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Abstract
Integrated CPU-GPU architectures have the potential to increase performance and energy efficiency for a variety of

applications, due to their tight coupling of the CPU and GPU cores. However, in order to serve hard real-time and safety-

critical applications, the integrated CPU-GPU architecture must be time-predictable and worst-case execution time

(WCET) analyzable. In this work, we study the shared data last-level cache (LLC) in the integrated CPU-GPU architec-

ture and propose an access interval-based method in order to estimate the worst-case cache misses of the LLC. The

results indicate that the proposed technique can effectively improve the accuracy of the miss rate estimation in the LLC.

We also find that the improved LLC miss rate estimations can be used to further improve the WCET estimations of the

GPU kernels running on the integrated CPU-GPU architecture.

Category: Real-Time Systems

Keywords: Graphics Processing Units (GPUs); Worst-Case Execution Time (WCET); Cache memories; Integrated
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I. INTRODUCTION

Graphics processing units (GPUs) have been widely

used to accelerate general-purpose applications ranging

from deep learning to data-parallel real-time applications.

One current trend involves integrating the CPU and GPU

tightly on the same chip and enable data sharing between

them in the shared DRAM or caches. Such integrated

CPU-GPU architectures exploit the unique strengths of

both types of processing units (PUs) as well as their shared

resources in order to further improve the performance,

compared to that of a GPU- or CPU-only system. For

instance, seven out of the top ten Green500 supercomputers

use both CPUs and GPUs [1], i.e., heterogeneous computing

systems.

In a discrete CPU-GPU architecture, CPUs and GPUs

can have separate memory spaces and be connected

through a Peripheral Component Interconnect Express

(PCIe) bus, which is referred to as a discrete system.

GPUs and CPUs transfer data back and forth through the

PCIe bus in such a system, requiring programmers to

manage the data needed by both CPUs and GPUs, and

this can introduce performance overheads. As a result,

the integrated CPU-GPU architecture is proposed and

implemented in order to allow for CPUs and GPUs to

share the same memory space and avoid such data transfer,

e.g., AMD’s accelerated processing units (APUs) [2].

Heterogeneous architectures have also become increa-

singly popular in embedded applications, which typically

have stringent constraints on power dissipation, perfor-

mance, or cost. For instance, the big.LITTLE technology

[3] combines high-performance cores and energy-efficient
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cores in order to achieve power-optimization while

delivering peak-performance capability. In addition, by

the integration of the GPU and CPU architectures, the

Tegra [4] processors bring general-purpose GPU computing

power to embedded systems.

Real-time systems can also potentially benefit from the

improved performance and energy efficiency of the

integrated CPU-GPU architecture. However, the issues of

time-predictability in such systems need to be addressed

first, as knowing the WCET is required for hard real-time

systems. One of the challenges is estimating the behavior

of the shared LLC in such an integrated architecture,

since it is shared by both the CPU and GPU and can

affect the WCETs of both. Therefore, we propose first

exploring the WCET analysis of the shared data LLC in

the integrated architecture, then using these analysis

results to estimate the WCET of the GPU kernels.

II. RELATED WORK

For WCET analysis of the multicore architecture, page

coloring and locking techniques are studied and used to

reduce or remove conflicts between different cores in the

LLC [5-7] so that the time-predictability can be improved.

Hardware supports are proposed in [8] to guarantee an

upper bound delay for hard real-time tasks in multicore

systems, while the time division multiple access (TDMA)

shared bus access scheme is proposed in [9] to enable the

static shared bus scheduling and shared cache conflict

analysis.

Research efforts have gone toward partitioning and/or

scheduling tasks or specific algorithms on heterogeneous

architectures, based on the relative performance of

different processing units and/or the characteristics of

different subtasks [10-13]. Some studies have focused on

the compiler-level methods to automatically generate the

programs for heterogeneous systems [14, 15], while others

have proposed programming frameworks to utilize the

resources [16, 17]. Comparisons between the discrete and

integrated CPU-GPU architectures show that the integrated

architecture can help reduce the performance and/or

energy overheads [18-20]. However, few studies have

focused on the time-predictability issues of the integrated

CPU-GPU architectures.

