to $c(\alpha)=c(\beta)$ or $\alpha, \beta \notin R_{p} \cup R_{p+r-1}$, proving (i). For the proof of the assertion (ii), let $\alpha \in R_{i}$ and $\beta \in R_{j}$ for some $i, j \in\{p, \ldots, p+r-1\}$. First, let $r \geq 4$. It follows that $i \neq j$ and $\{i, j\} \neq\{p, p+r-1\}$; suppose otherwise, G would be row-reducible. This leads to the conclusion that there is a (non-boundary) row that contains a single terminal, meaning the required 2-DPCs exist by Lemmas 3 and 4 (also, by Remark 1). Secondly, let $r=3$. If $\left|\{\alpha, \beta\} \cap R_{p+1}\right|=1$, then R_{p+1} contains a single terminal, so the required 2-DPCs exist. If $\left|\{\alpha, \beta\} \cap R_{p}\right|=$ $\left|\{\alpha, \beta\} \cap R_{p+2}\right|=1, c(\alpha)=c(\beta)$, and $(\alpha, \beta) \in \mathcal{K}$, then the four terminals in $\left\{\alpha, \beta, x^{\prime}, y^{\prime}\right\}$ cannot form an inadmissible configuration of Lemmas 4 and 6 , so the required 2-DPCs exist. Analogously, we can see that the required 2-DPCs exist for the remaining two cases where $\alpha, \beta \in R_{p+1}$. Finally, let $r=2$. If $c(\alpha)=c(\beta),(\alpha, \beta) \in \mathcal{K}$, and $i \neq j$ (i.e., $\left|\{\alpha, \beta\} \cap R_{p}\right|=\left|\{\alpha, \beta\} \cap R_{p+1}\right|=1$), then the four terminals in $\left\{\alpha, \beta, x^{\prime}, y^{\prime}\right\}$ cannot form an inadmissible configuration of Lemmas 4 and 5 , so the required 2-DPCs exist. Thus, the claim is proven. \square

Combining the $\alpha^{\prime}-x$ and $\beta^{\prime}-y$ paths of H with one of the three paired 2-DPCs of $G\left[R_{p, p+r-1}\right]$ through the edges $\left(x, x^{\prime}\right)$ and $\left(y, y^{\prime}\right)$ leads to a paired 3-DPC of G , as required. This completes the proof. \square

Now, we are ready to prove our main theorem.
THEOREM 6. An $m \times n$ bipartite toroidal grid G with
$(m, n) \neq(4,4)$ has a paired 3-DPC joining disjoint terminal sets $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ if and only if $S \cup T$ is balanced.

Proof. The necessity part is straightforward from the fact that the two color classes of G are always the same in size. The sufficiency proof will proceed by induction on $m+n$, where m and n are both even integers with $m, n \geq 4$ and $m+n \geq 10$. Assume w.l.o.g. $m \geq n$. The base step of $(m, n)=(6,4)$ is due to Lemma 7. Moreover, the theorem holds true for the case of $(m, n)=(6,6)$ by Lemma 7 again, so we assume $m \geq 8$ for the inductive step. Keep in mind that if G is row-reducible, then G has a paired 3DPC joining S and T by Lemma 8 because by the induction hypothesis, an $(m-2) \times n$ bipartite toroidal grid has a paired 3-DPC joining any disjoint terminal sets S^{\prime} and T^{\prime} of size 3 each such that $S^{\prime} \cup T^{\prime}$ is balanced. We assume w.l.o.g. that R_{0} contains as many terminals as the other rows, i.e., $\left|R_{0} \cap(S \cup T)\right| \geq\left|R_{i} \cap(S \cup T)\right|$ for all $i \in\{1$, $\ldots, m-1\}$. There are three cases according to the size of $R_{0} \cap(S \cup T)$.

