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Abstract 
Given two disjoint vertex-sets, S = {s1, ...,sk} and T = {t1, ..., tk} in a graph, a paired many-to-many k-disjoint path cover

joining S and T is a set of pairwise vertex-disjoint paths {P1, ...,Pk} that altogether cover every vertex of the graph, in

which each path Pi runs from si to ti. In this paper, we first study the disjoint-path-cover properties of a bipartite cylindri-

cal grid. Based on the findings, we prove that every bipartite toroidal grid, excluding the smallest one, has a paired many-

to-many 3-disjoint path cover joining S = {s1, s2, s3} and T = {t1, t2, t3} if and only if the set S T contains the equal num-

bers of vertices from different parts of the bipartition. 
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I. INTRODUCTION 

Let G be a finite, simple undirected graph whose

vertex and edge sets are denoted by V(G) and E(G),

respectively. A path from v ∈ V(G) to w ∈ V(G), referred

to as a v–w path, is a sequence <u1, ..., ul> of distinct

vertices of G such that u1 = v, ul = w, and (ui, ui+1) ∈ E(G)

for all i ∈{1,..., l−1}. If l ≥ 3 and (ul, u1) ∈ E(G), the

sequence is called a cycle. A path that visits each vertex

exactly once is a Hamiltonian path; a cycle that visits

each vertex exactly once is a Hamiltonian cycle. A path

cover of a graph G is a set of paths in G such that every

vertex of G is contained in at least one path. A disjoint

path cover (DPC for short) of G is a set of disjoint paths

that altogether cover every vertex of G. This paper is

concerned with a DPC in which each path runs from a

prescribed source to a prescribed sink.

Given disjoint subsets S = {s1, ...,sk} and T = {t1, ..., tk}

of V(G) for a positive integer k, a many-to-many k-

disjoint path cover is a DPC composed of k paths that

collectively join S and T; if each source si ∈ S must be

joined to a specific sink ti ∈ T, the DPC is called paired,

and it is unpaired if no such constraint is imposed. Refer

to Fig. 1 for examples.

There are two other DPC types: A one-to-many k-

disjoint path cover for S = {s} and T = {t1, ..., tk} is a DPC

made of k paths, each of which joins a pair of source s

and sink ti, i ∈{1,...,k}; when S = {s} and T = {t}, a DPC

composed of k paths, each of which joins s and t, is

named a one-to-one k-disjoint path cover. As is intuitively

clear, we will call the vertices in S and in T sources and

sinks, respectively, which together form a set of terminals.

The existence of a disjoint path cover in a graph is

closely related to the Hamiltonian properties, as well as

the concept of vertex connectivity, which was characterized

in terms of the minimum number of disjoint paths. For
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instance, a Hamiltonian cycle forms a one-to-one 2-DPC

joining {s} and {t} for every pair of distinct vertices s

and t. Disjoint path cover problems are applicable in

many areas such as software testing, database design, and

code optimization [1, 2]. In addition, the problem is

concerned with applications where the full utilization of

network nodes is important [3]. The problems have been

studied for various classes of graphs, such as interval

graphs [4, 5], hypercubes [6-8], torus networks [9-12],

dense graphs [13], and cubes of connected graphs [14, 15].

In the context of the Hamiltonian path problem, the

rectangular grid first appeared in the literature in [16]. In

the formal definition of the m × n rectangular grid, the

vertices are often chosen from the points of the Euclidean

plane with integer coordinates so that the vertices and

edges form a rectangular grid with n vertices appearing in

each of m rows and m vertices in each of n columns. 

DEFINITION 1 (Rectangular grid). The m × n rectangular

grid G is a graph such that V(G) = { : 0 ≤ i ≤ m – 1, 0 ≤

j ≤ n – 1} and E(G) = {( ): |i – | + | j – | = 1}.

Besides the rectangular grid graph, there are two

related classes of grid graphs: The m × n cylindrical grid

is constructed from the m × n rectangular grid by adding

horizontal wrap-around edges ( , ) for i ∈{0, ...,

m−1}; the toroidal grid can be generated from the m × n

cylindrical grid by adding vertical wrap-around edges

( , ) for j ∈{0, ..., n−1}.

DEFINITION 2 (Cylindrical grid). The m × n cylindrical

grid G is a graph such that V(G) = { : 0 ≤ i ≤ m−1, 0 ≤ j

≤ n−1} and E(G) = {( ): ( j =  & |i – | = 1) or

(i =  &  ≡ j + 1 (mod n))}, where n ≥ 3. 

DEFINITION 3 (Toroidal grid). The m × n toroidal grid

G is a graph such that V(G) = { : 0 ≤ i ≤ m−1, 0 ≤ j ≤

n−1} and E(G) = {( ): ( j =  &  ≡ i + 1(mod n)) or

(i =  &  ≡ j + 1 (mod n))}, where m, n ≥ 3.

The rectangular grid is a bipartite graph and thus its

vertices may be colored in two colors, green and white, in

such a way that every pair of adjacent vertices is colored

differently (hereafter, we will denote the color of vertex v

by c(v)). In contrast, the m × n cylindrical grid is bipartite

if and only if n is even; the m × n toroidal grid is bipartite

if and only if both m and n are even. Each of the bipartite

cylindrical and toroidal grids is balanced in a way that its

two color classes have equal cardinality. We will also call

a subset of V(G) balanced if the number of vertices in the

subset that belong to each of the two color classes is

equal. 

The existence of a paired (many-to-many) 2-DPC in a

bipartite toroidal grid was studied, as shown below: 

THEOREM 1 (Makino [17]). An m × n toroidal grid

with m, n ≥ 4, both even, has a paired 2-DPC for a pair of

terminal sets S and T if and only if their union is balanced.

THEOREM 2 (Park and Ihm [18]). For an m × n toroidal

grid G with m, n ≥ 4, both even, and an arbitrary edge ef

of G, the subgraph, G − ef , of G with ef being deleted has

a paired 2-DPC joining S and T if and only if S T is

balanced.

THEOREM 3 (Kim and Park [19]). For an m × n toroidal

grid G with m, n ≥ 4, both even, and an arbitrary vertex vf

of G, the subgraph, G − vf , of G with vf being deleted has

a paired 2-DPC joining S and T if and only if one of the

four terminals in S T has the same color as vf and the

other three have a different color from vf. 

In this paper, we prove that an m × n bipartite toroidal

grid with (m, n) ≠ (4, 4) has a paired 3-DPC joining S =

{s1, s2, s3} and T = {t1, t2, t3} if and only if S T is balanced.

The proof is based on certain disjoint-path-cover properties

of a bipartite cylindrical grid (investigated in Section III),

as well as the necessary and sufficient condition for a

bipartite cylindrical grid to have a paired 2-DPC joining S

and T (established in [18]).

II. NOTATION AND PREVIOUS WORKS 

For an m × n grid graph, whether rectangular, cylindrical,

or toroidal, Ri denotes the vertex set { : 0 ≤ j ≤ n−1} of

row i, whereas Cj denotes the vertex set { : 0 ≤ i ≤ m−1}

of column j, implying that  is the vertex in both row i

and column j. Based on these notations, we respectively

indicate multiple rows and columns as = Rr if

i ≤ ; =  otherwise, and = Cr if j ≤ ;

=  otherwise. All arithmetic on the indices of vertices

of the cylindrical and toroidal grids is done modulo n or

m as needed. 

The Hamiltonian properties of the rectangular and

cylindrical grids have been revealed in previous studies,

some of which will be effectively used to derive our results.

A bipartite graph that is balanced is called Hamiltonian-

laceable if there is a Hamiltonian path between any two
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Fig. 1. Examples of many-to-many disjoint path covers.
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vertices from different color classes [20]. The concept of

Hamiltonian-laceability has often been extended in such

a way that a bipartite graph whose color classes may

differ in cardinality by exactly one is also Hamiltonian-

laceable if every pair of vertices from the same major

color class can be joined by a Hamiltonian path. Finally, a

bipartite graph G is called 1-fault Hamiltonian-laceable

if G remains Hamiltonian-laceable, even if a single vertex

or edge is deleted from G. 

