
Copyright 2018. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 12, No. 4, December 2018, pp. 170-179

Exploring the Performance Impact of Emerging Many-Core
Architectures on MPI Communication
Joong-Yeon Cho and Hyun-Wook Jin*

Department of Computer Science and Engineering, Konkuk University, Seoul, Korea

jycho@konkuk.ac.kr, jinh@konkuk.ac.kr

Dukyun Nam

Division of Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea

dynam@kisti.re.kr

Abstract
As major architectural changes emerge to resolve the scalability issues in many-core processors, it is critical to

understand their impact on the performance of parallel programming models and run-time supports. For example, the

Intel Xeon Phi KNL processor is equipped with a high-bandwidth memory and deploys a mesh-based processor

interconnect. In this paper, we comprehensively analyze the impact of high-bandwidth memory and processor

interconnects on the message passing interface (MPI) communication bandwidth. The results show that the bandwidth of

MPI intra-node communication can be improved up to 372% by exploiting the high-bandwidth memory. In addition, we

show that the bandwidth of MPI inter-node communication can be improved up to 143% with optimal core affinity. Our

comprehensive study provides insight into optimization of the performance of MPI communication in emerging many-

core architectures.

Category: Cloud Computing / High Performance Computing

Keywords: Many-core; MPI; High-bandwidth memory; Processor interconnect; Core affinity

I. INTRODUCTION

Each computing node in contemporary supercomputers

is equipped with a large number of cores allowing many

parallel processes to run simultaneously. For example, an

Intel Xeon Phi Knights Landing (KNL) processor contains

64–72 cores in a single processor package [1]. However,

as the number of cores increases, the many-core systems

experience a bottleneck when multiple cores access the

shared resources, such as system bus and memory

simultaneously. Since the parallel processes running in

supercomputers perform the same instructions mostly,

they are very likely to interfere with each other in

accessing the shared resources. To resolve this problem,

prominent architectural changes have been incorporated

in new processors. The Intel KNL processor, for instance,

is equipped with multi-channel DRAM (MCDRAM),

which provides five-fold higher bandwidth than DDR4.

In addition, the Intel Xeon processors, from Sandy Bridge

to Broadwell, have ring-based processor interconnects to

connect cores inside a processor package, while the KNL

and Skylake processors use mesh interconnects.

As major architectural changes in processors emerge, it

is essential to understand their impact on the performance

Received 25 November 2018; Accepted 13 December 2018

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2018.12.4.170 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Exploring the Performance Impact of Emerging Many-Core Architectures on MPI Communication

Joong-Yeon Cho et al. 171 http://jcse.kiise.org

of parallel programming models and run-time supports

for high-performance computing. Although there were

remarkable researches to analyze the impact of many-

core architectures on the performance of parallel computing

[2-4], they focused on the application-level impact. Thus,

they could not reveal the implications of the underlying

programming models and run-time environments. The

intra-node communication between parallel processes,

for example, becomes more important, with the increasing

number of cores installed in the system. Thus, it is

important to refine the parallel programming models to

exploit emerging architectural features, to enhance their

practical applications.

In this paper, we aim to analyze comprehensively the

performance impact of emerging many-core architectures

on message passing interface (MPI) communication. MPI

is a de facto standard for communication of parallel

processes [5]. More precisely, we quantitatively measured

the impact of high-bandwidth memory in KNL processor

and the processor interconnects in KNL and Haswell

processors on the performance of MPI communication.

Our experimental results show that we can improve the

bandwidth of intra-node point-to-point communication

up to 372% by allocating the communication buffers to

high-bandwidth memory, and reduce the latency of intra-

node collective communication by 74%. Moreover, we

show that carefully addressing the core affinity can

improve the bandwidth of inter-node point-to-point

communication up to 143% on Omni-Path and up to 39%

on 40-GigE, respectively. These detailed analyses with

emerging architectures provide insights for optimization

of MPI communication on many-core systems.