Case 1: $\left|R_{0} \cap(S \cup T)\right| \geq 3$. The $m-1(\geq 7)$ rows other than R_{0} contain 3 or fewer terminals in total, so (i) G is row-reducible, or (ii) $m=8$ and each of the three rows R_{2}, R_{4}, and R_{6} contains a single terminal. For possibility (i), G has a paired 3-DPC joining S and T by the induction hypothesis and Lemma 8; for possibility (ii), G admits a type-C partition w.r.t. $R_{1,5}$, and hence G has a paired 3DPC joining S and T by Lemma 11.

Case 2: $\left|R_{0} \cap(S \cup T)\right|=2$.
Case 2.1: $\left|R_{i} \cap(S \cup T)\right|=2$ for some $i \in\{1, \ldots, m-1\}$. In this case, there are at most three rows other than R_{0}, each of which contains a terminal. It follows that G is row-reducible, or $m=8$ and the three rows R_{2}, R_{4}, and R_{6} each contains a terminal. If G is row-reducible, we are done by the induction hypothesis and Lemma 8. If $i=2$, i.e., R_{2} contains two terminals, then G has a paired 3-DPC joining S and T by Lemma 11 because G admits a type-C partition w.r.t. $R_{3,7}$; symmetrically in the case of $i=6, G$ is also type-C-partitionable. Let $i=4$ now. There are two possibilities: (i) $R_{0} \cap(S \cup T)=\left\{s_{a}, t_{a}\right\}$ for some a, and (ii) $R_{0} \cap(S \cup T) \neq\left\{s_{a}, t_{a}\right\}$ for all a.

For the first possibility, suppose $s_{a}, t_{a} \in R_{0}$. If $c\left(s_{a}\right) \neq$ $c\left(t_{a}\right)$, then G admits a type-A partition w.r.t. $R_{2,7}$, hence G has a required 3-DPC by Lemma 9 (Note that the four terminals in $(S \cup T) \backslash\left\{s_{a}, t_{a}\right\}$ do not form an inadmissible configuration in the induced subgraph $G\left[R_{2,7}\right]$ since there is a row, say R_{2}, that contains an odd number of terminals). If $c\left(s_{a}\right)=c\left(t_{a}\right)$, then there is a terminal α in R_{2} or in R_{6} such that $c(\alpha) \neq c\left(s_{a}\right)=c\left(t_{a}\right)$, hence, assuming w.l.o.g. $\alpha \in R_{2}, G$ admits a type-B partition w.r.t. $R_{0,2}$ and has a required 3-DPC by Lemma 10.

For the second possibility, suppose $s_{a}, s_{b} \in R_{0}$ for some $a, b \in\{1,2,3\}$ with $a \neq b$ (or symmetrically, $s_{a}, t_{b} \in R_{0}$).

For the two terminals, denoted α and β, in R_{4}, if $\{\alpha, \beta\}=$ $\left\{s_{c}, t_{c}\right\}$ for some $c \in\{1,2,3\}$ with $c \neq a, b$, then a paired 3-DPC can be constructed in a way symmetric to the first possibility where $s_{a}, t_{a} \in R_{0}$. So, we assume $\{\alpha, \beta\} \neq\left\{s_{c}\right.$, $\left.t_{c}\right\}$. If either $c\left(s_{a}\right)=c\left(s_{b}\right)$ or $c\left(s_{a}\right) \neq c\left(s_{b}\right) \&\left(s_{a}, s_{b}\right) \notin E(G)$, then G admits a type-C partition w.r.t. $R_{7} \cup R_{0,1}$, hence G has a required 3-DPC by Lemma 11. Similarly, if either $c(\alpha)=c(\beta)$ or $c(\alpha) \neq c(\beta) \&(\alpha, \beta) \notin E(G)$, then G is type-C-partitionable w.r.t. $R_{3,5}$ and has a required 3-DPC. So, we further assume $\left(s_{a}, s_{b}\right),(\alpha, \beta) \in E(G)\left(c\left(s_{a}\right) \neq c\left(s_{b}\right)\right.$ and $c(\alpha) \neq c(\beta)$). If $t_{a} \in R_{2}$ or $t_{b} \in R_{2}$, then G is type-Bpartitionable w.r.t. $R_{0,2}$ and thus G has a required 3-DPC by Lemma 10; also, G is type-B-partitionable w.r.t. $R_{6,7} \cup R_{0}$ if $t_{a} \in R_{6}$ or $t_{b} \in R_{6}$.