Measurement-based methods [21, 22] are proposed for

GPU WCET analysis, while the proposed method in this

work is based on static timing analysis. A timing model

for GPU WCET analysis is proposed in [23] for a GPU

system without L1 or L2 caches. By contrast, this work

studies the timing analysis of the shared data LLC in the

integrated architecture, which can lead to a more realistic

and tighter timing model. There have also been research

efforts [24-27] to improve the time predictability of

discrete GPUs. By contrast, this work studies the method

to estimate the WCET for integrated CPU-GPU.

III. REUSE DISTANCE

We propose applying the Reuse Distance theory to

estimate the timing behavior of the LLC. Reuse Distance

[28] can be used to analyze cache behaviors in CPU or GPU

programs [29, 30]. For set-associative cache memories,

the reuse distance of a cache access A can be defined as

the number of unique cache accesses mapped to the same

cache set with A but with different tag values from A

since the last access of A. For the very first access to a

certain address, the reuse distance is infinity. Assuming

the associativity is N, in an LRU cache, a cache access

with a reuse distance less than N will be a hit; otherwise,

it will be a miss. 

For instance, Table 1 shows a sequence of memory

accesses with the addresses of A to E, which map to the

same cache set but with different tag values. The reuse

distance value of each access is shown in Table 1.

Accesses 0 to 3 with addresses A, B, C, and D all have the

reuse distance of infinity, since they are all the very first

accesses to those addresses. Similarly, access 6 is the

very first access to address E. Access 4 with address A

has a reuse distance of 3, since there are accesses to three

unique addresses (B, C, D) between access 0 and access

4. Similarly, accesses 5 and 7 have reuse distance values

of 2 and 4, respectively.

IV. SHARED DATA LLC ANALYSIS

A. The CPU-GPU Architecture under Analysis

We use the gem5-gpu [31] simulator to study and

evaluate the target architecture under analysis. In the

default architecture of the gem5-gpu simulator, the CPU

and GPU both have their own LLC, then connect to the

off-chip memory. In order to support the shared LLC

between GPU and CPU, the memory system in the

simulator is extended to include LLCs for instructions

and data before going out to the off-chip memory.

The default architecture of the gem5-gpu simulator is

shown in Fig. 1, where the CPU and GPU both have their

own LLC, and then connect to the off-chip memory. In

order to support the shared LLC between GPU and CPU,

the memory system in the simulator is modified as shown

in Fig. 2, where there are LLCs for instructions and data

before going out to the off-chip memory. It should be

noted that the LLC is usually used for both instruction

Table 1. Example of Reuse Distance

Access 0 1 2 3 4 5 6 7

Address A B C D A C E B

Reuse Distance ∞ ∞ ∞ ∞ 3 2 ∞ 4
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and data. However, since the focus of this work is on

analyzing the shared last level data cache, the LLCs in

the target architecture are separated into instruction and

data, as shown in Fig. 2.

B. Simple Shared Data LLC Analysis Method

It is important to know the order of the memory

accesses to the cache in using the reuse distance to

predict cache hit and miss. In the example of the

sequence of memory access addresses in Table 1, if the

access order between accesses 3 and 4 is not certain, i.e.,

if access 4 with address A can be either before or after

access 3 with address D, the reuse distance of access 4

with address A can then be either 2 or 3, respectively. If

there are many accesses whose access orders to the cache

cannot be known for sure, there can be many possibilities

in the reuse distance results.

In the worst-case timing analysis for caches, the

maximum reuse distance of each access to the cache

needs to be estimated so that it can be compared with the

associativity of the cache in order to predict whether the

access is a hit or not. For instance, in Table 1, if the

access order of accesses 4 to 7 is not known, access 4 can

become the last access in the sequence, in which case the

reuse distance of this access will be 4 rather than 3, as it

has in its current position. If the associativity of the cache

under analysis is 4, the change of the reuse distance

calculation from 3 to 4 will make the prediction of this

access change from hit to miss. This shows how

uncertainty in the access order can lead to overestimation

of cache miss rates.

Unfortunately, for the shared data LLC in the integrated

CPU-GPU architecture, the order of accesses from different

CPU and GPU cores to the shared LLC is hard to predict

statically. This is because the executions of the GPU kernels

and the CPU programs are independent of each other. In

other words, while the order of the accesses from the

same GPU or CPU core can be analyzed and predicted

statically based on the content of the code, the orders of

the accesses among different cores are mostly based on

the run-time execution and warp/thread scheduling.