The rest of the paper is organized as follows: in Sec-

tion II, we briefly describe the architectural characteristics

of the KNL and Haswell processors. In addition, we

provide an overview of internal implementation of MPI

communication. We analyze the impact of high-bandwidth

memory on MPI intra-node communication in Section III.

We evaluate the impact of processor interconnects on

MPI inter- and intra-node communication with different

core affinities in Section IV. We discuss the related work in

Section V. Finally, we conclude the paper in Section VI.

II. BACKGROUND

In this section, we describe the architectural charac-

teristics of Intel KNL and Haswell processors, which are

used as experimental systems (Sections III and IV). In

addition, we explain the internal implementation of MPI

intra- and inter-node communication.

A. Many-Core Architectures

The first-generation of Intel Xeon Phi known as Knights

Corner (KNC) was a coprocessor available as a PCIe

card, which required a separate host processor. The next-

generation Xeon Phi processor designated as KNL differs

from the previous generation in that the processor is a

stand-alone, bootable processor. In addition, it consists of

a high-bandwidth 3D-stacked DRAM called MCDRAM,

which provides 400+GB/s of bandwidth. Fig. 1 shows the

overall architecture of the KNL processor. It can contain

up to 36 tiles, each of which consists of two cores and

1 MB shared L2 cache. Tiles are connected by a 2D mesh

interconnect. In the recent Intel Xeon Skylake processors,

cores are also connected by a mesh architecture. The

Fig. 1. Overall architecture of KNL processor with 34 tiles.

Fig. 2. Overall architecture of 2-way NUMA system with two
deca-core Haswell processors.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 170-179

http://dx.doi.org/10.5626/JCSE.2018.12.4.170 172 Joong-Yeon Cho et al.

KNL processor carries 16 GB of MCDRAM, which can

be configured in one of three modes: Cache, Flat, and

Hybrid. In the Cache mode, MCDRAM operates trans-

parently for applications such as cache, while used as an

addressable memory module with the Flat mode. In the

Hybrid mode, a portion of MCDRAM is used as addressable

memory and the rest is used as cache.

Among the Intel Xeon processors ranging from Sandy

Bridge to Broadwell, the last level cache (LLC) is divided

into different slices, each of which is associated with

each core. The cores and the LLC slices are connected by

ring-based interconnects as shown in Fig. 2. This figure

depicts our Haswell-based experimental system, where

two deca-core processor packages are installed (i.e., total

20 cores) on each machine. These two processor packages

(i.e., NUMA nodes) are connected through QuickPath

Interconnect (QPI). Inside a Haswell processor package,

a ring-based interconnect is connected up to eight cores

to reduce the latency and mitigate the bandwidth

constraints between cores. Thus, the deca-core processor

package in Fig. 2 comprises two ring-based interconnects:

one for eight cores and the other for two cores. Commun-

ication between these two rings occurs via a buffered

switch.

B. MPI Communication

In general, MPI implementations provide two different

communication modes for different message sizes: Eager

and Rendezvous. In the Eager mode, the sender can

immediately send messages to the receiver assuming that

buffers for the messages are ready at the receiver side.

Since the receiving process may not wait for a message

(i.e., has not registered a receiving buffer yet), the MPI

implementations provide internal buffers to save the

received messages causing an additional copy of data for

every message. In the Rendezvous mode, the messages

received are directly moved into the destination buffers

without intermediate data copies; however, this mode

requires agreement between the two processes by

exchanging the control messages to ensure that receiving

buffers are registered before sending messages. In general,

the Eager mode is used for small messages, without a

significant copy overhead, while the Rendezvous mode is

useful for large messages. For example, MVAPICH2

provides a configurable threshold known as MV2_SMP_

EAGERSIZE to select one of these modes based on the

message size [6].

