
Copyright 2019. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 13, No. 1, March 2019, pp. 11-16

Enumerating Subsequences of a Sequence and Paths of a Tree
in the Order of Weight
Sung Kwon Kim*

School of Computer Science and Engineering, Chung-Ang University, Seoul, Korea

skkim@cau.ac.kr

Abstract
The following two enumeration problems are addressed: (i) given a sequence A of n real numbers, the subsequences of A

in the order of their weight (or sum), and (ii) given an n-vertex edge-weighted tree T, the paths of T in the order of their

weight. We show that both enumerations (i) and (ii) can be done in O(n2 log n) time and the data structures for (i) can be

constructed in O(n log n) time using O(n) space, and data structures for (ii) can be built in O(n log n) time using O(n log n)

space.

Category: Algorithms and Complexity

Keywords: Algorithm; Enumeration; Subsequences of sequence; Paths of tree

I. INTRODUCTION

We assumed A = (a1,…, an) and B = (b1,…, bn) as two

sequences of length n with ai > 0 and bi > 0 for 1 ≤ i ≤ n.

Chen et al. [1] introduce the subsequence sum problem of

two sequences: Given A, B, and a number M > 0, find all

possible pairs of subsequences (ai,…, aj) and (bk,…, bl)

for i ≤ j and k ≤ l such that their sum ai +… + aj + bk + …

+ bl = M. For bioinformatic application of this problem,

refer to [1].

To develop algorithms for the problem, as in [1], the

subsequences of A need to be enumerated in non-

increasing order of their sum (in addition to those of B in

non-decreasing order). Since A consists of positive

numbers only, it is rather easy to develop an algorithm to

enumerate the subsequences of A. The algorithm assumes

O(n2 log n) time using O(n) space.

We now generalize the enumeration problem of the

subsequences of A by allowing zeroes or negative

numbers in A. Let A = (a1,…, an) be a sequence of n real

numbers. For i ≤ j, (ai,…, aj) is a subsequence of A and its

weight is w(i, j) = ai + … + aj. A problem we want to

address is: enumeration of the subsequences of A in non-

increasing order of their weight. In other words, we want

to output the triplets in the multiset [<i, j, w(i, j) > 1 ≤ i ≤

j ≤ n] one by one in the non-increasing order of w(i, j) ([]

denotes a multiset in which multiple instances of an

element are allowed).

One simple solution is to sort the triplets based on their

weight in non-increasing order and to output them

starting from the first to the last. This solution obviously

takes O(n2 log n) time and O(n2) space as we need to store

the multiset. Our problem is closely related to the

problem of sorting X + Y [2], for which finding an

algorithm with time complexity O(n2 log n) is open.

Hence, as discussed in [3], reducing the time complexity

to O(n2 log n) seems quite difficult. We show instead that

the space complexity can be reduced to O(n). Our

Received 15 January 2019; Accepted 17 February 2019

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2019.13.1.11 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 13, No. 1, March 2019, pp. 11-16

http://dx.doi.org/10.5626/JCSE.2019.13.1.11 12 Sung Kwon Kim

algorithm takes O(n log n) time and O(n) space to prepare

data structures and, using them, we can enumerate the

subsequences in O(n2 log n) time.

We now extend the problem from sequences to trees.

Assuming T = (V, E) as an edge-weighted tree with

V = {1,…, n}, each edge e ∈ E is associated with a real

number we. For two vertices u, v ∈ V with u ≠ v,

assuming π(u, v) as the path connecting them, we defined

its w(u, v) = Σe∈π(u,v) we.

We enumerated the paths of T in non-increasing order

of their weight, i.e., to output the triplets in the multiset

[<u, v, w(u, v)> | u, v ∈ V, u < v] in the non-increasing

order of weight. Only the case u < v is considered w(u, v)

= w(v, u). As in the case of sequence, if we simply sort

the weights in the multiset and output them in the sorted

order, it again takes O(n2 log n) time and O(n2) space. We

show that data structures can be constructed in O(n log n)

time using O(n log n) space, and demonstrate the

enumeration using them in O(n2 log n) time.

Enumeration of subsequences in a sequence is

discussed in Section II, and enumeration of paths of a tree

is presented in Section III. We concentrate on explaining

how to enumerate the weights in the sorted order only.

The subsequences or paths themselves can be enumerated

via slight modification of our algorithms.