Fig. 3 shows an example of how the accesses to shared

LLC from different cores can affect the estimation of the

reuse distance of one access. There are three cores 0 to 2,

each of which has a sequence of accesses to the shared

LLC, as shown in Fig. 3. The reuse distance, for instance,

of the access C0_C on Core 0 at the time point T1

depends on the accesses that happen between the time

point T0 and T1. If there is only one core, then the

accesses in the gray area in the column Core 0 are enough

to predict the reuse distance and the hit/miss results.

However, there are two other cores which access the

shared LLC simultaneously and independently. In this

case, in order to find the safe upper bound of the cache

miss rate, all of the accesses in the gray area under the

three columns need to be considered as the possible

accesses to the shared LLC between time point T0 and

T1. It is clear that this analysis method simply takes all of

the accesses from other cores as well as the accesses in

between the current core in order to estimate the worst-

case reuse distance. Therefore, it is referred to as the

Simple method.

Table 2 shows the miss rate estimation results using

this Simple method. These results are from 8 GPU kernel

Fig. 1. The default gem5-gpu simulator architecture.

Fig. 2. Modified gem5-gpu simulator architecture with shared
LLC.

Fig. 3. Example of accesses from different cores.
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benchmarks running on the gem5-gpu simulator with a

shared data LLC of 512 kB. The cache line size is 128 B

and the associativity is 32. The simulator is configured to

have 15 GPU SMs (streaming multiprocessors) and one

CPU core. The results show that, except for the first two

GPU kernels, the overestimation in the miss rate is very

high. This is because all of the accesses from other cores

are considered to be possible conflicting accesses in

estimating the reuse distance. We also find that the first

two benchmarks have less overestimation because they

have substantially reduced total numbers of accesses than

the others.

C. Access Interval Based Shared Data LLC
Analysis Method

Although the Simple method introduced in Section IV-

B is straightforward and easy to implement, the resulting

overestimation can be very high. The major reason for this

is that too many accesses from other cores are considered

to be possible conflicts. Based on the comparison between

the results of the first two kernels and the others, the

results indicate that limiting the number of total accesses

in reuse distance and hit/miss estimation may help reduce

the overestimation.

Due to the large number of GPU SMs in the integrated

architecture, the number of possible conflicting LLC

accesses can be significantly overestimated. In order to

address this problem, we propose using the Access

Interval-based analysis method to enable tighter WCET

analysis of the data LLC in the integrated CPU-GPU

without significantly affecting the average-case performance.

Some architectural extensions are needed in this Access

Interval-based method, as shown in Fig. 4. Specifically,

each core in the system will be assigned with a quota of

the number of accesses that this core is allowed to send to

the shared LLC during each access interval. If the quota

is reached, the path of sending accesses to the shared

LLC is throttled. When all of the active cores have

reached the quota, Fig. 5 shows a simple example to

illustrate the Access Interval-based method. In this

example, the quota of each access interval is set to two

accesses. Then, for the estimation of the access C0_C in

the interval k+3, the interval that this access belongs to is

set as the End Interval. The interval that has the latest

previous access to the same cache line is set as the Start

Interval, e.g., interval k+1 in this example. Then, the

possible conflicting accesses are the accesses from the

Start Interval and End Interval from all of the cores,

except (1) the accesses from the core that has the latest

previous access and the accesses that are also earlier than

the latest previous access in the Start Interval and (2) the

accesses from the core that has the access under analysis

Table 2. Shared data LLC (512 kB) miss rate estimations of the Simple method

GPU kernels

1 2 3 4 5 6 7 8

Actual number of misses 304 608 643 2311 521 2084 3179 24816

Estimated number of misses 372 737 2330 12499 1641 7610 15514 55524

Total number of accesses 670 1292 3228 12499 2609 11363 15514 55524

Actual miss rate (%) 45.4 47.1 19.9 18.5 20.0 18.3 20.5 44.7

Estimated miss rate (%) 55.5 57.0 72.2 100 62.9 67.0 100 100

Fig. 4. Architectural extensions for access interval regulation. Fig. 5. An example of access interval based method.
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and the accesses that are also later than the access under

analysis in the End Interval. In this example, these are the

accesses in the gray area.

It should be noted that the latest previous access to the

same cache line can be from other cores, and the Start

Interval should be set accordingly, as shown in Fig. 6.

This example assumes that the access C1_E is the latest

previous access of the access C0_E. Then, the possible

conflicting accesses are as shown in the gray area in

Fig. 6.