Regarding intra-node communication, MPI implemen-

tations provide different data paths for Eager and Rende-

zvous modes. A well-known mechanism for Eager mode

entails message delivery through an intermediate buffer

shared between processes running on the same machine,

where the message is internally copied twice: first, from

the user buffer to the shared buffer, and then, from the

shared buffer to the destination buffer [7-9]. This shared-

buffer-based intra-node communication provides higher

bandwidth and lower latency than the NIC-based loopback

that requires messages to traverse the I/O bus twice.

However, the shared-buffer-based communication is

inefficient for large messages, because it consumes

processor resources for copying messages. To reduce this

copy overhead and save the processor resources, the

memory-mapping-based mechanism is used for Rendezvous

mode [10-12]. In this mechanism, the source buffer is

directly mapped into the virtual address space of the

destination process. Therefore, the message can be

copied directly from the source to the destination buffer.

This memory-mapping-based communication can reduce

the number of copies into one. However, it is not efficient

for small messages due to the larger memory mapping

overhead compared with the copy overhead of small

messages. Thus, MPI implementations use the shared-

buffer-based mechanism for small messages (i.e., Eager

mode), and the memory-mapping-based mechanism for

large messages (i.e., Rendezvous mode).

The MPI implementations for inter-node communication

vary depending on the type of interconnection network

that is targeted. The special-purpose interconnection

networks, such as InfiniBand and Omni-Path, provide a

lightweight user-level communication library. Since this

thin library bypasses the operating system in the

communication path and deletes an intermediate data

copy, it has very low communication overheads. In

general, the MPI implementations support the Eager and

Rendezvous modes for inter-node communication over

these special-purpose interconnection networks. The MPI

implementations allocate internal buffers for inter-node

communication in Eager mode during the initialization

phase. On the other hand, the general-purpose, Ethernet-

based interconnection networks use TCP/IP that always

saves the messages to the in-kernel intermediate buffers

on the receiver side, regardless of the readiness of the

receiving process. Thus, MPI needs neither intermediate

buffers of the Eager mode nor handshaking of the

Rendezvous mode. Consequently, MPI implementations

over general-purpose interconnection networks do not need

to be distinguished between Eager and Rendezvous modes.

III. IMPACT OF HIGH-BANDWIDTH MEMORY

In this section, we analyze the impact of high-bandwidth

memory on MPI intra-node communication. Toward this

end, we allocate communication buffers to MCDRAM in

KNL processor and measure the communication bandwidth

and latency.

A. Buffer Allocation

The user buffers can be allocated specifically to

MCDRAM by using the memkind library [13], which is

Exploring the Performance Impact of Emerging Many-Core Architectures on MPI Communication

Joong-Yeon Cho et al. 173 http://jcse.kiise.org

the heap allocator developed by Intel for Xeon Phi

processors. Before allocating buffers to the high-bandwidth

memory, the MEMKIND_HBW_NODES environment

variable must be set to the memory node ID assigned to

MCDRAM. In our experimental system, the memory

node ID of MCDRAM was 1, while that of DDR4 was 0.

The library provides interfaces, such as hbw_posix_

memalign() and hbw_malloc() that allocate a buffer to

the high-bandwidth memory specified by MEMKIND_

HBW_NODES. We modified the OSU-micro-benchmarks

to selectively allocate the user buffers to high-bandwidth

memory.

The MPI implementations provide shared buffers

internally for intra-node communication in Eager mode

as described in Section II-B. MVAPICH2 initializes the

shared memory areas for small messages by allocating a

virtual file in /dev/shm. This directory is a temporary file

system (i.e., tmpfs) that resides in DDR4. Thus, we also

modified MVAPICH2 to facilitate mounting of MCDRAM

as a tmpfs into the /dev/shm/mcdram directory and create

a new virtual file for shared memory.

We measured the performance of intra-node point-to-

point and collective communication on an Intel KNL 7250

machine comprising 68 cores and 16 GB MCDRAM.

The MPI implementation used was MVAPICH2 version

2.2 and the operating system installed was Linux (kernel

version 3.10.0).

B. Point-to-Point Communication

We used OSU-micro-benchmarks to measure the

bandwidth and latency of intra-node point-to-point

communication. We used a non-cached memory buffer

for each communication iteration in micro-benchmarks.