Finally, there remains a case where $t_{a}, t_{b} \in R_{4}$ and s_{c}, $t_{c} \in R_{2} \cup R_{6}$, say $s_{c} \in R_{2}$ and $t_{c} \in R_{6}$, and moreover $\left(s_{a}, s_{b}\right)$, $\left(t_{a}, t_{b}\right) \in E(G)$ and $c\left(s_{c}\right) \neq c\left(t_{c}\right)$. None of the three types of a partition can be applied in this case, so we will devise a direct construction of a paired 3-DPC joining S and T. We assume w.l.o.g. that $\mathrm{c}\left(s_{b}\right)=c\left(s_{c}\right), s_{a}=v_{n-2}^{0}$, and $s_{b}=v_{n-1}^{0}$, and let $t_{b}=v_{j}^{4}$ for some j. The construction will be completed in five steps as follows (see Fig. 7(a)):

1: Find a Hamiltonian $s_{a}-v_{0}^{0}$ path, $\left\langle v_{n-2}^{0}, \ldots, v_{0}^{0}\right\rangle$, in $G\left[R_{0}\right]-s_{b}$.
2: Let $x=v_{j+1}^{3}$ if $t_{a} \neq v_{j+1}^{4}$; let $x=v_{j-1}^{3}$ otherwise. For $s_{b}^{\prime}=v_{n-1}^{1}$ and $t_{b}^{\prime}=v_{j}^{3}$, find a paired 2-DPC composed of $s_{b}^{\prime}-t_{b}^{\prime}$ and $s_{c}-x$ paths in $G\left[R_{1,3}\right]$.
3: Let s_{c}^{\prime} be the neighbor of x in R_{4}. Divide the Hamiltonian $s_{c}^{\prime}-t_{a}$ path of $G\left[R_{4}\right]-t_{b}$ into $s_{c}^{\prime}-y$ and $\mathrm{z}-$ t_{a} paths, by deleting an arbitrary edge (y, z) of the Hamiltonian path.
4: Let y^{\prime} and z^{\prime} be the respective neighbors of y and z in R_{5}. Find a paired 2-DPC composed of $y^{\prime}-t_{c}$ and $v_{0}^{7}-z^{\prime}$ paths in $G\left[R_{5,7}\right]$.
5: Concatenating the $s_{a}-v_{0}^{0}, v_{0}^{7}-z^{\prime}$, and $z-t_{a}$ paths results in an $s_{a}-t_{a}$ path; concatenating the one vertex path $<s_{b}>$, the $s_{b}^{\prime}-t_{b}^{\prime}$ path, and $<t_{b}>$ leads to an $s_{b}-t_{b}$ path; finally, concatenating the $s_{c}-x, s_{c}^{\prime}-y$, and $y^{\prime}-t_{c}$ paths leads to an $s_{c}-t_{c}$ path.

The paired 2-DPCs in Steps 2 and 4 exist due to Lemmas 4 and 6 (also, due to Remark 1).