LEMMA 1 (Chen and Quimpo [21]). Let G be an m × n

rectangular grid with m, n ≥ 2. (a) If mn is even, then G

has a Hamiltonian path from a corner vertex, i.e., a

vertex of degree two, to any other vertex in the different

color class. (b) If mn is odd, then G has a Hamiltonian

path from a corner vertex to any other vertex in the same

color class.

LEMMA 2 (Tsai, Tan, Chuang, and Hsu [22]). An m × n

cylindrical grid with m ≥ 2 and even n ≥ 4 is 1-fault

Hamiltonian-laceable.

A necessary and sufficient condition was established

by Park and Ihm [18] for an m × n bipartite cylindrical

grid to have a paired 2-DPC joining disjoint terminal sets

S = {s1, s2} and T = {t1, t2}; furthermore, inadmissible

configurations of the four terminals which would not

permit a paired 2-DPC in the cylindrical grid were

classified as one of four cases: (i) m ≥ 4 & even n ≥ 6, (ii)

n = 4, (iii) m = 2 & even n ≥ 6, and (iv) m = 3 & even

n ≥ 6, as shown in Lemmas 3 through 6.

LEMMA 3. For m ≥ 4 and even n ≥ 6, an m × n

cylindrical grid G has a paired 2-DPC joining S = {s1, s2}

and T = {t1, t2} if and only if S T is balanced, and the

four terminals in S T do not form an inadmissible

configuration equivalent to A0, B0, or C0:

A0: s1 = , s2 = , t1 = , and t2 =  for some i, j,

p, and q such that i < p < j < q;

B0: s1 = , t1 = , s2 = , and t2 =  for some i

and r;

C0: s1 = , t1 = , t2 = , and s2 =  for some i.

LEMMA 4. For m ≥ 2, an m × 4 cylindrical grid G has

a paired 2-DPC joining S = {s1, s2} and T = {t1, t2} if and

only if S T is balanced, and the four terminals in S T

do not form an inadmissible configuration equivalent to

A1, B0, or C1: 

A1: s1, t1 ∈ , s2, t2 ∈ , and c(s1) = c(t1) ≠ c(s2) =

c(t2) for some r1 and r2;

C1: s1 = , t1 = , t2 = , and s2 =  for some i

and r.

LEMMA 5. For even n ≥ 6, a 2 × n cylindrical grid G

has a paired 2-DPC joining S = {s1, s2} and T = {t1, t2} if

and only if S T is balanced, and the four terminals in

S T do not form an inadmissible configuration equivalent

to A0, B2, C2, or D2: 

B2: S T = { , , , } and c(s1) = c(t1) ≠ c(s2) =

c(t2) for some i and j with i ≠ j;

C2: s1 = , t1 = , s2 = , t2 = , and c(s1) = c(t1) ≠ c(s2)

= c(t2) for some i, j, p, and q such that i < p < j < q.

D2: s1 = , s2 = , t1 = , t2 = , and c(s1) = c(s2) ≠ c(t1)

= c(t2) for some i, j, p, and q such that i < p < j < q.

LEMMA 6. For even n ≥ 6, a 3 × n cylindrical grid G

has a paired 2-DPC joining S = {s1, s2} and T = {t1, t2} if

and only if S T is balanced, and the four terminals in

S T do not form an inadmissible configuration equivalent

to A0, B0, C3, D3, E3, or F3: 

C3: s1 = , t1 = , t2 = , s2 = , and c(s1) = c(t1) ≠

c(s2) = c(t2) for some i, j, p, and q such that i < j <

q <p, q = j + 1, and (n – 1 – p) + i ≥ 2;

D3: s1 = , s2 = , t1 = , t2 = , and c(s1) = c(t2) ≠

c(t1) = c(s2) for some i, j, p, and q such that i < p <

j < q, p = i + 1, and q = j + 1;

E3: s1 = , s2 = , t2 = , t1 = , and c(s1) = c(s2) ≠

c(t1) = c(t2) for some i, j, p, and q such that i < p <

q < j, q – p – 1 ≥ 2, and (n – 1 – j) + i ≥ 2;

F3: s1 = , t2 = , s2 = , t1 = , and c(s1) = c(t2) ≠

c(s2) = c(t1) for some i, j, p, and q such that  < ,

≥ 2, and (n – 1 – ) +  ≥ 2, where =

min{i, q},  = min{i, q},  = min{j, p}, and =

min{j, p}.

REMARK 1. The four terminals in S T form an

inadmissible configuration in a bipartite cylindrical grid

only if each row contains an even number of terminals.

III. DISJOINT PATH COVERS IN BIPARTITE
CYLINDRICAL GRIDS

Suppose that disjoint source and sink sets S = {s1, s2, s3}

and T = {t1, t2, t3} are given in an m × n bipartite toroidal

grid. If we divide the toroidal grid into two cylindrical

grids, m1 × n and m2 × n cylindrical grids for some m1, m2

≥ 2 with m1 + m2 = m, then each cylindrical grid may have

an “incomplete” terminal set in a sense that si is contained

in its terminal set but ti is not for some i ∈{1, 2, 3}, and

vice versa. In this section, we derive certain useful

properties of a disjoint path cover in a bipartite cylindrical

grid with an incomplete terminal set, where the notion of

a disjoint path cover is “generalized” in a way that allows

for a one-vertex path (Note that a disjoint path cover

joining disjoint terminal sets S and T contains no one-

vertex path). A boundary row in an m × n cylindrical grid

hereafter refers to row 0 or row m – 1.

⊃
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THEOREM 4. Let G be an m × n cylindrical grid with

m ≥ 2 and even n ≥ 4, in which three distinct terminals s1,

s2 ∈ S and t1 ∈ T are given such that not all the three are

of the same color. Then, there exist two disjoint paths, s1–t1

and s2–x paths, possibly x = s2, that altogether cover all

the vertices of G
● for every vertex x in one boundary row and for at

least one vertex x in the other boundary row such that

{s1, t1, s2, x} is balanced, or
● for every vertex x except one in one boundary row

and for at least two vertices x in the other boundary

row such that {s1, t1, s2, x} is balanced.

Proof. Suppose we are given three distinct terminals

s1, t1, and s2 in G such that the three are not of the same

color. Then, there is a terminal with a color different from

the other two, so {s1, t1, s2, x} is balanced if and only if x

has the same color as the terminal. In addition, inspecting

the inadmissible configurations in each of the four cases,

where (i) m ≥ 4 & even n ≥ 6, (ii) n = 4, (iii) m = 2 & even

n ≥ 6, and (iv) m = 3 & even n ≥ 6, can reveal that there

exists an inadmissible configuration Z such that for every

vertex x ∈ V(G) \ {s1, t1, s2}, the four terminals in {s1, t1,

s2, x} do not form an inadmissible configuration, or form

an inadmissible configuration equivalent only to Z, i.e.,

the four terminals do not form an inadmissible configuration

not equivalent to Z.