The experiments were conducted for 2, 34, and 68

processes. In the experiments, we ran processes of the

same pair (i.e., connection) on the same tile. We compared

three cases in each graph. The first case allocates all

communication buffers to DDR4 (Default). In the second

case, the shared buffers for Eager mode are allocated

to MCDRAM, while the user buffers are in DDR4

(MCDRAM+DDR4). We also consider the case in which

all communication buffers reside in MCDRAM (MCDRAM-

only).

Fig. 3 shows the measurement results of point-to-point

communication bandwidth for small and medium messages,

where the messages are copied to/from the shared memory

because the threshold to switch from Eager to Rendezvous

was 64 kB. Fig. 3(c) shows that MCDRAM-only improved

the bandwidth up to 372% for medium messages compared

with Default. However, as the number of processes (i.e.,

number of point-to-point connections) is reduced, the

improvement rate is also reduced as shown in Fig. 3(b)

and 3(a) because MCDRAM is beneficial in terms of

bandwidth. Thus, buffer allocation to MCDRAM in the

presence of a large number of connections has advantages.

Moreover, it is notable that both user buffer and shared

memory need to be in MCDRAM to yield the best

performance; otherwise, the performance gain is very

limited, as shown by MCDRAM+DDR4. Fig. 4 shows the

point-to-point communication latency for small and

medium messages. As the discussion above indicates, the

latency for small messages does not benefit from

MCDRAM, because the latency tests involving small and

medium messages do not generate bandwidth-sensitive

communication load.

Fig. 5 shows the point-to-point communication band-

width for large messages. In these experiments, the

shared memory is not involved in communication, so we

do not consider the MCDRAM+DDR4 case. Fig. 5(c)

shows that MCDRAM-only improves the bandwidth up to

366% compared with Default. We found that the

improvement rate is reduced according to the number of

processes. Fig. 6 shows the point-to-point communication

latency for large messages. Unlike Fig. 4, Fig. 6 shows

that MCDRAM-only can reduce the latency up to 73%

compared with Default because the latency tests are

sensitive to bandwidth under increased message size.

C. Collective Communication

We measured the latency of all-to-all collective commun-

Fig. 3. Point-to-point communication bandwidth for small and medium messages. (a) Two-processes, (b) 34-processes, and (c) 68-
processes.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 170-179

http://dx.doi.org/10.5626/JCSE.2018.12.4.170 174 Joong-Yeon Cho et al.

ication, which is the popular but most time-consuming

collective operation. Fig. 7 shows the measurement results

of all-to-all latency. Fig. 7(c) shows that MCDRAM-only

reduces the latency up to 74% compared with Default.

Such performance improvement is decreased for a smaller

number of processes, because MCDRAM facilitates

bandwidth, and the large number of processes induces a

bandwidth-sensitive communication load.

D. Implications

The numactl command [14] is the easiest approach to

utilize high-bandwidth memory in the KNL processor

and provide a transparent run-time environment for appli-

cations. However, the memory areas, the location of

which does not affect the performance significantly, also

consume high-bandwidth memory. To save high-bandwidth

memory while ensuring comparable performance with

the numactl case, it is highly desirable to selectively

locate only the performance-sensitive buffers into the

high-bandwidth memory.

In our previous study [15], we modified MPI_Alloc_

mem() so that it can decide the location of the buffer

(i.e., MCDRAM or DDR4) based on the buffer size and

Fig. 6. Point-to-point communication latency for large messages. (a) Two-processes, (b) 34-processes, and (c) 68-processes.

Fig. 5. Point-to-point communication bandwidth for large messages. (a) Two-processes, (b) 34-processes, and (c) 68-processes.

Fig. 4. Point-to-point communication latency for small and medium messages. (a) Two-processes, (b) 34-processes, and (c) 68-
processes.