II. ENUMERATING SUBSEQUENCES OF A
SEQUENCE

Given a sequence A = (a1,…, an) of n real numbers, we

want to enumerate the subsequences of A in the non-

increasing order of their weight. As mentioned in Section I,

we focus on describing an algorithm for the enumeration

of weights in the sorted order. We defined B = [w(i, j) | 1

≤ i ≤ j ≤ n] and Bi = [w(i, j) | i ≤ j] for 1 ≤ i ≤ n, where Bi

contains the weights of the subsequences of A whose left

end is fixed at index i. To enumerate the weights in B, we

employed the selection tree [4], which is used to merge k

sorted lists into a single sorted list in O(N log k) time,

where N is the total number of elements in the k lists.

Let H be a selection tree with n leaves, labelled 1,…, n.

Each leaf i is associated with Bi for 1 ≤ i ≤ n. In our

selection tree, for each internal vertex, we compare the

values of its two derivatives and stored the larger one as

its value. Hence, the root contains the maximum values in

the leaves.

To use the selection tree in enumerating the weights in

B by combining B1,…, Bn, we need to overcome the

following two obstacles:

● Each of B1,…, Bn, is unsorted.
● Storing all of B1,…, Bn explicitly requires O(n2) space.

Therefore, we need to devise a method to generate the

weights in each of B1,…, Bn in sorted order using O(n)

space only.

We defined prefix sums of A, c0 = 0 and ci = ci−1 + ai for

1 ≤ i ≤ n. Then, w(i, j) = cj − ci−1 for 1 ≤ i ≤ j ≤ n, sorted

the prefix sums (c1,…, cn) in the non-increasing order and

generated (c
α1

,…, c
αn

) as a sorted list. Note that c
α1

 ≥ … ≥ c
αn

and (α1,…, αn) is a permutation of (1,…, n).

Since Bi = [w(i, i),…, w(i, n)] = [ci − ci−1,…, cn − ci−1] =

[c
αj

− ci−1 | 1 ≤ j ≤ n, i ≤ αj], we have the lemma.

LEMMA 1. For 1 ≤ i ≤ n, Bi = [c
αj

− ci−1 | 1 ≤ j ≤ n, i ≤ αj].

Based on Lemma 1, we enumerate the weights in Bi in

non-increasing order, while scanning (α1,…, αn) from

j = 1 to n we determined if i ≤ αj and, if yes, the output

c
αj

− ci−1. The weight output in this order exactly

correspond to the weights in Bi in non-increasing order.

More specifically, let αn+1 = n + 1 and c
αn+1

= .

Initially, pi = 0. pi points to the current position while

scanning (α1,…, αn) for Bi. With pi = 0, calling next-

weight(i) in Fig. 1 increments of pi until i ≤ αpi
 and returns

c
αpi

− ci−1, which corresponds to the maximum of Bi.

Another call to nextweight(i) finds the second maximum

of Bi. By calling nextweight(i) repeatedly, we can

determine the output of the weights in Bi in non-

increasing order. Finally, when pi = n + 1, nextweight(i)

returns , which indicates that no weight remains in Bi.

A call to nextweight(i) always returns the next weight in

non-increasing order from Bi.

The selection tree H and the function nextweight(i) are

employed to enumerate the weights in B in non-

increasing order. Note that each leaf i of H is associated

with Bi for 1 ≤ i ≤ n. After setting pi = 0 for all 1 ≤ i ≤ n,

we call nextweight(i) for each 1 ≤ i ≤ n to determine the

maximum of Bi and assign it to leaf i of H. With all of the

leaves of H now assigned weights, we compute the

overall winner of the tournament of H, which corresponds

to the maximum of B, as the output. Finding the

maximum of B takes O(n2) time. If the winner comes

from leaf i0, we call nextweight(i0) to obtain the next

maximum from Bi0
 and assign it to leaf i0. The winner of

this new tournament (all remain unchanged but leaf i0 has

a new weight), which corresponds to the second maximum

of B, can be located in O(log n) time as in [4]. Thus, we

enumerated the weights of B in non-increasing order as if

we merged the n sorted lists. This takes O(n2 log n) time

as there are O(n2) weights in B.

∞–

∞–

Fig. 1. Function nextweight(i).

Enumerating Subsequences of a Sequence and Paths of a Tree in the Order of Weight

Sung Kwon Kim 13 http://jcse.kiise.org

The spaces needed are A, (c1,…, cn), (α1,…, αn), (p1,…,

pn) and H, each of which requires O(n) space. Every data

structure can be built in O(n) time except that it takes

O(n log n) time in sorting (c1,…, cn) to get (α1,…, αn).