Case 2.2: $\left|R_{i} \cap(S \cup T)\right| \leq 1$ for all $i \in\{1, \ldots, m-1\}$. There are exactly four rows other than R_{0}, each of which contains a terminal, so G is row-reducible (and we are done) or $m \leq 10$. If $m=10$, then each of the four rows R_{2}, R_{4}, R_{6}, and R_{8} contains a single terminal, hence G admits a type-C partition w.r.t. $R_{1,5}$ and has a required 3-DPC by Lemma 11. Suppose $m=8$ hereafter. Let r be the maximum number of consecutive rows, including R_{0}, each of which contains a terminal; also, let R_{p}, \ldots, R_{q} denote the remaining $8-r$ consecutive rows (Note that $R_{p, q}$ contains $5-r$ terminals; but R_{p} and R_{q} contain no

Fig. 7. Illustrations of the proof of Theorem 6 for the cases to which none of the three types of a partition is applicable.
terminal). It follows that $r \leq 3$ because G is not rowreducible. If $r=3$, then each of R_{p+1} and R_{p+3} contains a single terminal, hence G admits a type-C-partition w.r.t. $R_{p, p+4}$ and has a required 3-DPC. If $r=2$, then each of R_{p+1} and R_{p+4} contains a single terminal; also, either R_{p+2} or R_{p+3} contains a single terminal. This leads to the conclusion that G is type-C-partitionable (w.r.t. $R_{p, p+3}$ for the former case and w.r.t. $R_{p+2, p+5}$ for the latter case) and has a required 3-DPC. Finally, if $r=1$, then each of R_{2} and R_{6} contains a single terminal; also, two of the three R_{3}, R_{4}, and R_{5} contain a single terminal. If each of R_{3} and R_{5} contains a single terminal (but R_{4} does not), then G is type-C-partitionable w.r.t. $R_{1,4}$. So, we assume w.l.o.g. each of R_{4} and R_{5} contains a single terminal, i.e., $\mid R_{j} \cap$ $(S \cup T) \mid=1$ for $j \in\{2,4,5,6\}$.

Let α and β denote the two terminals in R_{0}. First, suppose $c(\alpha)=c(\beta)$. If $\{\alpha, \beta\}=\left\{s_{a}, t_{a}\right\}$ for some $a \in\{1,2$, $3\}$, then assuming w.l.o.g. that the terminal in R_{2} has a color different from $c(\alpha), G$ is type-B-partitionable w.r.t. $R_{0,2}$. If $\{\alpha, \beta\} \neq\left\{s_{a}, t_{a}\right\}$ for all a, then G is type-Cpartitionable w.r.t. $R_{7} \cup R_{0,1}$. Secondly, suppose $c(\alpha) \neq$
$c(\beta)$. If $\{\alpha, \beta\}=\left\{s_{a}, t_{a}\right\}$ for some a, then G is type-Apartitionable w.r.t. $R_{2,7}$. If $\{\alpha, \beta\} \neq\left\{s_{a}, t_{a}\right\}$ for all a, and moreover $(\alpha, \beta) \notin E(G)$, then G is type-C-partitionable w.r.t. $R_{7} \cup R_{0,1}$. So, we further assume $\{\alpha, \beta\}=\left\{s_{a}, s_{b}\right\}$ for some $a, b \in\{1,2,3\}$ with $a \neq b$, and $\left(s_{a}, s_{b}\right) \in E(G)$. If R_{2} contains t_{a} or t_{b}, then G is type-B-partitionable w.r.t. $R_{0,2}$; if R_{6} contains t_{a} or t_{b}, then G is also type-B-partitionable w.r.t. $R_{6,7} \cup R_{0}$. There remains a case where $\left(R_{2} \cup R_{6}\right) \cap$ $(S \cup T)=\left\{s_{c}, t_{c}\right\}$ for some $c \in\{1,2,3\}$ with $c \neq a, b$. Assume w.l.o.g. $s_{c} \in R_{2}$ and $t_{c} \in R_{6}$, and moreover $t_{a} \in R_{4}$ and $t_{b} \in R_{5}$. If $c\left(t_{a}\right)=c\left(t_{b}\right)$, then G is type-C-partitionable w.r.t. $R_{3,5}$; also, if $c\left(t_{b}\right)=c\left(t_{c}\right)$, then G is type-Cpartitionable w.r.t. $R_{5,7}$. Under the condition $c\left(t_{a}\right)=c\left(t_{c}\right) \neq$ $c\left(t_{b}\right)=c\left(s_{c}\right)$, we give a direct construction of a paired 3DPC below for the remaining case (see Fig. 7(b)).