Exploring the Performance Impact of Emerging Many-Core Architectures on MPI Communication

Joong-Yeon Cho et al. 175 http://jcse.kiise.org

the number of processes. However, it is difficult to decide

the optimal thresholds for the buffer size and the number

of processes, because these can significantly vary

according to the processor architectures and application

workloads. Thus, it is desirable to have the application

decide where to allocate buffers. The second argument of

MPI_Alloc_mem() is provided to specify the requirements

for the buffer to be allocated. In the latest specification,

however, only the MPI_INFO_NULL value is valid for

this argument. With the emergence of new memory

hierarchy, standardization of the values is required to

ensure that MPI applications specify the buffer requirements

(e.g., performance or location) and benefit from the

similar policies across different MPI implementations.

IV. IMPACT OF PROCESSOR INTERCONNECT

In this section, we analyze the impact of processor

interconnect on MPI communication by varying the core

affinity of MPI processes. We measured the performance

of inter- and intra-node communication on KNL and

Haswell processors.

A. Core Affinity

The core affinity defines mapping between a set of

cores and a given task, which can be either a hardware

event handler or a process. Since modern processor

interconnects described in Section II-A exhibit asymmetric

overheads to access memory and I/O devices, the core

affinity affects MPI communication performance. In

Linux, we can specify the cores that handle hardware

events from a device by editing the smp_affinity file of

the device in the /proc/irq directory. This file includes a

bit vector, each bit of which is associated with a core and

defines whether or not the core is allowed to handle the

events from the device. In fact, this file defines the cores

that receive interrupts from the device. In our experiments,

we did not change the core affinity for the event handlers

of 40-GigE and Omni-Path.

The core affinity of user-level processes can be changed

by the sched_setaffinity() system call, which modifies the

cpus_allowed field in the process control block. This

field is also a bit vector that represents the cores on which

the process can be scheduled. The /proc/<pid>/status file

displays the value of this bit vector. We inserted a few

lines of code into the OSU-microbenchmarks to set the

core affinity of MPI processes.

We measured the performance of inter- and intra-node

point-to-point communication on a pair of Intel Haswell

2687W machines connected through 40-GigE and a pair

of Intel KNL 7250 machines connected through Omni-

Path. The MPI implementation used was MVAPICH2

version 2.2 and the operating system installed was Linux

(kernel version 3.10.0).

B. Inter-Node Communication

We measured the bandwidth of point-to-point commun-

ication of single connection with different core affinities

of MPI processes. Fig. 8 shows the results of measurement

using the Haswell machines. We compared four core

affinity cases. The cases denoted as Same NUMA Node

show the performance when the hardware event handler

of network device (i.e., 40-GigE) and the communication

process run on the same NUMA node. We reported the

performance of the best and worst affinity combinations

within the same NUMA node. The Different NUMA Node

cases show the performance when the hardware event

handler and the communication process run on different

NUMA nodes. We find that Same NUMA Node outperforms

Different NUMA Node as the message size increases. It is

noteworthy that the event handler of 40-GigE ran on the

NUMA node, to which the network device was attached

(i.e., NUMA Node 1 in Fig. 2). Thus, the distance from

the user buffer to the network device was closer in the

Same NUMA Node case. Its performance was also

enhanced by the better locality. The event handler of the

network device not only performs TCP/IP processing but

copies messages between user and kernel buffers as

described in Section II-B. Thus, in the Same NUMA Node

Fig. 7. Collective communication latency (all-to-all). (a) Two-processes, (b) 34-processes, and (c) 68-processes.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 170-179

http://dx.doi.org/10.5626/JCSE.2018.12.4.170 176 Joong-Yeon Cho et al.

cases, the data accesses from event handler and comm-

unication process occur within the same NUMA node,

which results in better cache efficiency. The best and

worst cases in the same category do not show prominent

differences, because the overhead caused by different

core affinities within a NUMA node is not significant

compared to the TCP/IP processing overheads.