THEOREM 1. Given a sequence A of n real numbers,

the subsequences of A can be enumerated in non-

increasing order of their weight in O(n2 log n) time. Our

data structures for enumeration can be constructed in

O(n log n) time using O(n) space.

III. ENUMERATING PATHS OF A TREE

Let T = (V, E) be an edge-weighted tree with V = {1,…, n}

for n ≥ 3. We want to enumerate the paths of T in the non-

increasing order of their weight. Before describing our

algorithm, we introduce a problem and its solution for the

design of our algorithm. The path weight query problem

is as follows: Preprocess T such that, after preprocessing,

for any query pair of vertices u, v ∈ V, the path weight

w(u, v) can be answered quickly. Solutions for the

problem with O(n) preprocessing time and O(1) query

answering time are given by Harel and Tarjan [5], and

Schieber and Vishkin [6]. So, we may assume that w(u, v)

for any u, v ∈ V can be obtained in O(1) time.

Again, we concentrate on explaining our process of

enumeration of the weights of the paths in the sorted order.

Let B = [w(u, v) | u, v ∈ V, u < v], and let Bu = [w(u, v) | u

< v, v ∈ V] for u ∈ V. Bu contains the weights of paths

whose one end vertex is fixed at u. Note that u∈V Bu = B.

To present an algorithm for enumerating the weights in

B, we first introduce centroid decomposition of T, which

hierarchically decomposes T into edges in a balanced

manner. This hierarchical decomposition was used to

compute canonical subsets of V, which are called

canonical in the sense that V – {u} for any u ∈ V can be

partitioned into O(log n) canonical subsets of V. This

partition allows us to express the weights from a given

vertex u to all vertices in V – {u} as a union of O(log n)

disjoint sorted lists (to be detailed later), from which we

enumerated the weights in Bu using a selection tree in

non-increasing order.

Deleting a vertex and its adjacent edges from T leaves

several connected components of T. A vertex is called a

centroid of T if its deletion results in connected

components of T, each of which has a maximum of n/2

vertices. A tree has either one or two centroids and if

there are two centroids, they are adjacent [7]. A centroid

decomposition of T consists of finding a centroid c

of T and dividing T into two subtrees Tl = (Vl, El) and

Tr = (Vr, Er) such that Vl Vr = V, Vl Vr = {c}, El Er = E,

and . A centroid decomposition of T can

be computed in O(n) time [8, 9] (Fig. 2).

We applied the centroid decomposition procedure

recursively to subtrees Tl and Tr, until the subtree contains

two vertices.

Remark: Though recursion ended here and no further

decomposition was needed, for a later purpose a centroid

of the two-vertex subtree was designated. One of the two

vertices represented is a leaf of T, and selected as the

centroid. As shown in Fig. 3, the centroid decompositions

were applied at all levels of recursion to T in Fig. 2.

As shown in Fig. 3, the centroid decompositions of T

can be modelled as a binary tree CD(T). Each node (i.e.,

it is used in CD(T) to distinguish it from vertex in T) q of

CD(T) represents a subtree of T, denoted T(q), and a

centroid of T(q), denoted c(q), and its left and right

children represent two subtrees (corresponding to Tl and

Tr) of T(q) generated by the centroid decomposition of

T(q) with respect to c(q). If we ignore all of the edges of

the subtrees in Fig. 3, CD(T) can be abstracted as in

Fig. 4, in which each node q is associated with a vertex

set V(q) and a centroid c(q) such that V(q) is the vertex set

of T(q).

⊃

⊃ ⊃

⊃

n 2+
3

---------- Vl

2n 1+
3

--------------≤ ≤

Fig. 2. An example tree T. T has only one centroid, 5. A centroid
decomposition divides T into Tl and Tr such that Tl (Tr) is the
subtree of T that has vertex set Vl = {1, 2, 3, 4, 5} (Vr = {5, 6, 7, 8}).

Fig. 3. Centroid decompositions applied to the tree in Fig. 2,
modelled as binary tree CD(T). Vertices in squares denote
centroids.

Journal of Computing Science and Engineering, Vol. 13, No. 1, March 2019, pp. 11-16

http://dx.doi.org/10.5626/JCSE.2019.13.1.11 14 Sung Kwon Kim

Notation: For a node q, p(q), l(q), r(q) and s(q) denote

the parent, left child, right child and sibling node of q,

respectively.