1: Find a Hamiltonian $s_{a}-s_{b}$ path in $G\left[R_{0}\right]$. Let the Hamiltonian path be represented as $<s_{a}, \ldots, x, y, \ldots$, $s_{b}>$, possibly $x=s_{a}$, for some x with $c(x)=c\left(s_{c}\right)$.
2: For the neighbor $s_{a}^{\prime} \in R_{3}$ of x, the neighbor $t_{a}^{\prime} \in R_{3}$ of t_{a}, and a neighbor $z \in R_{1}$ of t_{a}^{\prime}, find a paired 2DPC made of $s_{a}^{\prime}-t_{a}^{\prime}$ and $s_{c}-z$ paths in $G\left[R_{1,3}\right]$.
3: For the neighbor $z^{\prime} \in R_{4}$ of z and the neighbor $w^{\prime} \in$ R_{4} of t_{a} other than z^{\prime}, find a Hamiltonian $z^{\prime}-w$ path in $G\left[R_{4}\right]-t_{a}$.
4: For the neighbor $s_{b}^{\prime} \in R_{7}$ of y and the neighbor $w^{\prime} \in$ R_{5} of w, find a paired 2-DPC composed of $s_{b}^{\prime}-t_{b}$ and $w^{\prime}-t_{c}$ paths in $G\left[R_{5,7}\right]$.
5: Concatenating the $s_{a}-x$ path, the $s_{a}^{\prime}-t_{a}^{\prime}$ path, and $<t_{a}>$ results in an $s_{a}-t_{a}$ path; concatenating the $s_{b}-y$ and $s_{b}^{\prime}-t_{b}$ paths leads to an $s_{b}-t_{b}$ path; finally, concatenating the $s_{c}-z, z^{\prime}-w$, and $w^{\prime}-t_{c}$ paths leads to an $s_{c}-t_{c}$ path.

Case 3: $\left|R_{0} \cap(S \cup T)\right|=1$. Let r denote the maximum number of consecutive rows where each of which contains a terminal; assume w.l.o.g. that R_{0}, \ldots, R_{r-1} are such consecutive rows. First, suppose $r=1$. Then, G is type-C-partitionable w.r.t. $R_{m-1} \cup R_{0, q+1}$ for some $q \geq 1$ such that R_{q} contains a terminal but R_{j} does not for all $j \in\left\{1, \ldots, q^{-1}\right\}$. Secondly, suppose $r=2$. Then, G is also type-C-partitionable w.r.t. $R_{m-1} \cup R_{0,2}$. Thirdly, suppose r $=3$. Then, G is row-reducible or $m \leq 10$. If $m=10$, then each of R_{4}, R_{6}, and R_{8} contains a single terminal, so G is type-C-partitionable w.r.t. $R_{3,7}$. Let $m=8$ now. The rows R_{3} and R_{7} contain no terminal, so each of R_{4}, R_{5}, R_{6} contains a terminal, i.e., $\left|R_{j} \cap(S \cup T)\right|=1$ iff $j \in\{0,1,2$, $4,5,6\}$. Let α_{i} denote the terminal in R_{i}. If $c\left(\alpha_{0}\right)=c\left(\alpha_{1}\right)$, then G is type-C-partitionable; if $c\left(\alpha_{1}\right)=c\left(\alpha_{2}\right)$, then G is also type-C-partitionable; so, $c\left(\alpha_{0}\right)=c\left(\alpha_{2}\right) \neq c\left(\alpha_{1}\right)$. A similar argument leads to $c\left(\alpha_{4}\right)=c\left(\alpha_{6}\right) \neq c\left(\alpha_{5}\right)$. It follows that $c\left(\alpha_{0}\right)=c\left(\alpha_{2}\right)=c\left(\alpha_{5}\right) \neq c\left(\alpha_{1}\right)=c\left(\alpha_{4}\right)=c\left(\alpha_{6}\right)$. Furthermore, if $\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}\right\}$ contains s_{a}, t_{a} for some a, then G is type-Bpartitionable; if $\left\{\alpha_{1}, \alpha_{2}, \alpha_{4}\right\}$ contains s_{a}, t_{a} for some a, then G is also type-B-partitionable, and so on. Thus, we can assume w.l.o.g. that $s_{1} \in R_{0}, s_{2} \in R_{1}, s_{3} \in R_{2}, t_{1} \in R_{4}, t_{2} \in R_{5}$,
and $t_{3} \in R_{6}$. A paired 3-DPC for the remaining case can be constructed as follows (see Fig. 7(c)):