Fig. 9 shows the measurement results on the KNL ma-

chines. The threshold to switch from Eager to Rendezvous

was 16 kB and the network buffers were allocated in

DDR4. Since the machines comprise a single processor

package, we changed the core affinity of MPI processes

only within the package. As shown in the figure, the best

case reported 143% higher bandwidth than the worst case

because the distance to the network device varied

significantly on the 2D mesh interconnect.

C. Intra-Node Communication

We also measured the bandwidth of intra-node point-

to-point communication for different core affinities. Fig. 10

shows the measurement results of single connection with

the Haswell machine. The threshold to switch to Rendezvous

was 32 kB. In these graphs, the Same NUMA Node cases

show the bandwidth measured when the sending and

receiving processes ran on the same NUMA node, while

the communicating processes ran on different NUMA

nodes in the other cases. Unlike the inter-node comm-

unication in Section IV-B, prominent differences in

performance exist between the best and the worst cases in

the same category, due to the low-overhead intra-node

communication channels, which are not based on TCP/IP

as described in Section II-B. Thus, the impact of processor

interconnects on intra-node communication is increased

compared with the inter-node communication cases. With

respect to medium message sizes shown in Fig. 10(b), the

Same NUMA Node cases yield better performance than

the Different NUMA Node cases. However, for small and

large message sizes in Fig. 10(a) and 10(c), providing the

core affinity of communicating processes to the same

NUMA node does not always guarantee better bandwidth.

We suppose that running processes on the same NUMA

node occasionally exhibits low performance on Haswell

machine when small messages are involved in intra-node

communication. In Fig. 10(a), user messages are small

whereas in Fig. 10(c), the small control messages for

Rendezvous protocol are exchanged.

Fig. 11 shows the intra-node communication bandwidth

of different core affinities on the KNL machine. In these

experiments, we ran 68 processes (i.e., 34 connections of

Fig. 8. Inter-node communication bandwidth on Haswell machines connected with 40-GigE. (a) Small, (b) medium, and (c) large
messages.

Fig. 9. Inter-node communication bandwidth on KNL machines connected with Omni-Path. (a) Small, (b) medium, and (c) large
messages.

Exploring the Performance Impact of Emerging Many-Core Architectures on MPI Communication

Joong-Yeon Cho et al. 177 http://jcse.kiise.org

point-to-point communication) and allocated commun-

ication buffers to MCDRAM. We reported the bandwidth

of three different affinity policies. The Intra-Tile case ran

the processes paired on the same tile. The Inter-Tile cases

facilitated the processes in the same pair on two different

tiles, which are either close to each other or far apart. As

shown in Fig. 11, Inter-Tile (Near) shows better perfor-

mance than the others for most of the message sizes. It

suggests that running the sender and the corresponding

receiver on the cores that share the LLC may not promise

the highest communication bandwidth.

D. Implications

As the number of cores increases, the scalability of

processor interconnects becomes a very important issue.

In this section, we showed that the contemporary

interconnects affect the communication performance

depending on the core affinity. Although many studies

focused on inter-NUMA-node process scheduling, our

experimental results showed that the communication

performance could be changed significantly depending

on the location of the communicating process within the

same NUMA node. The results emphasize the importance

of intra-NUMA-node process scheduling with respect to

communication performance. For example, SyMMer [16]

determines the core affinity of MPI processes dynamically

at the run time. Such tools need to be extended to allow

for adaptive decision of the core affinity of MPI

processes even within a NUMA node considering the

characteristics of the processor interconnect.

V. RELATED WORK

Performance analyses of high-bandwidth memory,

such as MCDRAM, have been studied comprehensively

[2-4]. Li et al. [2] and Peng et al. [3] analyzed the impact

of high-bandwidth memory on HPC applications. Xing et

al. [4] also optimized the performance of a graphic

analysis application over the many-core system.

The impacts of core affinity on MPI applications were

analyzed in various studies [16-19]. SyMMer [16]

proposed a library to determine the core affinity of MPI

processes. Ganapathi et al. [17] analyzed the impact of

the distance between the NUMA node and the network

interface card. LAMA [18] provided the environmental

variables that allowed users to set core affinity for MPI

applications. TreeMatch [19] was used to propose an

algorithm that abstracted the hardware architecture into a

tree format and mapped the MPI processes.