The comparison between Figs. 3, 5, and 6 shows that

the number of possible conflicting accesses is largely

reduced using the Access Interval-based method. Therefore,

this Access Interval-based method is likely to lead to

substantially tighter WCET estimation for the data LLC

of the integrated CPU-GPU. In addition, since different

SMs execute the same GPU kernel code, and thus have

generally similar access patterns to the memory system

(e.g., when memory access happens along the kernel

execution), the overhead introduced by this Access

Interval-based method is expected to be small, i.e., it is

not expected to significantly impact the performance of

the system, as indicated by the evaluation results.

V. WCET ANALYSIS OF GPU KERNELS WITH
SHARED DATA LLC ESTIMATION RESULTS

A timing model for WCET analysis of GPU kernels

was proposed in [23]. In this timing model, the latency of

each instruction is divided into two parts, the issuing

latency LI and the execution latency LE. The issuing

latencies cannot overlap with each other, while the

execution latencies can overlap with the issuing and

execution latencies of other warps, as shown in Fig. 7.

Based on this timing model, the WCET of a GPU kernel

can be derived using Eqs (1)–(3). Eqs. (4)–(7) elaborate

on how to compute LIi,j and LEi,j, which are used in Eqs

(1)–(3). Eqs. (4)–(6) compute the LI and LE based on the

type of instruction, i.e., arithmetic and memory, which can

stall the pipeline and delay the execution in different ways.

More details of the timing model can be seen in [23].

However, the timing model in [23] assumes no L1 or L2

caches (i.e., all memory accesses go to the off-chip memory

directly), while this work extends the timing model to

consider the cache impact on GPU WCET estimation.

With the shared data LLC analysis method based on

the Access Interval technique proposed in this work, this

WCET timing model can be improved to analyze the

GPU system with L1 and L2 data caches, which is a more

realistic system compared to the system without caches.

In this timing model, the latency to access the memory

system for global load/store instructions needs to be set.

Under the assumption that there is no L1 or L2 data

cache, this latency needs to cover the latency of accessing

the off-chip memory and the stall latency caused by the

interconnection of the network-on-chip (NoC) for every

instruction.

(1)

N : Number of Warps (2)

T00 0⇐

Ti0 Ti′0 LIi′0+⇐ i 0>( )

i′ i 1–( )=

Tij MAX Ti′k LIi′k+ , Tij′ LIij′ LEij′+ +( )⇐

k i 0==( ) ? j 1–( ) : j=

i′ i 0==( ) ? N 1–( ) : i 1–( )=

j′ j 1–=

Fig. 6. An example of access interval based method.

Fig. 7. Timing model for WCET analysis. Adapted from Huangfu
and Zhang, “Static WCET analysis of GPUs with predictable warp
scheduling,” 2017 with the permission of IEEE [23].
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(3)

However, based on the worst-case timing analysis of

the data LLC, the latency of each memory instruction can

be set to different values according to whether it is

predicted to be a hit or miss. Specifically, in the memory

system with L1 and L2 data caches, the value can be set

to the latency of an L1 hit, an L2 hit, or an L2 miss. It

should be noted that, aside from the latencies of

accessing the different levels of caches, there are still

some latencies caused by the NoC in the system.

However, since the focus of this work is the shared data

LLC, it is assumed that the latency of the NoC is known,

which will be explained in detail in Section VI-A. It

should also be noted that other parts of this timing model

are not affected by the integration of the cache hit/miss

estimations.

Fig. 8 shows the framework of the WCET analysis

tools proposed in this work. The parameters of the GPU

architecture configuration, the PTX GPU kernel assembly

code and values of the inputs, and GPU kernel hierarchy

configurations are first sent to the LLC miss rate analyzer.

Then, together with the LLC miss rate estimation results,

these values are sent to the WCET analyzer in order to

obtain the WCET estimation results

(4)

(5)

(6)

(7)

VI. EVALUATION RESULTS

A. Experimental Methodology

1) Simulator

As mentioned in Section IV-A, the gem5-gpu [31]

simulator is used to implement and evaluate the proposed

methods. The gem5-gpu simulator integrates the simulators

of GPGPU-Sim [32], which simulates the GPU cores and

executes the GPU kernels, and the gem5 [33], which

simulates the CPU cores, executes the CPU code, and

launches the GPU kernels to the GPGPU-Sim simulator.