1: For a vertex $x \in R_{1}$ with $c(x)=c\left(s_{1}\right)$, there exists a vertex $y \in R_{0}$ that admits a disjoint path cover composed of $s_{1}-x$ and $s_{2}-y$ paths in $R_{0,1}$.
2: For the neighbor $s_{1}^{\prime} \in R_{2}$ of x, there exists a vertex z $\in R_{4}$ that admits a disjoint path cover composed of $s_{1}^{\prime}-t_{1}$ and $s_{3}-z$ paths in $R_{2,4}$.
3: For the neighbor $s_{3}^{\prime} \in R_{5}$ of z and the neighbor $s_{2}^{\prime} \in R_{7}$ of y, there exists a paired 2-DPC composed of $s_{2}^{\prime}-t_{2}$ and $s_{3}^{\prime}-t_{3}$ paths in $R_{5,7}$.
4: Concatenating the $s_{1}-x$ and $s_{1}^{\prime}-t_{1}$ paths results in an $s_{1}-t_{1}$ path; concatenating the $s_{2}-y$ and $s_{2}^{\prime}-t_{2}$ paths leads to an $s_{2}-t_{2}$ path; finally concatenating the $s_{3}-z$ and $s_{3}^{\prime}-t_{3}$ paths leads to an $s_{3}-t_{3}$ path.

The vertices y in Step 1 and z in Step 2 exist due to Theorem 4. The paired 2-DPC in Step 3 exists by Lemmas 4 and 6 (also, by Remark 1).

Finally, suppose $r \geq 4$. Then, G is row-reducible, or m $=8$ and $r \in\{4,5\}$. Let $m=8$. If $r=4$, then R_{4} and R_{7} contain no terminal, but each of R_{5} and R_{6} contains a single terminal, hence G is type-C-partitionable w.r.t. $R_{4,7}$. If $r=5$, then R_{6} contains a terminal but R_{5} and R_{7} does not. Let α_{i} denote the terminal in R_{i} again. If $c\left(\alpha_{3}\right)=c\left(\alpha_{4}\right)$, then G is type-C-partitionable w.r.t. $R_{3,5}$; also, if $c\left(\alpha_{4}\right)=$ $c\left(\alpha_{6}\right)$, then G is type-C-partitionable w.r.t. $R_{4,7}$; in addition, if $c\left(\alpha_{6}\right)=c\left(\alpha_{0}\right)$, then G is type-C-partitionable w.r.t. $R_{5,7} \cup R_{0}$; finally, if $c\left(\alpha_{0}\right)=c\left(\alpha_{1}\right)$, then G is type-Cpartitionable w.r.t. $R_{7} \cup R_{0,1}$. It follows that $c\left(\alpha_{3}\right) \neq c\left(\alpha_{4}\right) \neq$ $c\left(\alpha_{6}\right) \neq c\left(\alpha_{0}\right) \neq c\left(\alpha_{1}\right)$, and thus $c\left(\alpha_{0}\right)=c\left(\alpha_{2}\right)=c\left(\alpha_{4}\right) \neq c\left(\alpha_{1}\right)$ $=c\left(\alpha_{3}\right)=c\left(\alpha_{6}\right)$. Furthermore, if $\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}\right\}$ contains s_{a}, t_{a} for some a, then G is type-B-partitionable; if $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ contains s_{a}, t_{a} for some a, then G is also type-Bpartitionable, and so on. Thus, we can assume w.l.o.g. that $s_{1} \in R_{0}, s_{2} \in R_{1}, s_{3} \in R_{2}, t_{1} \in R_{3}, t_{2} \in R_{4}$, and $t_{3} \in R_{6}$. The construction, shown below, is almost the same as in the previous case where $r=3, m=8, s_{1} \in R_{0}, s_{2} \in R_{1}, s_{3} \in$ $R_{2}, t_{1} \in R_{4}, t_{2} \in R_{5}$, and $t_{3} \in R_{6}$.