However, the current studies have analyzed the impact

of high-bandwidth memory and core affinity at the

application level. In this paper, we measured and analyzed

Fig. 10. Intra-node communication bandwidth on Haswell machine. (a) Small, (b) medium, and (c) large messages.

Fig. 11. Intra-node communication bandwidth on KNL machine. (a) Small, (b) medium, and (c) large messages.

Journal of Computing Science and Engineering, Vol. 12, No. 4, December 2018, pp. 170-179

http://dx.doi.org/10.5626/JCSE.2018.12.4.170 178 Joong-Yeon Cho et al.

the impact of emerging many-core architectures in terms

of MPI programming model and run-time supports.

Furthermore, we suggested several ways to optimize the

MPI implementations on many-core systems.

VI. CONCLUSIONS

In this paper, we analyzed the impact of high-

bandwidth memory and processor interconnects on the

performance of MPI communication. We showed the

potential of the high-bandwidth memory for improved

performance of MPI intra-node communication and

suggested more specific usages of the second argument in

MPI_Alloc_mem(). In addition, we presented the impact

of processor interconnects by changing the core affinity

of MPI processes. The experimental results suggested

that the core affinity within a processor package was also

critical in many-core processors. We believe that our

analyses provide directions for future optimization of

MPI implementations in emerging many-core architectures.

In the future, we intend to investigate the scalability of

many-core systems with respect to MPI communication.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. 2017R1A2B4012759).

REFERENCES

1. Intel, “Intel Xeon Phi processor product brief,” http://

www.intel.com/xeonphi/.

2. A. Li, W. Liu, M. R. B. Kristensen, B. Vinter, H. Wang, K.

Hou, A. Marquez, and S. L. Song, “Exploring and analyzing

the real impact of modern on-package memory on HPC

scientific kernels,” in Proceedings of the International

Conference for High Performance Computing, Networking,

Storage and Analysis, Denver, CO, 2017.

3. I. B. Peng, R. Gioiosa, G. Kestor, J. S. Vetter, P. Cicotti,

E. Laure, and S. Markidis, “Characterizing the performance

benefit of hybrid memory system for HPC applications,”

Parallel Computing, vol. 76, pp. 57-69, 2018.

4. Y. Xing, Z. Chen, N. Xiao, F. Liu, and Y. Lu, “Graph

analytics on manycore memory systems,” IEEE Access, vol. 6,

pp. 51429-51439, 2018.

5. MPI Forum, “Message Passing Interface,” https://www.mpi-

forum.org/.

6. Network-Based Computing Laboratory, “MVAPICH2,” http://

mvapich.cse.ohio-state.edu/.

7. L. Chai, A. Hartono, and D. K. Panda, “Designing high

performance and scalable MPI intra-node communication

support for clusters,” in Proceedings of 2006 IEEE Inter-

national Conference on Cluster Computing, Barcelona, Spain,

2006, pp. 1-10.

8. L. Chai, P. Lai, H. W. Jin, and D. K. Panda, “Designing an

efficient kernel-level and user-level hybrid approach for MPI

intra-node communication on multi-core systems,” in Pro-

ceedings of the 37th International Conference on Parallel

Processing, Portland, OR, 2008, pp. 222-229.

9. D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S.

Moreaud, “Cache-efficient, intranode, large-message MPI

communication with MPICH2-nemesis,” in Proceedings of

the International Conference on Parallel Processing, Vienna,

Austria, 2009, pp. 462-469.

10. H. W. Jin, S. Sur, L. Chai, and D. K. Panda, “Lightweight

kernel-level primitives for high-performance MPI intra-node

communication over multi-core systems,” in Proceedings of

2007 IEEE International Conference on Cluster Computing,

Austin, TX, 2007, pp. 446-451.

