
Copyright  2019.  The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677   eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 13, No. 2, June 2019, pp. 66-77

Voxel-based Haptic Rendering using Adaptive Sampling of a
Local Distance Map
Kimin Kim and Jinah Park*

School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Korea 

kiminkim@kaist.ac.kr, jinahpark@kaist.ac.kr

Abstract
Change of shape is an essential topic in research related to virtual reality-based sculpting, mechanical machining, and

surgery training of tissue cutting. If the shape of an object in the virtual environment is modified at high temporal rates, it

is very difficult to resolve contacts between objects due to the fact that the existing haptic rendering algorithm depends

on expensive preprocessing strategies such as bounding volumes, bounding volume hierarchies, and distance fields. This

paper investigates a haptic rendering algorithm in virtual environments with shape changes. We introduce a volumetric

collision model and an on-the-fly contact normal computation method with a local distance map, which allow for shape

changes of the volume model at time-critical haptic rendering. This approach significantly reduces the voxel readout,

which allows the model to handle more than ten thousand voxels at haptic rates. The real-time tooth probing and cutting

simulation results support the benefits of our approach.

Category: Human-Computer Interaction

Keywords: Haptic rendering; Distance map; Voxel-based simulation; Dental simulation

I. INTRODUCTION

Virtual reality-based applications for medical training

mimic the physical phenomena that occur in deforming

[1], cutting [2], and bleeding [3] with soft tissue as well

as milling with hard tissue [4, 5]. Real-time interactions

in these applications are important in enhancing medical

skills and dexterity. Therefore, both visual and haptic

cues should be properly provided not only to convey the

deliberate intentions of the operators but also to improve

their visual-spatial skills. In surgery simulation with real-

time interaction, the topological changes in the physical

representation are one of the essential components.

There is a large body of literature that has investigated

haptic rendering algorithms for rigid and deformable

bodies. Many of these studies used precomputed data

structures to reduce the complexity for collision resolution

since their topology was preserved [6-9]. On the other

hand, some studies have challenged other bodies with

topological changes caused by cutting, drilling, milling,

and fluids [1, 4, 5, 10]. They derived the position and

normal vector of the surface from an instantaneous

configuration while the haptic feedback was calculated.

Although we primarily focus on asymmetric contact

models, such as Voxmap-PointShell (VPS) [8] and its

improved method using a distance field [9], some of the

presented approaches can be transferred to haptic

rendering algorithms with volumetric data. Specifically,

the focus of our development is on an updated collision

model and the contact resolution involved in shape

Received 03 March 2019; Accepted 22 May 2019

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2019.13.2.66 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Voxel-Based Haptic Rendering Using Adaptive Sampling of a Local Distance Map

Kimin Kim and Jinah Park 67 http://jcse.kiise.org

changes. We contribute to an efficient and stable contact

resolution for haptic-enabled virtual environments with

shape changes by employing a volumetric collision

model as well as a normal estimation method based on

the adaptive sampling of a local distance map. Our

approach significantly reduces the voxel readout, which

allows the model to handle more than ten thousand

voxels at haptic rates. Moreover, the proposed method is

highly parallelizable because each voxel in contact only

involves local operations. Using our collision model, it is

possible to generate a stable haptic display under

progressive (plastic) deformation, such as in the cavity

removal of a carious tooth structure in dentistry [11] or

bone machining in orthopedic surgery [12, 13].

II. RELATED WORK

A. Haptic Rendering of Volumetric Data

Over the past two decades, there have been rapid

developments in haptic rendering algorithms. Early studies

attempted to use point interaction (3-degree-of-freedom

[3-DOF] haptic rendering) to reduce the complexity of

both the device and the development [14]. However, the

arbitrary object-object interaction demanded a more

complex collision detection and response, leading to the

need for 6-DOF haptic rendering.

Direct haptic rendering with volume data was introduced

by Avila and Sobierajski [15]. They used central differences

with 1-byte density values to estimate the surface normal

vector. One of the first studies on simulated bone surgery

was conducted by Gibson et al. [16]. They used the

binary volume generated from segmentation and applied

smoothing (tri-linear interpolation) to reduce the unstable

force feedback caused by the binary nature of the data.

They concluded that the preprocessing cannot be done if

the topology of the objects is actively changed, which is

unfortunate as preprocessing is faster than calculations

performed on the fly. Palmerius et al. [17] developed an

algorithm for proxy position estimation to handle time-

varying volume data with haptic interaction.