We copied CD(T) and modified it to construct another

binary tree. For each non-root node q of CD(T), the

following values were set: d(q) = c(p(q)) and W(q) = V(q)

– {d(q)}. For the root q of CD(T), we set W(q) = . For each

leaf node q of CD(T), two child nodes were created: l(q)

and r(q) and set d(l(q)) = c(q), W(l(q)) = V(q) – {d(l(q))}

and W(r(q)) = . d(q) is undefined for nodes q with

W(q) = . Assuming that CD′(T) denote this new binary

tree, CD′(T) can be constructed in O(n log n) time and

O(n log n) space because its height is O(log n). In Fig. 5,

CD′(T) is shown.

W(q)’s are canonical subsets of V mentioned earlier.

Later, d(q) serves as a source vertex in computing the

weights of all destination vertices in W(q). From the

definition of V(q) and W(q) we have the following lemma.

LEMMA 2. If q is a non-root node of CD′(T), then

W(q) V(s(q)) = V(p(q)).

 is the disjoint union operator that unions two disjoint

sets.

We start explaining how V – {u} for any vertex u ∈ V

can be expressed as a union of O(log n) disjoint canonical

subsets of V. Each vertex of T appears as a centroid in

CD′(T). Since our centroid decompositions, as shown in

Fig. 3, we started with T and finally decomposed it into

edges of T, each non-leaf vertex of T must be used as a

centroid of a centroid decomposition. As enforced in

Remark, each leaf vertex of T was selected as a centroid

at a leaf node of CD(T).

LEMMA 3. For each vertex u ∈ V, there is a node q of

CD′(T) such that u = c(q).

For each vertex u ∈ V, qu is defined as the node q of

CD′(T) such that u = c(q), i.e., u is a centroid of T(q). If

there are two or more nodes q such that u = c(q), we

selected qu as the one that is the closest to the root of

CD′(T) in terms of the number of edges between them in

CD′(T). All qu for u ∈ V are shown in Fig. 5.

Considering a path from qu to the root of CD′(T),

(,…,) represents the path such that = qu, =

p() for 2 ≤ i ≤ mu, is the root of CD′(T), and mu is

the number of nodes involved. In Fig. 5, m3 = 4 and m6 = 2.

By Lemma 2, we have

V() = V() W(s()),

V() = V() W(s()),

V() = V() W(s()).

Since V = V(), we obtain V = V() W(s())

… W(s()). Note that V() = W(l()) W(r())

 {u}. Thus, V – {u} = W(l()) W(r()) W(s())

 … W(s()).

For each u ∈ V, define

 = W(l()) W(r())

and for 2 ≤ i ≤ mu,

 = W(s()).

In Fig. 5, if u = 3, then = {2} as W(l()) = {2} and

W(r()) = , = {1}, = {4, 5}, and = {6, 7, 8};

if u = 6, then = {5} {7, 8} and = {1, 2, 3, 4}.

Since V – {u} = and mu = O(log n), we derived

the following:

LEMMA 4. For each u ∈ V, V – {u} can be expressed

as a union of O(log n) disjointed canonical subsets.

Lemma 4 allows us to develop a method to express the

weights from a given vertex u to all the vertices v ∈ V – {u}

0

0

0

p1

u

pm
u

u

p1

u

pi

u

pi 1–

u

pm
u

u

p2

u

p1

u

p1

u

p3

u

p2

u

p2

u

�

pm
u

u

pm
u 1–

u

pm
u 1–

u

pm
u

u

p1

u

p1

u

pm
u

1–

u

p1

u

p1

u

p1

u

p1

u

p1

u

p1

u

pm
u 1–

u

W1

u

p1

u

⊃

p1

u

Wi

u

pi 1–

u

W1

3

p1

3

p1

3

0 W2

3

W3

3

W4

3

W1

6

⊃

W2

6

 Wi

umu

i 1=

Fig. 5. Binary tree CD’(T) with canonical subsets of V. W(q) and
d(q) only are shown. All qu's are also given.

Fig. 4. Abstracted version of CD(T) in Fig. 3. Each node q is
associated with a vertex set V(q) and a centroid c(q).

Enumerating Subsequences of a Sequence and Paths of a Tree in the Order of Weight

Sung Kwon Kim 15 http://jcse.kiise.org

as a union of O(log n) disjoint sorted lists.

For each node q of CD′(T) with W(q) ≠ , the w(d(q), v)

and the weight from d(q) to v were computed, and created

an ordered pair <v, w(d(q), v)> for all vertices v ∈ W(q).