First, suppose m ≥ 4 & even n ≥ 6. From Lemma 3,

there exists a paired 2-DPC, made of s1–t1 and s2–x paths,

in G for every vertex x ∈ (R0 Rm−1) \ {s1, t1, s2}such that

{s1, t1, s2, x} is balanced and the four terminals in {s1, t1,

s2, x} do not form an inadmissible configuration equivalent

to A0, B0, or C0. Also, if c(s1) = c(t1) and s2 ∈R0 Rm−1,

then there exist two disjoint s1–t1 and s2–x paths that

cover all the vertices of G for x = s2, because G is 1-fault

Hamiltonian-laceable by Lemma 2. Inspecting each of

the three inadmissible configurations each leads to the

conclusion that two disjoint s1–t1 and s2–x paths exist,

provided {s1, t1, s2, x} is balanced, for every vertex x in

one boundary row and at least one vertex x in the other

boundary row, as required. Analogously, we can prove

the theorem in each of the remaining three cases from

Lemmas 4 through 6, and Lemma 2. Note that if the

inadmissible configuration Z is not equal to F3 (where m

= 3 & even n ≥ 6), there exist required disjoint paths, s1–t1

and s2–x paths, for every vertex x in one boundary row

and at least one vertex x in the other boundary row such

that {s1, t1, s2, x} is balanced; otherwise, the required

disjoint paths exist for every vertex x except one in one

boundary row and at least two vertices x in the other

boundary row such that {s1, t1, s2, x} is balanced. This

completes the proof. □

REMARK 2. The number of such vertices x in Theorem

4 is at least  + 1.

THEOREM 5. For distinct terminals s1, s2, s3 ∈ S and t1

∈ T in an m × n cylindrical grid G with m ≥ 2 and even

n ≥ 4 such that not all the four are of the same color,

there exist vertices x and y in the boundary rows, possibly

x = s2 and/or y = s3, such that G has three disjoint paths,

s1–t1, s2–x, and s3–y paths, that altogether cover all the

vertices of G.

Proof. The proof will proceed by induction on m. Let

m = 2 for the base step, where the two rows of G are both

boundary ones. If c(s2) ≠ c(s3), then a Hamiltonian s2–s3

path exists in G since G is 1-fault Hamiltonian-laceable

by Lemma 2. It suffices to divide the Hamiltonian path,

represented as <s2, ..., x, , ..., , y, ..., s3>, where { ,

} = {s1, t1}, x is the predecessor of , and y is the

successor of , into three subpaths: <s2,..., x>, < , ...,

>, <y,..., s3>. If c(s2) = c(s3), then c(s1) ≠ c(s2) or c(t1) ≠

c(s2), so we assume w.l.o.g. c(s1) ≠ c(s2). Then, there

exists a Hamiltonian s2–s3 path in G–s1 by Lemma 2. For

a neighbor v of s1 other than s2 and s3, the Hamiltonian

path can be represented as <s2, ..., x, , ..., , y, ..., s3>,

where { , } = {v1, t1}. It suffices to divide the

Hamiltonian path into three subpaths, <s2, ..., x>, < , ...,

), <y, ..., s3>, and to combine the one-vertex path <s1>

with the second subpath through the edge (s1, v).

Let m ≥ 3 for the inductive step. We assume w.l.o.g.

that R0 contains no fewer terminals than Rm−1, i.e.,

|R0 ∩ (S T)| ≥ |Rm−1 ∩ (S T)|. There are several possible

cases depending on the distribution of terminals.

Case 1: There is a boundary row that contains no

terminal, i.e., Rm−1 ∩ (S T) = . By the induction hypothesis,

there are two vertices x, y ∈ R0 Rm−2 that admit three

disjoint s1–t1, s2–x, and s3–y paths that cover all the

vertices of the subgraph G[R0,m−2] induced by R0,m−2. If

exactly one of x and y is contained in Rm−2, say x ∈ R0 and

y ∈ Rm−2, it suffices to extend the s3–y path to cover the

vertices of Rm−1, i.e., concatenate the s3–y path and a

Hamiltonian w–  path of the subgraph G[Rm−1] induced

by Rm−1 for the neighbor w ∈ Rm−1 of y and a neighbor 

∈ Rm−1 of w. If x, y ∈ Rm−2, then it suffices to extend the

s2–x and s3–y paths to cover the vertices of  Rm−1. That is,

for the neighbor u ∈ Rm−1 of x and the neighbor w ∈ Rm−1

of y, we extract two disjoint u–  and w–  paths from a

Hamiltonian cycle of G[Rm−1], then concatenate the s2–x

and u–  paths and concatenate again the s3–y and w–

paths.

Finally, suppose x, y ∉ Rm−2, i.e., x, y ∈ R0. If there is a

nonterminal vertex v in Rm−2, i.e., v ∉ {s1, t1, s2, s3}, then

one of the three disjoint paths, {s1−t1, s2−x}, and s3–y

paths, of G[R0,m−2] passes through v, hence passes through

an edge (v, w) of G[Rm−2]. It suffices to reroute the path,

instead of passing through the edge (v, w), to traverse a

Hamiltonian –  path of G[Rm−1] for the neighbors ,

 ∈ Rm−1 of v and w, respectively. Now, let every vertex

⊃

⊃
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in Rm−2 be a terminal, i.e., Rm−2 = {s1, t1, s2, s3} and n = 4.

For the neighbors , ,  ∈ Rm−3, respectively, of s1, t1,

and s2, there are two disjoint −  and −x paths for

some x ∈ R0 that cover G[R0,m−3] (The existence is by

Theorem 4 if m ≥ 4; the existence is obvious if m = 3). It

suffices to concatenate the one-vertex path <s1>, the −

path, and <t1> into an s1–t1 path, then concatenate again

the one-vertex path <s2> and the − x path, and extend

<s3> to cover Rm−1.

Case 2: There is a boundary row, say Rm−1, that contains

a single terminal in {s2, s3}, say s3, whose color is the

same as at least one of the other terminals. That is, Rm−1

∩ (S T) = {s3} and the three terminals s1, t1, s2 ∈ R0,m−2

are not of the same color. Then, for some x ∈ R0, there

exist disjoint s1–t1 and s2–x paths that cover G[R0,m−2] by

Theorem 4. It suffices to build a Hamiltonian s3–y path of

G[Rm−1] for some y.

Case 3: R0 ∩ (S T) = {s1, s2, s3}. Assume w.l.o.g. that

the three terminals in {s1, t1, s2} are not of the same color.

It suffices to divide the Hamiltonian cycle <s1, …, u, s2,

…, x, s3, ..., v> of G[R0] into three paths <s1, …, u>, <s2,

…, x>, and <s3, ...,v>, and then build two disjoint –t1

and –y paths that cover G[R1,m−1] for some y ∈ Rm−1,

where , ∈ R1 are the neighbors of u and v,

respectively. Note that c( ) = c(s2) and c( ) = c(s1),

meaning that the three vertices of { , , t1} are not of

the same color.

Case 4: R0 ∩ (S T) = {s1, t1, s2}. From the hypotheses

of Cases 1 and 2, we can assume that s3 ∈ Rm−1 and c(s1) =

c(t1) = c(s2) ≠ c(s3). The proof is similar to that of Case 3.

Dividing the Hamiltonian cycle <s1, …, u, t1, …, v, s2, ...,

x> of G[R0] into <s1, …, u>, <t1, …, v>, and <s2, ..., x>

paths and building two disjoin –  and s3–y paths that

cover G[R1,m−1] for some y ∈ Rm−1 leads to a requirement

of three paths, where ,  ∈ R1 are the neighbors of u

and v, respectively.

Case 5: R0 ∩ (S T) = {s2, s3}. Similar to Case 3, assume

w.l.o.g. that the three terminals in {s1, t1, s2} are not of the

same color. It suffices to divide the Hamiltonian cycle of

G[R0], represented as <s2, …, x, s3, …, u> with (u, s1), (u,

t1) ∉ E(G), into two paths <s2, …, x> and (s3, …, u), and

then build two disjoint s1–t1 and – y paths that cover

G[R1,m−1] for some y ∈ Rm−1, where  ∈ R1 is the neighbor

of u (Note that R1 contains at most one terminal from the

hypothesis of Case 1).