Table 3 shows some of the basic configuration values

of the gem5-gpu simulator. Since the focus of this work is

on analyzing the shared data LLC and its impact on GPU

kernel analysis, the CPU part of the system is relatively

simple with one CPU core, while there are 15 GPU SMs.

The periods of one clock cycle for the GPU SM and GPU

core are set to 500 ticks. One tick is the basic cycle at

which the whole simulator cycles. There is an L1 data

cache for each GPU SM and CPU core, with the size,

cache line size, and associativity as shown in Table 3.

There are separate instruction caches, which are modified

and configured as perfect caches (as this work focuses on

analyzing the data LLC). All of the caches use the LRU

replacement policy. In order to enable the static timing

analysis, the pure round-robin warp scheduling policy is

used. The other basic configurations for the GPU SMs

are shown in the rest of the table, which basically follow

the configuration for the Fermi architecture [34] in the

GPGPU-Sim simulator.

2) Benchmarks

The GPU kernels used in the evaluations are obtained

Ti end( ) Tij_last LIij_last LEij_last+ +=

WCET MAX T0 end( ), T1 end( ), ..., TN 1– end( )( )=

LIinstArithmetic
N<=Cpipeline( ) ? 0 : LIStallArithmetic

=

LIinstMemory
N<=Cpipeline( ) ? 0 : LIStallMemory

=

LIStallArithmetic
Linitiation=

LIStallMemory
Ncoal Ncoal NCompetingSM×+=

LEinstArithmetic
Lengthpipeline Linitiation Lexecution+ +=

LEinstMemory
Lbase Lengthpipeline Ncoal Ncoal NCompetingSM×+( )×+=

LIij 1 LIinstij+=

LEij LEinstij
=

Fig. 8. The framework of the proposed WCET analysis tools.

Table 3. Configurations of the gem5-gpu simulator

Number of SMs 15

Number of CPU cores 1

GPU SM clock cycle 500 Ticks

CPU core clock cycle 500 Ticks

L1 data cache size 64 kB

L1 cache line size 128 B

L1 cache associativity 4

L2 data cache size 256 kB / 512 kB / 1024 kB

L2 cache line size 128 B

L2 cache associativity 32

L1/L2 cache replacement policy LRU

GPU warp size 32

GPU warp scheduling policy Pure round-robin

Max number of active warps 48

Max number of active blocks 8
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from the Rodinia [35] benchmark suite. Table 4 shows

the names of the GPU kernel benchmarks and the sizes of

the inputs to the kernels. The names k1–10 are used in

Section VI-B to refer to these benchmarks.

The gaussian benchmark solves all of the variables in a

linear system, computing the results row by row. The nw

benchmark implements a nonlinear global optimization

algorithm of DNA sequence alignment. The cfd benchmark

implements a solver algorithm for 3D Euler equations.

The lud benchmark calculates the solution of a set of

linear equations by decomposing a matrix as the product

of a lower triangular and an upper triangular matrix. The

srad benchmark is a diffusion algorithm for radar and

ultrasonic images.

Using the access interval method, extra delays can be

introduced in accessing the LLC, which can lead to

performance overhead. In order to measure this potential

overhead, each benchmark is first executed without the

access interval regulation so as to obtain baseline per-

formance results. Then, with the access interval enabled,

each benchmark is executed again to obtain the performance

results with possible performance overhead and the results

of the actual miss rate in the shared data LLC, to which

the estimated LLC miss rate is compared.

B. Experiment Results

l) Shared Data LLC Miss Rate Estimation Results

Fig. 9 shows the actual and estimated miss rate results

of a 512 kB LLC. The results show that, for different

actual miss rates across the benchmarks, the proposed

estimation method can provide a safe upper bound, among

which only k6 has relatively higher overestimation.

Fig. 10 shows the actual and estimated miss rate results

of three different LLC sizes, including 256 kB, 512 kB,

and 1024 kB. As shown in Fig. 10, for most kernels, the

overestimation is reduced as the LLC size increases. For

example, the overestimation in k3 reduces from over

100% with 256 kB LLC to less than 1% with 1024 kB

LLC. This is because a larger LLC has more cache sets,

and hence the number of possible conflicting accesses

mapped to the same set is reduced, which leads to a

tighter estimation of reuse distance values.