Let L(q) = {<v, w(d(q), v)> | v ∈ W(q)} be a list of these

ordered pairs sorted on w(d(q), v) in non-increasing order.

L(q) = NIL if W(q) = . Computing L(q) for all nodes q

of CD′(T) can be done in O(n log n) time using O(n log n)

space [10]. In Fig. 6, d(q) and L(q) for all nodes q of

CD′(T) are shown.

For each u ∈ V, define

 = merge(L(l()), L(r()))

and for 2 ≤ i ≤mu,

 = L(s())

where the function merge merges the two sorted lists.

Remember that in we can find the weights from d()

to all other vertices v in .

Given a vertex u ∈ V, consider a path π(u, v) from u to

a vertex v ∈ V – {u}. Based on Lemma 4, we assume that

v ∈ for some 1 ≤ i ≤ mu. The path starts from u, passes

through d(), and arrives at v. In other words, π(u, v) is

π(u, d()) followed by π(d(), v), and thus, w(u, v) =

w(u, d()) + w(d(), v). For i = 1, π(u, d()) = as u =

d().

For example, if u = 3 and v = 8 ∈ , then π(3, 8) =

π(3, 5) π(5, 8) as d() = 5, and w(3, 8) = w(3, 5) +

w(5, 8) = 1 + 6.

Since w(d(), v) for all v ∈ are stored in in the

sorted order and w(u, d()) is irrelevant to v, if we need

an enumeration of the weights w(u, v) from u to all v ∈

 in non-increasing order, we can obtain it by adding

w(u, d()) to every weight w(d(), v) in . Considering

all of i, 1 ≤ i ≤ mu, we obtained the weights w(u, v) from u

to all vertices v ∈ V – {u} in the form of mu enumerations,

one for each i, by Lemma 4. Table 1 shows the cases

when u = 3 and u = 6.

We are ready to describe how to enumerate the weights

in B. Remember that B = [w(u, v) | u, v ∈ V, u < v], and

Bu = [w(u, v) | u < v, v ∈ V] for u ∈ V. We first show how to

enumerate the weights in Bu for u ∈ V, and then explain a

method of enumerating the weights in B. For u ∈ V, let Hu

be a selection tree with mu leaves, each of which is

associated with for 1 ≤ i ≤ mu. For each 1 ≤ i ≤ mu, we

scan in non-increasing order of weight to find the first

pair < , w(d(),)> with u < , add w(u, d()) to its

weight, and store the sum w(u, d()) + w(d(),) =

w(u,) at leaf i of Hu.

Note that w(u,) is the maximum of {w(u, v) | v ∈

, u < v}.

With mu weights stored at the leaves of Hu, we

conducted a tournament competition to determine the

winner and output, which corresponds to the maximum

of Bu. If the winner comes from leaf i0, we scan

starting at the position where the previous pair was

located in the next pair < , w(d(),)> with u <

and replace the weight stored at leaf i0 of Hu by the sum

w(u, d()) + w(d(),). The winner of Hu was recom-

puted and outputted, which corresponds to the second

maximum of Bu. Thus, with the help of Hu, we can

enumerate all of the weights in Bu in non-increasing order.

We now build another selection tree H with n leaves,

labeled 1,…, n, on top of the selection trees H1,…, Hn,

where each leaf u of H is linked to the root of Hu for u ∈ V.

As described above, each Hu outputs the weights in Bu in

non-increasing order. H can be used to enumerate the

weights in B in non-increasing order by merging the n

sorted lists that are the output from H1,…, Hn. Since

0

0

L1

u

p1

u

p1

u

Li

u

pi 1–

u

Li

u

pi

u

Wi

u

Wi

u

pi

u

pi

u

pi

u

pi

u

pi

u

p1

u

0

p1

u

W4

3

⊃

p4

3

pi

u

Wi

u

Li

u

pi

u

Wi

u

pi

u

pi

u

Li

u

Li

u

Li

u

v̂i pi

u

v̂i v̂i pi

u

pi

u

pi

u

v̂i

v̂i

v̂i

Wi

u

Li0

u

v̂i
0

pi0

u

v̂i
0

v̂i
0

pi0

u

pi0

u

v̂i0

Fig. 6. Each node q is associated with d(q) and L(q). The nodes
with W(q) = have NIL. Each node v ∈ W(q) appears in L(q) as an
ordered pair <v, w(d(q), v)>.