Case 6: R0 ∩ (S T) = {s1, s2}. Unless c(s1) ≠ c(t1) =

c(s2) = c(s3), it suffices to divide the Hamiltonian cycle

<s1, …, u, s2, ..., x> of G[R0], represented in a way that

the neighbor  ∈ R1 of u is not a terminal, into s1–u and

s2–x paths, and then build two disjoint –t1 and s3–y

paths that cover G[R1,m−1] for some y ∈ Rm−1. Suppose

c(s1) ≠ c(t1) = c(s2) = c(s3) now. If Rm−1 ∩ (S T) = {t1, s3},

then we can also build the three required paths

symmetrically, so we assume that Rm−1 contains a single

terminal. If (s1, s2) ∈ E(G), it suffices to divide the

Hamiltonian cycle of G[R0] into <s2, x> and s1–u paths for

some x, u ∈ R0, and then build two disjoint –t1 and s3–y

paths that cover G[R1,m−1] for some y ∈ Rm−1, where  ∈

R1 is the neighbor of u. If (s1, s2) ∉ E(G), it suffices to

divide the Hamiltonian cycle <s1, …, u, x, s2, y, …, v> of

G[R0] into three paths <s1, …, u>, <x, s2>, and < y, …,

v>, and then build a paired 2-DPC of G[R1,m−1], made of

–t1 and s3–  paths, where ,  ∈ R1 are the

neighbors of u and v, respectively. The paired 2-DPC

exists because Rm−1 contains an odd number of terminals.

Case 7: R0 ∩ (S T) = {s1, t1}. From the hypotheses of

Cases 1, 2, and 5, we can assume that Rm−1 ∩ (S T) = {s3}

and c(s1) = c(t1) = c(s2) ≠ c(s3). From the Hamiltonian

cycle of G[R0], we extract two disjoint paths, s1–t1 and u–

v paths, that cover G[R0] for some u, v ∈ R0, such that the

neighbor ∈ R1 of u is different from s2. It suffices to

build two disjoint s2–  and s3–y paths that cover G[R1,m−1]

for some y ∈ Rm−1.

Case 8: R0 ∩ (S T) = {s2} and Rm−1 ∩ (S T) = {s3}.

This case is reduced to Case 2.

Case 9: R0 ∩ (S T) = {s1} and Rm−1 ∩ (S T) = {s3}.

We assume c(s1) = c(t1) = c(s2) ≠ c(s3) from the hypothesis

of Case 2. Let t1 ∈ Ri and s2 ∈ Rj for some i, j ∈{1, ..., m − 2}.

If i < j, then for some edge (u, v) with u ∈ Ri, v ∈ Ri+1, and

c(u) = c(s3), it suffies to build two disjoint s1–t1 and u–x

paths that cover G[R0,i] for some x ∈ R0, and build two

disjoint s2–v and s3–y paths that cover G[Ri+1,m−1] for some

y ∈ Rm−1. Analogously, if j < i, for some edge (u, v) with u

∈ Rj, v ∈ Rj+1, and c(u) = c(s3), we can build two disjoint

s1–u and s2–x paths that cover G[R0,j] for some x ∈ R0, and

build two disjoint v–t1 and s3–y paths that cover G[Rj+1,m−1]

for some y ∈ Rm−1.

Finally, suppose i = j. Let s1, t1, and s2, respectively, be

contained in columns Cp, Cq, and Cr. Assume w.l.o.g. q ≤

p ≤ r and q = 0.

CLAIM 1. There exist three disjoint s1–t1, s2–u, and v–x

paths that cover G[R0,i], where u = , v = , and

x = . Furthermore, each of the − 1 edges ( , )

for odd a ∈ {1, 3, ..., n − 3} is visited by one of the three

paths.

Proof of Claim 1. It holds true that c(u) = c(v) = c(x) ≠

c(s1) = c(t1) = c(s2). If i is even, then R0,i has an odd

number of rows, so possibly p ∈ {0, r}; if i is odd, then

R0,i has an even number of rows, so 0 < p < r (Refer to

Fig. 2). An s1–t1 path is obtained by concatenating a

Hamiltonian s1–  path of G[R0,i−1 ∩ C0,p] and the one-

vertex path <t1>; set an s2–u path to be < , , ..., >;
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⊃
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in addition, a v–x path is obtained from concatenating a

Hamiltonian  path of G[R0,i ∩ ], ..., a

Hamiltonian  path of G[R0,i ∩ ], the one-

vertex path < >, and a Hamiltonian  path of

G[R0,i−1 ∩ ]. The existence of the Hamiltonian

paths in the induced subgraphs that are isomorphic to

rectangular grids is due to Lemma 1(a). Thus, the claim is

proven. □

Let , ∈ Ri+1 be the neighbors of u and v, respectively.

If i ≤ m − 3, it suffices to build two disjoint  and s3–y

paths that cover G[ ] for some y ∈ Rm−1, which

exist by Theorem 4, and combine them with the three

disjoint paths of Claim 1. So, let i = m − 2 now, where 

= ,  = , and s3 =  for some even b ∈ {0, ...,

n − 2} because c(s3) ≠ c( ) = c( ). If b = 0, it suffices to

set s3–y and  paths to be < > and < , ,

..., >, respectively, and combine the two with the

three paths of Claim 1. If b ≥ 2, we set an s3–y path be

< , , ..., > and set a  path to be < ,

, >. To deal with the vertices , …,  not

visited until now, we use the fact shown in Claim 1 that

every edge ( , ) for odd a ∈ {1, 3, ..., n − 3} is

visited by one of the three disjoint paths of G[R0,i]. To

cover each pair of unvisited vertices  and  for

odd c ∈ {b +1,..., n − 3}, it suffices to reroute the path

that visits the edge ( , ) to traverse < , ,

, >.

Case 10: R0 ∩ (S T) = {s1} and Rm−1 ∩ (S T) = {t1}.

Let s2 ∈ Ri and s3 ∈ Rj for some i, j ∈{1,..., m − 2}.

Assume w.l.o.g. that the three terminals t1, s2, and s3 are

not of the same color. If i < j, we first pick up an edge

(u, v) with u ∈ Ri and v ∈ Ri+1 such that c(u) ≠ c(s2) and

v ≠ s3. Then, the three vertices of {s1, s2, u} are not of the

same color; also, the three vertices of {t1, s3, v} are not of

the same color because c(v) = c(s2). It suffices to build

two disjoint s1–u and s2–x paths that cover G[R0,i] for

some x ∈ R0, and combine them with the two disjoint v–t1

and s3–y paths that cover G[Ri+1,m−1] for some y ∈ Rm−1.

The case where j < i is symmetric to the case where i < j,

so we consider the remaining case where i = j hereafter.

CLAIM 2. There exists an edge (u, v) of G[Ri] with

(v, s1) ∉ E(G) such that for some y ∈ Rm−1, the subgraph

G[Ri,m−1] contains three disjoint paths, composed of either

u–t1, s2–v, and s3–y paths, or u–t1, s3–v, and s2–y paths,

that cover all the vertices of G[Ri,m−1].

Proof of Claim 2. If i ≤ m − 3, then G[Ri,m−1] contains

three or more rows. For an edge (u, v) of G[Ri] with

u ∈{s2, s3} and (v, s1) ∉ E(G), it suffices to decompose

the Hamiltonian cycle of G[Ri], represented as <u, …, w,

s3, …, z, s2, ..., v>, into three paths <u, …, w>, < s3, …,

z>, and <s2, ..., v>, and then build disjoint –t1 and –y

paths that cover G[Ri+1,m−1] for some y ∈ Rm−1, where ,

∈ Ri+1 are the neighbors of w and z, respectively. Note

that c( ) = c(s3) and c( ) = c(s2), so the vertices of {t1,

, } are not of the same color. Now, suppose i = m − 2,

where G[Ri,m−1] contains exactly two rows. Let t1 ∈ Cp, s2

∈ Cq, and s3 ∈ Cr for some p, q, r ∈{0,..., n − 1}.