2) WCET Estimation Results of GPU Kernels

Fig. 11 shows the normalized performance results of

the benchmarks with different shared data LLC caches.

The numbers of execution cycles are normalized to those

with a 256 kB LLC for each benchmark. As shown in

Fig. 11, some benchmarks benefit from larger cache

sizes, while others do not. Part of the reason for this is

that for some benchmarks, a larger LLC does not

necessarily result in a lower miss rate. For those that have

smaller LLC miss rates with larger LLC sizes, e.g., k7,

k8, and k9, the performance is well improved.

Fig. 12 shows the normalized performance and WCET

estimation results with different shared LLC sizes. The

performance and estimation results in Fig. 12 are norma-

lized to the actual performance results with a 256 kB

shared data LLC for each benchmark. The results indicate

that if the LLC miss rate is overestimated, it can result in

a highly overestimated WCET result, such as k6 with

more than 140% in the overestimation of LLC miss rate

and more than 35% overestimation in WCET with a

256 kB LLC.

Table 4. Benchmarks

Benchmark name Input size

k1 cfd1 4096

k2 cfd2 4096

k3 gaussian 128

k4 gaussian 256

k5 lud 128

k6 lud 256

k7 nw 1024

k8 nw 2048

k9 srad 128

k10 srad 256

Fig. 9. Miss rate estimation results of a 512 kB LLC.

Fig. 10. Miss rate estimation results of different LLC sizes.
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It should be noted that the overestimation is also related

to the ratio between the maximum and average latencies

of accessing different levels of the memory system. For

example, although the overestimation of the LLC miss

rate is very low for benchmarks k7 and k8 as shown in

Fig. 10, the overestimation in WCET is high (35% to

40%). This is because the ratio between the maximum

and average latencies in accessing the off-chip memory is

around 2.5 for these two benchmarks, while this ratio is

below 1.5 for other benchmarks, and the WCET analyzer

has to use the maximum latency for every access in the

estimation.

Fig. 13 shows a comparison between the normalized

WCET estimation results with and without the LLC miss

rate estimations. Without the LLC miss rate estimation,

the WCET analyzer assumes that all accesses need to go

to off-chip memory. Therefore, as shown in Fig. 13, the

overestimation is much larger. However, for k1, k2, k7,

and k8, the overestimation is the same, since the LLC

miss rate is very high and the estimated miss rates are

100% for these kernels.

3) Performance Overhead of the Access Interval Based

Execution Model

Fig. 14 shows the normalized performance results of

the benchmarks with three different LLC sizes. The results

are the execution cycles of the GPU kernel benchmarks

with the access interval normalized to the execution

cycles without the access interval regulations. The

performance over-head in k6 is higher than that in the

others, because synchronizations are used in this kernel,

together with which the access interval regulations lead

to longer delays for warps to reach the synchronization

barriers. As shown in Fig. 14, the average performance

overhead is less than 8%, which is not prohibitive consi-

dering the benefit of the much tighter timing analysis.

VII. CONCLUSION

The integrated CPU-GPU architecture has great potential

to offer better performance and energy efficiency for a

variety of applications. In such an architecture, the shared

LLC is a crucial architectural component for performance

improvement as well as a key source of time-unpredictability.

Since different cores simultaneously access the shared

LLC, the run-time behavior of the shared LLC is hard to

predict statically, if not impossible. In order to use

integrated CPU-GPU processors for real-time systems, it

is necessary to estimate the WCET of the shared LLC.

In this work, we propose a technique of regulating the

accesses to the shared LLC by enforcing access intervals

Fig. 11. Normalized performance results of different LLC sizes.

Fig. 12. Normalized WCET estimation results of different LLC
sizes.

Fig. 13. Normalized WCET estimation results with and without
LLC miss rate estimation.

Fig. 14. Normalized access interval method performance
results of different LLC sizes.
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so as to improve the time-predictability of the LLC. The

results show that the proposed technique can significantly

reduce the overestimation in the miss rates of the shared

data LLC without significantly affecting the average-case

performance. It is also shown that by integrating the miss

rate estimations into the WCET timing model, the WCET

estimations can be further improved.

In the future, we plan to develop WCET analysis

methods for the Network-on-Chip interconnections and

its integration to the WCET analysis of the whole system.

We would also like to explore the possibility of building

different GPU warp scheduling policies with good time-

predictability and performance.
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