0

Table 1. For u = 3 and u = 6, how is related with

d() v w(u, d()) w(d(), v) w(u, v)

u = 3 3 2 w(3, 3) = 0 w(3, 2) = -13 -13

2 1 w(3, 2) = -13 w(2, 1) = 12 -1

2 4

 5

w(3, 2) = -13 w(2, 4) = 30

w(2, 5) = 14

17

1

5 8

 7

 6

w(3, 5) = 1 w(5, 8) = 6

w(5, 7) = 4

w(5, 6) = -11

7

5

-10

u = 6 6 8

 7

 5

w(6, 6) = 0 w(6, 8) = 17

w(6, 7) = 15

w(6, 5) = -11

17

15

-11

5 1

 4

 2

 3

w(6, 5) = -11 w(5, 1) = 26

w(5, 4) = 16

w(5, 2) = 14

w(5, 3) = 1

15

5

3

-10

Xi

u

Mi

u

pi

u

pi

u

pi

u

X1

 3

M1

 3

X2

 3

M2

 3

X3

 3

M3

 3

X4

 3

M4

 3

X1

 6

M1

 6

X2

 6

M2

 6

Journal of Computing Science and Engineering, Vol. 13, No. 1, March 2019, pp. 11-16

http://dx.doi.org/10.5626/JCSE.2019.13.1.11 16 Sung Kwon Kim

a weight in at leaf i of Hu reaches the root of H in

O(log n+log mu) time, the enumeration of B can be

accomplished in O(n2 log n) time.

For analysis of the constructed data structures, the

computation of CD′(T) and (d(q), L(q)) of all the nodes q of

CD′(T) can be done in O(n log n) time using O(n log n) space

[10]. Building H1,…, Hn, and H also requires O(n log n)

time and O(n log n) space.

THEOREM 2. Given an n-vertex edge-weighted tree T,

the paths of T can be enumerated in a non-increasing

order of their weight in O(n2 log n) time. Our data

structures for enumeration can be constructed in O(n log n)

time using O(n log n) space.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education, Science

and Technology (No. NRF-2015R1D1A1A01059937).

REFERENCES

1. T. Chen, J. D. Jaffe, and G. M. Church, “Algorithms for

identifying protein cross-links via tandem mass spectrometry,”

in Proceedings of the 5th Annual International Conference on

Computational Biology, Montreal, Canada, 2001, pp. 95-102.

2. The Open Problems Project, “Problem 41: Sorting X + Y

(pairwise sums),” 2017; http://cs.smith.edu/~jorourke/TOPP/

P41.html.

3. A. H. Barrera, “Finding an O(n
2
 log n) algorithm is sometimes

hard,” in Proceedings of the 8th Canadian Conference on

Computational Geometry, Ottawa, Canada, 1996, pp. 289-294.

4. E. Horowitz, S. Sahni, and S. Anderson-Freed, Fundamentals

of Data Structures in C, 2nd ed. Summit, NJ: Silicon Press,

2008.

5. D. Harel and R. E. Tarjan, “Fast algorithms for finding

nearest common ancestors,” SIAM Journal on Computing, vol.

13, no. 2, pp. 338-355, 1984.

6. B. Schieber and U. Vishkin, “On finding lowest common

ancestors: simplification and parallelization,” SIAM Journal

on Computing, vol. 17, no. 6, pp. 1253-1262, 1988.

7. D. E. Knuth, The Art of Computer Programming: Fundamental

Algorithms. Reading, MA: Addison-Wesley, 1973.

8. N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran,

“An O(n log
2
 n) algorithm for the kth longest path in a tree

with applications to location problems,” SIAM Journal on

Computing, vol. 10, no. 2, pp. 328-337, 1981.

9. B. Y. Wu, C. Kun-Mao, and C. Y. Tang, “An efficient

algorithm for the length-constrained heaviest path problem

on a tree,” Information Processing Letters, vol. 69, no. 2, pp.

63-67, 1999.

10. G. N. Frederickson and D. B. Johnson, “Finding kth paths

and p-centers by generating and searching good data

structures,” Journal of Algorithms, vol. 4, no. 1, pp. 61-80,

1983.

Li

u

Sung Kwon Kim

He received his bachelor’s degree from Seoul National University, Korea, his master’s degree from Korea
Advanced Institute of Science and Technology (KAIST), Korea, and his Ph.D. degree from University of
Washington, Seattle, WA, USA. He is currently a professor at School of Computer Science and Engineering,
Chung-Ang University, Seoul, Korea. His research interest includes algorithms, computational geometry, and
recommendation systems.