For the first case, suppose c(s2) = c(s3), so c(s2) = c(s3)

≠ c(t1) from our assumption. We further assume w.l.o.g.

that q < p ≤ r and r = n − 1 (See Fig. 3(a)–(c)). If p ≠ n − 1,

it suffices to set an s2–y path to be a Hamiltonian s2–

path of G[Rm−2,m−1 ∩ C0,q], and then decompose the s3–t1

path, built by concatenating a Hamiltonian s3–  path

of G[Rm−2,m−1 ∩ Cp+1,n−1] and a Hamiltonian –t1 path of

G[Rm−2,m−1 ∩ Cq+1,p], by deleting an edge (u, v) = ( ,

) or ( , ) so that (v, s1) ∉ E(G). If p = n − 1,

the required three paths are obtained in one of the

following two ways: (i) set an s2–y path to be a

Hamiltonian s2–  path of G[Rm−2,m−1 ∩ C0,q], and then
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Fig. 2. Three disjoint s1−t1, s2−u, and v−x paths in G[R0,i].

Fig. 3. Three disjoint u−t1, sa−v, and sb−y paths that cover G[Rm−

2,m−1] for some (a, b) ∈ {(2, 3),  (3, 2)}, where c(s2) = c(s3) for (a), (b),
and (c); c(s2) ≠ c(s3) for (d), (e), and (f ).
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decompose the Hamiltonian s3–t1 path of G[Rm−2,m−1 ∩

Cq+1,n−1] through (u, v)= ( , ); or (ii) concatenate

<s3>, a Hamiltonian –  path of G[Rm−2,m−1 ∩ C0,q−1],

and < > into an s3–y path, and then decompose the s2–t1

path, built by concatenating <s2>, a Hamiltonian –

 path of G[Rm−2,m−1 ∩ Cq+1,n−2] and <t1>, through

(u, v) = ( , ).

For the second case, suppose c(s2) ≠ c(s3). Assume

w.l.o.g. that c(t1) = c(s2) ≠ c(s3) and moreover, q < p ≤ r =

n − 1 (See Fig. 3(d)–(f)). If p ≠ n − 1, the three required

paths are obtained in one of the following two ways:

(i) set an s2–y path to be a Hamiltonian s2–  path of

G[Rm−2,m−1 ∩ C0,p−1], and then decompose the Hamiltonian

s3–t1 path of G[Rm−2,m−1 ∩ Cp,n−1] through (u, v) = ( ,

); or (ii) concatenate a Hamiltonian s3–  path of

G[Rm−2,m−1 ∩ (C0,q−1 Cp+1,n−1)] and < > into an s3–y

path, and then decompose the s2–t1 path, built by

concatenating <s2> and a Hamiltonian – t1 path of

G[Rm−2,m−1 ∩ Cq+1,p], through (u, v) = ( , ). If p =

n − 1, assuming w.l.o.g. q ≠ n − 2, it suffices to set an s2–

y path to be a Hamiltonian s2–  path of G[Rm−2,m−1 ∩

C0,q] and then decompose the Hamiltonian s3–t1 path of

G[Rm−2,m−1 ∩ Cq+1,n−1] through an edge (u, v)= ( , )

or ( , ). Thus, the claim is proven. □

Let , ∈ Ri−1 be the neighbors of u and v, respectively.

Two disjoint s1–  and –x paths that cover G[R0,i−1] for

some x ∈ R0 remain to be built. If i ≥ 2, the two disjoint

paths exist by Theorem 4; if i = 1, dividing the

Hamiltonian cycle <s1, ..., , , ..., x>, where  ≠ s1, of

G[R0] results in two paths <s1, ..., > and < , ..., x>, as

required. If we combine the two paths of G[R0,i−1] with

the three paths of Claim 2, we obtain the required three

paths that cover G. This completes the entire proof. □

REMARK 3. If distinct terminals s1, s2 ∈ S and t1, t2 ∈ T

(instead of s1, s2, s3 ∈ S and t1 ∈ T) are given in an m × n

cylindrical grid with m ≥ 2 and even n ≥ 4, then there

exist three disjoint paths, s1–t1, s2–x, and t2–y paths

(instead of s1–t1, s2–x, and s3–y paths), that altogether

cover all the vertices.

IV. PAIRED 3-DPC IN BIPARTITE TOROIDAL
GRIDS

In this section, we will show that every m × n bipartite

toroidal grid with (m, n) ≠ (4, 4) has a paired 3-DPC

joining S and T for any disjoint source and sink sets

S = {s1, s2, s3} and T = {t1, t2, t3} such that S T is balanced.

The 6 × 4 and 6 × 6 toroidal grids admit a paired 3-DPC

joining S and T for any such terminal sets S and T, while

the 4 × 4 toroidal grid does not, as shown in Fig. 4.

Lemma 7 below was verified from a computer program

that exhaustively searches for DPCs. The source code

may be downloaded from http://tcs.catholic.ac.kr/~jhpark/

papers/toroidal_grid.zip.

LEMMA 7. Let G be a 6 × 4 or 6 × 6 toroidal grid, in

which disjoint source and sink sets S = {s1, s2, s3} and T =

{t1, t2, t3} are given. Then, G has a paired 3-DPC joining

S and T if S T is balanced.

One of the natural approaches would be the reduction

of our problem to a problem on a smaller bipartite

toroidal grid. This is possible if there are two consecutive

rows that contain no terminal as follows:

LEMMA 8 (Row reduction). An m × n bipartite toroidal

grid G with m ≥ 6 has a paired 3-DPC joining S = {s1, s2, s3}

and T = {t1, t2, t3} if (i) S T is balanced, (ii) there are

two consecutive rows Rp and Rp+1 that contain no terminal,

and (iii) an (m − 2) × n toroidal grid has a paired 3-DPC

joining S′ and T′ for any disjoint terminal sets S′
 
and T′

such that S′ T′ is balanced.

Proof. Let H denote the (m − 2) × n toroidal grid,

obtained from G by deleting the vertices of Rp,p+1 and

adding n virtual edges ( , ) for j ∈{0, ..., n−1}, as

shown in Fig. 5(a). Then, by hypothesis (iii) of the

lemma, H has a paired 3-DPC joining S and T. If none of

the virtual edges is passed through by a path in the 3-DPC

of H (see Fig. 5(b)), then for an edge in row p − 1 or p + 2,

say ( , ) w.l.o.g., that is covered by the 3-DPC of

H, replacing the edge with a path obtained by

concatenating < >, a Hamiltonian –  path of

G[Rp,p+1], and < > results in a paired 3-DPC of G.

Now, suppose that there is a virtual edge that is covered

by the 3-DPC of H (see Fig. 5(c)). Let {( , ):

j ∈{j1, ..., jq}} be the set of such virtual edges, and assume

j1 < ··· < jq. A paired 3-DPC of G can be built by replacing

the virtual edge ( , ) with a path obtained by

concatenating < >, a Hamiltonian –  path of

G[Rp,p+1 ∩ ], and < > if i < q; with a path

obtained by concatenating < >, a Hamiltonian –

path of G[Rp,p+1 ∩ ( )], and < > if i = q.

Thus, the lemma is proven. □

An m × n bipartite toroidal grid with m ≥ 6 is said to be

row-reducible if there are two consecutive rows Rp and
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Fig. 4. A conguration that does not admit a paired 3-DPC. Every
si−ti path that does not pass through a terminal as an
intermediate vertex contains at least 6 vertices, whereas the
toroidal grid has fewer than 18 vertices.
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Rp+1 that contain no terminals. Besides the row reduction

of Lemma 8, we can try a partition of the m × n toroidal

grid into two cylindrical grids, each having at least two

rows, so as to build a paired 3-DPC in the toroidal grid.

Three types of such partitions are investigated in Lemmas

9, 10, and 11 below and illustrated in Fig. 6.