1: For a vertex $x \in R_{1}$ with $c(x)=c\left(s_{1}\right)$, there exists a vertex $y \in R_{0}$ that admits a disjoint path cover composed of $s_{1}-x$ and $s_{2}-y$ paths in $R_{0,1}$
2: For the neighbor $s_{1}^{\prime} \in R_{2}$ of x, there exists a vertex z $\in R_{3}$ that admits a disjoint path cover composed of $s_{1}^{\prime}-t_{1}$ and $s_{3}-z$ paths in $R_{2,3}$.
3: For the neighbor $s_{3}^{\prime} \in R_{4}$ of z and the neighbor $s_{2}^{\prime} \in$ R_{7} of y, there exists a paired 2-DPC composed of $s_{2}^{\prime-}$ t_{2} and $s_{3}^{\prime}-t_{3}$ paths in $R_{4,7}$.
4: Concatenating the $s_{1}-x$ and $s_{1}^{\prime}-t_{1}$ paths results in an $s_{1}-t_{1}$ path; concatenating the $s_{2}-y$ and $s_{2}^{\prime}-t_{2}$ paths leads to an $s_{2}-t_{2}$ path; finally, concatenating the $s_{3}-z$ and $s_{3}^{\prime}-t_{3}$ paths leads to an $s_{3}-t_{3}$ path.
This completes the entire proof. \square

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2018R1D1A1B07045566). This work was also supported by the Catholic University of Korea, Research Fund, 2018.