11. B. Goglin, and M. Stephanie, “KNEM: a generic and scalable

kernel-assisted intra-node MPI communication framework,”

Journal of Parallel and Distributed Computing, vol. 73, no. 2,

pp. 176-188, 2013.

12. J. Vienne, “Benefits of cross memory attach for MPI libraries

on HPC clusters,” in Proceedings of the 2014 Annual

Conference on Extreme Science and Engineering Discovery

Environment, Atlanta, GA, 2014.

13. Intel, “Memkind library,” http://memkind.github.io/.

14. A. Kleen, “A NUMA API for Linux,” Novell Inc., Technical

Whitepaper, 2005, http://developer.amd.com/wordpress/media/

2012/10/LibNUMA-WP-fv1.pdf.

15. J. Y. Cho, H. W. Jin, and D. Nam, “Enhanced memory

management for scalable MPI intra-node communication on

many-core processor,” in Proceedings of the 24th European

MPI Users’ Group Meeting, Chicago, IL, 2017.

16. T. Scogland, P. Balaji, W. Feng, and G. Narayanaswamy,

“Asymmetric interactions in symmetric multi-core systems:

analysis, enhancements and evaluation,” in Proceedings of

the 2008 ACM/IEEE Conference on Supercomputing, Austin,

TX, 2008, pp. 1-12.

17. R. B. Ganapathi, A. Gopalakrishnan, and R. W. McGuire,

“MPI process and network device affinitization for optimal

HPC application performance,” in Proceedings of 2017 IEEE

25th Annual Symposium on High-Performance Interconnects,

Santa Clara, CA, 2017, pp. 80-86.

18. J. Hursey, and J. M. Squyres, “Advancing application process

affinity experimentation: open MPI’s LAMA-based affinity

interface,” in Proceedings of the 20th European MPI Users'

Group Meeting, Madrid, Spain, 2013, pp. 163-168.

19. E. Jeannot and G. Mercier, “Near-optimal placement of MPI

processes on hierarchical NUMA architectures,” in Euro-Par

2010 Parallel Processing. Heidelberg: Springer, 2010, pp.

199-210.

Exploring the Performance Impact of Emerging Many-Core Architectures on MPI Communication

Joong-Yeon Cho et al. 179 http://jcse.kiise.org

Joong-Yeon Cho

Joong-Yeon Cho received the B.S. degree in computer science and engineering from Konkuk University,
Seoul, Korea, in 2012 and the M.S. degree in computer, information & communications engineering from
Konkuk University, Seoul, Korea, in 2014. He is currently pursuing the Ph.D. degree in computer, information
& communications engineering at Konkuk University, Seoul, Korea (e-mail: jycho@konkuk.ac.kr). His research
interests include operating systems, cloud computing and high-performance computing.

Hyun-Wook Jin

Hyun-Wook Jin received the B.S., M.S., and Ph.D. degrees in computer science and engineering from Korea
University, Korea, in 1997, 1999, and 2003, respectively. From 2003 to 2006, he was a Research Associate with
the Department of Computer Science and Engineering, The Ohio State University, USA. Since 2006, he has
been with the Department of Computer Science and Engineering, Konkuk University, Seoul, Korea, where he
is currently a Full Professor (e-mail: jinh@konkuk.ac.kr). His research interests include operating systems,
parallel programming models, cloud computing, and real-time systems.

Dukyun Nam

Dukyun Nam is a senior researcher in the National Institute of Supercomputing and Networking at
Korea Institute of Science and Technology Information (KISTI), Daejeon, Republic of Korea (e-
mail:dynam@kisti.re.kr). He received the B.S. degree in computer science and engineering from Pohang
University of Science and Technology (POSTECH), Korea, in 1999, M.S. and Ph.D. degrees in information and
communication engineering from Korea Advanced Institute of Science and Technology (KAIST), Korea, in
2001 and 2006, respectively. His research interests are in high performance and distributed computing, low
power computing, system software in HPC, etc.