LEMMA 9 (Type-A partition). An m × n bipartite toroidal

grid G has a paired 3-DPC joining S = {s1, s2, s3} and

T = {t1, t2, t3} if S T is balanced and there are r, 2 ≤ r ≤

m − 2, consecutive rows Rp, ..., Rp+r−1 that contain four

terminals sa, ta, sb, and tb for some a, b ∈{1, 2, 3} in total

such that the subgraph G[Rp,p+r−1] induced by Rp,p+r−1 has

a paired 2-DPC composed of sa–ta and sb–tb paths. 

Proof. The subgraph G – Rp,p+r−1 contains two terminals

sc and tc with c(sc) ≠ c(tc), so there exists a Hamiltonian

sc–tc path in the subgraph by Lemma 2. A paired 2-DPC

of G[Rp,p+r−1] along with the Hamiltonian path form a

paired 3-DPC of G. □

LEMMA 10 (Type-B partition). An m × n bipartite

toroidal grid G has a paired 3-DPC joining S = {s1, s2, s3}

and T = {t1, t2, t3} if S T is balanced and there are r, 2 ≤

r ≤ m − 2, consecutive rows Rp, ..., Rp+r−1 that contain

three terminals sa, ta, and sb, for some a, b ∈{1, 2, 3} in

total such that the three are not of the same color. 

Proof. In the subgraph G[Rp,p+r−1], there are two disjoint

sa–ta and sb–x paths for some x ∈ Rp Rp+r−1 that cover all

the vertices of the subgraph; moreover, the number of

such vertices x is at least + 1 by Theorem 4. Consider

the subgraph H of G induced by R0,p−1 Rp+r,n−1 now (i.e.,

H = G − Rp+r,n−1), in which there are three terminals sc, tc,

and tb for some c ∈{1, 2, 3} with c ≠ a, b. Also, the three

terminals of H are not of the same color, so there exist

two disjoint sc – tc and tb – y paths that cover H for at least

+ 1 choices of y ∈ Rp−1 Rp+r by Theorem 4 again. It

follows that there is an edge (x, y) of G, where x ∈

Rp Rp+r−1 and y ∈ Rp−1 Rp+r, that admits not only a 2-

DPC, made of sa–ta and sb–x paths, of G[Rp,p+r−1] but also

a 2-DPC, made of sc–tc and tb–y paths, of H, because

c(x) ≠ c(y) and there are at least + 1 choices of each of

x and y. It suffices to combine the sb–x path with the tb–y

path into an sb–tb path through the edge (x, y), completing

the proof. □

LEMMA 11 (Type-C partition). An m × n bipartite

toroidal grid G has a paired 3-DPC joining S = {s1, s2, s3}

and T = {t1, t2, t3} if S T is balanced, G is not row-

reducible, and there are r, 2 ≤ r ≤ m − 2, consecutive rows

Rp, ..., Rp+r−1 that contain two terminals α and β in total

such that
● c(α) = c(β) or α,β ∉ Rp Rp+r−1 when r ≥ 4, 
● c(α) = c(β) & |{α, β}∩ Rp+1| = 1

or c(α) = c(β) & (α, β) ∈ K & |{α, β}∩ Rp| = |{α, β}∩

Rp+2| = 1, 

or c(α) = c(β) & (α, β) ∉ K & α, β ∈ Rp+1

or c(α) ≠ c(β) & (α, β) ∉ K & α, β ∈ Rp+1 & (α, β) ∉

E(G) when r= 3,

⊃
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n

2
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⊃
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2
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⊃

⊃ ⊃

n

2
---

⊃

⊃

Fig. 5. Illustrations of the row reduction, where R1,2 contains no
terminal.

Fig. 6. Three types of partitions of a toroidal grid into two
cylindrical grids.
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● c(α) = c(β) & (α, β) ∉ K & |{α, β}∩ Rp| = 1 when r = 2,

where K = {(s1, t1), (s2, t2), (s3, t3)}.

Proof. Let H be the subgraph G – Rp,p+r−1 induced by

R0,p−1 Rp+r,n−1, in which there are four terminals, say

sa, ta, , and  for some a ∈ {1, 2, 3}, so that S T =

{sa, ta, α, , β, }, where (α, ), (β, ) ∈ K, or (α,

β), ( , ) ∈ K, or (α, ), ( , β) ∈ K. The four

terminals of H are not of the same color since S T is

balanced. So, from Theorem 5, there exist three disjoint

sa–ta, –x, and –y paths that cover H for some x, y ∈

Rp−1 Rp+r.

Let , ∈ Rp Rp+r−1 be the neighbors of x and y,

respectively. 

CLAIM 3. For the two terminals α and β of G[Rp,p+r−1]

satisfying the hypothesis of the lemma, (i) { , } ∩

{α, β} = ; moreover, (ii) G[Rp,p+r−1] has three kinds of

paired 2-DPCs, a DPC made of α–  and β–  paths, a

DPC made of α–  and β–  paths, and a DPC made of

α–β and –  paths. 

Proof of Claim 3. Within the scope of this proof, 

and  as well as α and β are said to be terminals.

Observing that {α, β, , } is balanced, we prove the

assertion (i) first. If c(α) = c(β), then c( ) = c( ) ≠ c(α)

= c(β), so { , }∩{α, β} = ; if α, β ∉ Rp Rp+r−1, then

{ , } ∩ {α, β} =  obviously. Inspecting the hypothesis

of the lemma leads to c(α) = c(β) or α, β ∉ Rp Rp+r−1,

proving (i). For the proof of the assertion (ii), let α ∈ Ri

and β ∈ Rj for some i, j ∈{p, …, p + r − 1}. First, let r ≥ 4.

It follows that i ≠ j and {i, j} ≠ {p, p + r − 1}; suppose

otherwise, G would be row-reducible. This leads to the

conclusion that there is a (non-boundary) row that

contains a single terminal, meaning the required 2-DPCs

exist by Lemmas 3 and 4 (also, by Remark 1). Secondly,

let r = 3. If |{α, β} ∩ Rp+1| = 1, then Rp+1 contains a single

terminal, so the required 2-DPCs exist. If |{α, β} ∩ Rp| =

|{α, β} ∩ Rp+2| = 1, c(α) = c(β), and (α, β) ∈ K, then the

four terminals in {α, β, , } cannot form an

inadmissible configuration of Lemmas 4 and 6, so the

required 2-DPCs exist. Analogously, we can see that the

required 2-DPCs exist for the remaining two cases where

α, β ∈ Rp+1. Finally, let r = 2. If c(α) = c(β), (α, β) ∈ K, and

i ≠ j (i.e., |{α, β} ∩ Rp| = |{α, β} ∩ Rp+1| = 1), then the four

terminals in {α, β, , } cannot form an inadmissible

configuration of Lemmas 4 and 5, so the required 2-DPCs

exist. Thus, the claim is proven. □

Combining the –x and –y paths of H with one of

the three paired 2-DPCs of G[Rp,p+r−1] through the edges

(x, ) and (y, ) leads to a paired 3-DPC of G, as

required. This completes the proof. □

Now, we are ready to prove our main theorem. 

THEOREM 6. An m × n bipartite toroidal grid G with

(m, n) ≠ (4, 4) has a paired 3-DPC joining disjoint terminal

sets S = {s1, s2, s3} and T = {t1, t2, t3} if and only if S T is

balanced.

Proof. The necessity part is straightforward from the

fact that the two color classes of G are always the same in

size. The sufficiency proof will proceed by induction on

m + n, where m and n are both even integers with m, n ≥ 4

and m + n ≥ 10. Assume w.l.o.g. m ≥ n. The base step of

(m, n) = (6, 4) is due to Lemma 7. Moreover, the theorem

holds true for the case of (m, n) = (6, 6) by Lemma 7

again, so we assume m ≥ 8 for the inductive step. Keep in

mind that if G is row-reducible, then G has a paired 3-

DPC joining S and T by Lemma 8 because by the

induction hypothesis, an (m − 2) × n bipartite toroidal

grid has a paired 3-DPC joining any disjoint terminal sets

 and  of size 3 each such that  is balanced. We

assume w.l.o.g. that R0 contains as many terminals as the

other rows, i.e., |R0 ∩ (S T)| ≥ |Ri ∩ (S T)| for all i ∈{1,

..., m−1}. There are three cases according to the size of

R0 ∩ (S T).