REFERENCES

1. K. Asdre and S. D. Nikolopoulos, "The 1-fixed-endpoint path cover problem is polynomial on interval graphs," Algorithmica, vol. 58, no. 3, pp. 679-710, 2010.
2. S. C. Ntafos and S. L. Hakimi, "On path cover problems in digraphs and applications to program testing," IEEE Transactions on Software Engineering, vol. 5, no. pp. 520-529, 1979.
3. J. H. Park, H. C. Kim, and H. S. Lim, "Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements," IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 3, pp. 227-240, 2006.
4. S. R. Arikati and C. P. Rangan, "Linear algorithm for optimal path cover problem on interval graphs," Information Processing Letters, vol. 35, no. 3, pp. 149-153, 1990.
5. J. H. Park, J. Choi, and H. S. Lim, "Algorithms for finding disjoint path covers in unit interval graphs," Discrete Applied Mathematics, vol. 205, pp. 132-149, 2016.
6. T. Dvorak and P. Gregor, "Partitions of faulty hypercubes into paths with prescribed endvertices," SIAM Journal on Discrete Mathematics, vol. 22, no. 4, pp. 1448-1461, 2008.
7. T. Dvorak, P. Gregor, and V. Koubek, "Generalized Gray codes with prescribed ends," Theoretical Computer Science, vol. 668, pp. 70-94, 2017.
8. S. Jo, J. H. Park, and K. Y. Chwa, "Paired many-to-many disjoint path covers in faulty hypercubes," Theoretical Computer Science, vol. 513, pp. 1-24, 2013.
9. X. B. Chen, "Paired 2-disjoint path covers of faulty k-ary n-cubes," Theoretical Computer Science, vol. 609, pp. 494499, 2016.
10. X. B. Chen, "Paired 2-disjoint path covers of multi-
dimensional torus networks with faulty edges," Information Processing Letters, vol. 116, no. 2, pp. 107-110, 2016.
11. B. G. Kronenthal and W. H. T. Wong, "Paired many-to-many disjoint path covers of hypertori," Discrete Applied Mathematics, vol. 218, pp. 14-20, 2017.
12. J. Li, G. Wang, and L. Chen, "Paired 2-disjoint path covers of multi-dimensional torus networks with $2 \mathrm{n}-3$ faulty edges," Theoretical Computer Science, vol. 677, pp. 1-11, 2017.
13. H. S. Lim, H. C. Kim, and J. H. Park, "Ore-type degree conditions for disjoint path covers in simple graphs," Discrete Mathematics, vol. 339, no. 2, pp. 770-779, 2016.
14. I. Ihm and J. H. Park, "A linear-time algorithm for finding a paired 2-disjoint path cover in the cube of a connected graph," Discrete Applied Mathematics, vol. 218, pp. 98-112, 2017.
15. J. H. Park and I. Ihm, "Disjoint path covers in cubes of connected graphs," Discrete Mathematics, vol. 325, pp. 65-73, 2014.
16. F. Luccio and C. Mugnia, "Hamiltonian paths on a rectangular chessboard," in Proceedings of the 16th Annual Allerton Conference on Communication, Control and Computing, Urbana, IL, 1978, pp. 161-173.
17. K. Makino, "2-disjoint path covers in mesh-torus," Research Institute for Mathematical Sciences, vol. 1489, pp. 181-187, 2006.
18. J. H. Park and I. Ihm, "Many-to-many two-disjoint path covers in cylindrical and toroidal grids," Discrete Applied Mathematics, vol. 185, pp. 168-191, 2015.
19. H. D. Kim and J. H. Park, "Many-to-many disjoint path covers in two-dimensional bipartite tori with a single fault," Journal of KIISE: Computer Systems and Theory, vol. 39, no. 5, pp. 333-342, 2012.
20. G. J. Simmons, "Almost all n-dimensional rectangular lattices are Hamilton-Laceable," Sandia Labs., Albuquerque, NM, Technical Report, 1977.
21. C. C. Chen and N. F. Quimpo, "On strongly Hamiltonian abelian group graphsm" in Combinatorial Mathematics VIII. Heidelberg: Springer, 1981, pp. 23-34.
22. C. H. Tsai, J. M. Tan, Y. C. Chuang, and L. H. Hsu, "Faultfree cycles and links in faulty recursive circulant graphs," in Proceedings of ICS Workshop on Algorithms and Theory of Computation, Chiayi, Taiwan, 2000, pp. 74-77.

Jung-Heum Park

He received the B.S. degree in Computer Science and Statistics from Seoul National University in 1985, and the M.S. and Ph.D. degrees in Computer Science from KAIST, Korea, in 1987 and 1992, respectively. He joined IERI, KAIST as a postdoctoral researcher in 1992. During 1993-1996, he was a senior member of research staff at the ETRI. In 1996, he joined the Department of Computer Science at the Catholic University of Korea as an assistant professor, and currently he is a professor in the School of Computer Science and Information Engineering. His research interests include design and analysis of algorithms, applied graph theory, and interconnection networks. He is a member of the ACM, the IEEE, and the IEEE Computer Society.

[^0]: Received 08 June 2018; Accepted 01 September 2018
 *Corresponding Author