Case 1: |R0 ∩ (S T)| ≥ 3. The m – 1 (≥ 7) rows other

than R0 contain 3 or fewer terminals in total, so (i) G is

row-reducible, or (ii) m = 8 and each of the three rows R2,

R4, and R6 contains a single terminal. For possibility (i),

G has a paired 3-DPC joining S and T by the induction

hypothesis and Lemma 8; for possibility (ii), G admits a

type-C partition w.r.t. R1,5, and hence G has a paired 3-

DPC joining S and T by Lemma 11.

Case 2: |R0 ∩ (S T)| =2. 

Case 2.1: |Ri ∩ (S T)| = 2 for some i ∈ {1, ..., m−1}.

In this case, there are at most three rows other than R0,

each of which contains a terminal. It follows that G is

row-reducible, or m = 8 and the three rows R2, R4, and R6

each contains a terminal. If G is row-reducible, we are

done by the induction hypothesis and Lemma 8. If i = 2,

i.e., R2 contains two terminals, then G has a paired 3-DPC

joining S and T by Lemma 11 because G admits a type-C

partition w.r.t. R3,7; symmetrically in the case of i = 6, G is

also type-C-partitionable. Let i = 4 now. There are two

possibilities: (i) R0 ∩ (S T) = {sa, ta} for some a, and (ii)

R0 ∩ (S T) ≠ {sa, ta} for all a.

For the first possibility, suppose sa, ta ∈ R0. If c(sa) ≠

c(ta), then G admits a type-A partition w.r.t. R2,7, hence G

has a required 3-DPC by Lemma 9 (Note that the four

terminals in (S T) \{sa, ta} do not form an inadmissible

configuration in the induced subgraph G[R2,7] since there

is a row, say R2, that contains an odd number of

terminals). If c(sa) = c(ta), then there is a terminal α in R2

or in R6 such that c(α) ≠ c(sa) = c(ta), hence, assuming

w.l.o.g. α ∈ R2, G admits a type-B partition w.r.t. R0,2 and

has a required 3-DPC by Lemma 10. 

For the second possibility, suppose sa, sb ∈ R0 for some

a, b ∈{1, 2, 3} with a ≠ b (or symmetrically, sa, tb ∈ R0).

⊃

α′ β ′

⊃

α′ β ′ α′ β ′

α′ β ′ β ′ α′

⊃

α′ β ′

⊃

x′ y′

⊃

x′ y′

0

x′ y′

y′ x′

x′ y′

x′

y′

x′ y′

x′ y′

x′ y′ 0

⊃

x′ y′ 0

⊃

x′ y′

x′ y′

α′ β ′

x′ y′

⊃

S′ T′ S′

⊃

T′

⊃ ⊃

⊃

⊃
⊃

⊃

⊃

⊃

⊃
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For the two terminals, denoted α and β, in R4, if {α, β} =

{sc, tc} for some c ∈{1, 2, 3} with c ≠ a, b, then a paired

3-DPC can be constructed in a way symmetric to the first

possibility where sa, ta ∈ R0. So, we assume {α, β} ≠ {sc,

tc}. If either c(sa) = c(sb) or c(sa) ≠ c(sb) & (sa, sb) ∉ E(G),

then G admits a type-C partition w.r.t. R7  R0,1, hence G

has a required 3-DPC by Lemma 11. Similarly, if either

c(α) = c(β) or c(α) ≠ c(β) & (α, β) ∉ E(G), then G is type-

C-partitionable w.r.t. R3,5 and has a required 3-DPC. So,

we further assume (sa, sb), (α, β) ∈ E(G) (c(sa) ≠ c(sb) and

c(α) ≠ c(β)). If ta ∈ R2 or tb ∈ R2, then G is type-B-

partitionable w.r.t. R0,2 and thus G has a required 3-DPC

by Lemma 10; also, G is type-B-partitionable w.r.t. R6,7 R0

if ta ∈ R6 or tb ∈ R6.

Finally, there remains a case where ta, tb ∈ R4 and sc,

tc ∈ R2 R6, say sc ∈ R2 and tc ∈ R6, and moreover (sa, sb),

(ta, tb) ∈ E(G) and c(sc) ≠ c(tc). None of the three types of

a partition can be applied in this case, so we will devise a

direct construction of a paired 3-DPC joining S and T. We

assume w.l.o.g. that c(sb) = c(sc), sa = , and sb = ,

and let tb =  for some j. The construction will be

completed in five steps as follows (see Fig. 7(a)):

1: Find a Hamiltonian sa –  path, < , ..., >, in

G[R0] − sb. 

2: Let x =  if ta ≠ ; let x =  otherwise. For

=  and = , find a paired 2-DPC

composed of –  and sc–x paths in G[R1,3].

3: Let  be the neighbor of x in R4. Divide the

Hamiltonian –ta path of G[R4] – tb into –y and z–

ta paths, by deleting an arbitrary edge (y, z) of the

Hamiltonian path.

4: Let  and  be the respective neighbors of y and z

in R5. Find a paired 2-DPC composed of –tc and

–  paths in G[R5,7].

5: Concatenating the sa– , – , and z–ta paths

results in an sa–ta path; concatenating the one vertex

path <sb>, the –  path, and <tb> leads to an sb–tb

path; finally, concatenating the sc–x, –y, and –tc

paths leads to an sc–tc path.

The paired 2-DPCs in Steps 2 and 4 exist due to

Lemmas 4 and 6 (also, due to Remark 1). 

Case 2.2: |Ri ∩ (S T)| ≤ 1 for all i ∈{1, ..., m−1}.

There are exactly four rows other than R0, each of which

contains a terminal, so G is row-reducible (and we are

done) or m ≤ 10. If m = 10, then each of the four rows R2,

R4, R6, and R8 contains a single terminal, hence G admits

a type-C partition w.r.t. R1,5 and has a required 3-DPC by

Lemma 11. Suppose m = 8 hereafter. Let r be the

maximum number of consecutive rows, including R0,

each of which contains a terminal; also, let Rp, ..., Rq

denote the remaining 8 − r consecutive rows (Note that

Rp,q contains 5 − r terminals; but Rp and Rq contain no

terminal). It follows that r ≤ 3 because G is not row-

reducible. If r = 3, then each of Rp+1 and Rp+3 contains a

single terminal, hence G admits a type-C-partition w.r.t.

Rp,p+4 and has a required 3-DPC. If r = 2, then each of Rp+1

and Rp+4 contains a single terminal; also, either Rp+2 or

Rp+3 contains a single terminal. This leads to the

conclusion that G is type-C-partitionable (w.r.t. Rp,p+3 for

the former case and w.r.t. Rp+2,p+5 for the latter case) and

has a required 3-DPC. Finally, if r = 1, then each of R2

and R6 contains a single terminal; also, two of the three

R3, R4, and R5 contain a single terminal. If each of R3 and

R5 contains a single terminal (but R4 does not), then G is

type-C-partitionable w.r.t. R1,4. So, we assume w.l.o.g.

each of R4 and R5 contains a single terminal, i.e., |Rj ∩

(S T)| = 1 for j ∈{2, 4, 5, 6}. 

Let α and β denote the two terminals in R0. First,

suppose c(α) = c(β). If {α, β} = {sa, ta}for some a ∈{1, 2,

3}, then assuming w.l.o.g. that the terminal in R2 has a

color different from c(α), G is type-B-partitionable w.r.t.

R0,2. If {α, β} ≠ {sa, ta} for all a, then G is type-C-

partitionable w.r.t. R7 R0,1. Secondly, suppose c(α) ≠

⊃

⊃

⊃

vn 2–

0

vn 1–

0

vj
4

v0

0

vn 2–

0

v0

0

vj 1+

3

vj 1+

4

vj 1–

3

sb′ vn 1–

1

tb′ vj
3

sb′ tb′

sc′

sc′ sc′

y′ z′

y′

v0

7

z′

v0

0

v0

7

z′

sb′ tb′

sc′ y′

⊃

⊃

⊃

Fig. 7. Illustrations of the proof of Theorem 6 for the cases to
which none of the three types of a partition is applicable.
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c(β). If {α, β} = {sa, ta} for some a, then G is type-A-

partitionable w.r.t. R2,7. If {α, β} ≠ {sa, ta} for all a, and

moreover (α, β) ∉ E(G), then G is type-C-partitionable

w.r.t. R7 R0,1. So, we further assume {α, β} = {sa, sb} for

some a, b ∈{1, 2, 3} with a ≠ b, and (sa, sb) ∈ E(G). If R2

contains ta or tb, then G is type-B-partitionable w.r.t. R0,2;

if R6 contains ta or tb, then G is also type-B-partitionable

w.r.t. R6,7 R0. There remains a case where (R2 R6) ∩

(S T) = {sc, tc} for some c ∈{1, 2, 3} with c ≠ a, b.

Assume w.l.o.g. sc ∈ R2 and tc ∈ R6, and moreover ta ∈ R4

and tb ∈ R5. If c(ta) = c(tb), then G is type-C-partitionable

w.r.t. R3,5; also, if c(tb) = c(tc), then G is type-C-

partitionable w.r.t. R5,7. Under the condition c(ta) = c(tc) ≠

c(tb) = c(sc), we give a direct construction of a paired 3-

DPC below for the remaining case (see Fig. 7(b)).

1: Find a Hamiltonian sa–sb path in G[R0]. Let the

Hamiltonian path be represented as <sa, …, x, y, …,

sb>, possibly x = sa, for some x with c(x) = c(sc).

2: For the neighbor  ∈ R3 of x, the neighbor ∈ R3

of ta, and a neighbor z ∈ R1 of , find a paired 2-

DPC made of –  and sc–z paths in G[R1,3].

3: For the neighbor ∈ R4 of z and the neighbor  ∈

R4 of ta other than , find a Hamiltonian –w path

in G[R4] − ta. 

4: For the neighbor  ∈ R7 of y and the neighbor  ∈

R5 of w, find a paired 2-DPC composed of –tb and

–tc paths in G[R5,7]. 

5: Concatenating the sa–x path, the –  path, and <ta>

results in an sa–ta path; concatenating the sb–y and

–tb paths leads to an sb–tb path; finally, concatenating

the sc–z, –w, and –tc paths leads to an sc–tc path.

Case 3: |R0 ∩ (S T)| =1. Let r denote the maximum

number of consecutive rows where each of which

contains a terminal; assume w.l.o.g. that R0, ..., Rr−1 are

such consecutive rows. First, suppose r = 1. Then, G is

type-C-partitionable w.r.t. Rm−1 R0,q+1 for some q ≥ 1

such that Rq contains a terminal but Rj does not for all

j ∈{1, ..., q−1}. Secondly, suppose r = 2. Then, G is also

type-C-partitionable w.r.t. Rm−1 R0,2. Thirdly, suppose r

= 3. Then, G is row-reducible or m ≤ 10. If m = 10, then

each of R4, R6, and R8 contains a single terminal, so G is

type-C-partitionable w.r.t. R3,7. Let m = 8 now. The rows

R3 and R7 contain no terminal, so each of R4, R5, R6

contains a terminal, i.e., |Rj ∩ (S T)| = 1 iff j ∈{0, 1, 2,

4, 5, 6}. Let αi denote the terminal in Ri. If c(α0) = c(α1),

then G is type-C-partitionable; if c(α1) = c(α2), then G is

also type-C-partitionable; so, c(α0) = c(α2) ≠ c(α1). A

similar argument leads to c(α4) = c(α6) ≠ c(α5). It follows

that c(α0) = c(α2) = c(α5) ≠ c(α1) = c(α4) = c(α6). Furthermore,

if {α0, α1, α2} contains sa, ta for some a, then G is type-B-

partitionable; if {α1, α2, α4} contains sa, ta for some a, then

G is also type-B-partitionable, and so on. Thus, we can

assume w.l.o.g. that s1 ∈ R0, s2 ∈ R1, s3 ∈ R2, t1 ∈ R4, t2 ∈ R5,

and t3 ∈ R6. A paired 3-DPC for the remaining case can

be constructed as follows (see Fig. 7(c)): 

1: For a vertex x ∈ R1 with c(x) = c(s1), there exists a

vertex y ∈ R0 that admits a disjoint path cover

composed of s1–x and s2–y paths in R0,1. 

2: For the neighbor  ∈ R2 of x, there exists a vertex z

∈ R4 that admits a disjoint path cover composed of

–t1 and s3–z paths in R2,4. 

3: For the neighbor  ∈ R5 of z and the neighbor

∈ R7 of y, there exists a paired 2-DPC composed

of –t2 and –t3 paths in R5,7.

4: Concatenating the s1–x and –t1 paths results in an

s1–t1 path; concatenating the s2–y and –t2 paths

leads to an s2–t2 path; finally concatenating the s3–z

and –t3 paths leads to an s3–t3 path.

The vertices y in Step 1 and z in Step 2 exist due to

Theorem 4. The paired 2-DPC in Step 3 exists by

Lemmas 4 and 6 (also, by Remark 1).

Finally, suppose r ≥ 4. Then, G is row-reducible, or m

= 8 and r ∈{4, 5}. Let m = 8. If r = 4, then R4 and R7

contain no terminal, but each of R5 and R6 contains a

single terminal, hence G is type-C-partitionable w.r.t. R4,7.

If r = 5, then R6 contains a terminal but R5 and R7 does

not. Let αi denote the terminal in Ri again. If c(α3) = c(α4),

then G is type-C-partitionable w.r.t. R3,5; also, if c(α4) =

c(α6), then G is type-C-partitionable w.r.t. R4,7; in

addition, if c(α6) = c(α0), then G is type-C-partitionable

w.r.t. R5,7 R0; finally, if c(α0) = c(α1), then G is type-C-

partitionable w.r.t. R7 R0,1. It follows that c(α3) ≠ c(α4) ≠

c(α6) ≠ c(α0) ≠ c(α1), and thus c(α0) = c(α2) = c(α4) ≠ c(α1)

= c(α3) = c(α6). Furthermore, if {α0, α1, α2} contains sa, ta

for some a, then G is type-B-partitionable; if {α1, α2, α3}

contains sa, ta for some a, then G is also type-B-

partitionable, and so on. Thus, we can assume w.l.o.g.

that s1 ∈ R0, s2 ∈ R1, s3 ∈ R2, t1 ∈ R3, t2 ∈ R4, and t3 ∈ R6.

The construction, shown below, is almost the same as in

the previous case where r = 3, m = 8, s1 ∈ R0, s2 ∈ R1, s3 ∈

R2, t1 ∈ R4, t2 ∈ R5, and t3 ∈ R6.

1: For a vertex x ∈ R1 with c(x) = c(s1), there exists a

vertex y ∈ R0 that admits a disjoint path cover

composed of s1–x and s2–y paths in R0,1 

2: For the neighbor  ∈ R2 of x, there exists a vertex z

∈ R3 that admits a disjoint path cover composed of

–t1 and s3–z paths in R2,3. 

3: For the neighbor  ∈ R4 of z and the neighbor  ∈

R7 of y, there exists a paired 2-DPC composed of –

t2 and –t3 paths in R4,7. 

4: Concatenating the s1–x and –t1 paths results in an

s1–t1 path; concatenating the s2–y and –t2 paths

leads to an s2–t2 path; finally, concatenating the s3–z

and –t3 paths leads to an s3–t3 path. 

This completes the entire proof. □
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