Several studies have examined the algorithm with various

representations (e.g., polygonal surface, parametric surface,

implicit surface, and volumetric model); the VPS, proposed

by McNeely et al. [18], has been particularly widely

investigated. Renz et al. [19] introduced a method for

making a point shell tightly and stabilizing the collision

force. Wan and McNeely [20] suggested a quasi-static

approach to solve the motion of the dynamic object in

place of Newtonian single-body dynamics, as it avoids

the computational instability caused by the Newtonian

dynamic model of the VPS.

The most recent studies on the VPS, which were

conducted by Barbič and James [9], demonstrated conti-

nuous contact force and torque using the distance field.

They also presented geometrically complex rigid and

deformable object interaction using a reduced deformable

model and a multi-resolution nested point shell. The

advantage of their method is that the deformation

simulation and multi-contact resolution run together in

one loop at a haptic cycle; this has inspired our on-the-fly

contact normal computation that allows for shape changes

of the volume model at the haptic cycle.

B. Normal Estimation from a Discretized
Object

The precision of the surface normals significantly

affects both the image quality of visual rendering and the

fidelity of haptic rendering. The existing techniques used

for normal computation in a 3D discrete space can be

categorized into the following two subgroups: image

space approaches and object space approaches. Image

space approaches derive normals from the neighborhood

information of the projected images, such as depth

images or the Z-buffer. Object space approaches compute

normals by using neighborhood information in the voxel

space.

Normal estimation of discrete objects in 3D is a

common problem in rendering volume data collected by

medical imaging devices such as a computed tomography

(CT) scanner. Many shading methods have been

investigated [21-23]; the classical method is gradient-

based shading that uses neighborhood information in the

image space. Gordon Reynolds [23] computed gradient

vectors by applying different operators at visible points in

the Z-buffer. Whenever the volume data were modified,

the normals were recalculated. This method required less

time to recalculate normal vectors because the normal

computation was only coupled with the depth values in

the Z-buffer as opposed to the representation of the

volume data. However, the depth values in the Z-buffer

were generated at a specific projection plane related to a

viewpoint. Depending on the view position, there may be

hidden surfaces and ambiguity of depth values adjacent

to the object boundary. In order to reduce these issues,

Gordon Reynolds [23] used a weighted average of the

forward and backward differences.

Object space methods are suitable for ray tracing and

haptic rendering where normal vectors are used for

collision resolution in 3D space. Thürmer and his

colleagues [24-26] thoroughly investigated the computation

of normal vectors on binary discrete surfaces in the object

space. They presented a formula that covered any

neighborhood sizes and weighting factors to compute the

normal vector at a point on a discrete surface. The results

showed that using weighting factors reduced errors from

the cubic neighborhood; the most effective weighting

factor was the reciprocal of the square of the Euclidean

distance. They obtained the largest error corrections

when increasing the neighborhood size to three. They



Journal of Computing Science and Engineering, Vol. 13, No. 2, June 2019, pp. 66-77

http://dx.doi.org/10.5626/JCSE.2019.13.2.66 68 Kimin Kim and Jinah Park

also proposed a local separation criterion of surfaces for

preserving slope discontinuities and small details. However,

object space methods require a large neighborhood size

in order to ensure smoother change of the normal,

because the slope changes of the surface are distributed

over unit steps.

New object space approaches have also been proposed.

For example, Tellier and Debled-Rennesson [27] introduced

a method using a tangential line in 2D slices of a 3D

image for the normal computation of digital objects.

Flin et al. [28] proposed the gradient vector field

analysis of the object distance map and adaptive filtering

around each surface voxel using angle symmetry criteria.

Fourey and Malgouyres [29] also suggested on-surface

convolution, which is an extension of a 2D digital filter

for discrete surfaces.

III. COLLISION MODEL

Our volumetric collision model involves two different

representations: a binary volume model for objects with

shape changes and a signed distance field for tool objects.

The signed distance field is also stored in a discretely

sampled volume; every voxel contains the minimum

distance from the surface. For the broad phase, the octree

of the volume model is traversed in pre-order, and the

bounding box of each node being visited is tested against

the bounding volume of the tool, such as a bounding

capsule, a sphere, or a box. All of the leaf (or terminal)

nodes colliding with the tool object are passed to the

narrow phase, which precisely identifies voxels colliding

against the tool object. Given the position of the

potentially colliding voxel, the distance to the tool object

is computed using tri-linearly interpolated distance fields.

Our method is based on the point-contact model

described by Barbič and James [9]; however, it differs

from their method in that our model addresses the shape

change of the contact model, which allows for haptic

cutting simulation with hard material for mechanical

machining and medical simulations. We use the surface

voxels of the volume model as opposed to the point shell

points tightly covering the surface. The pointerless full

octree [30] representation is adopted to handle the

topological change of the contact model rather than the

Bounded Deformation Tree for elastic deformation.

Moreover, we introduce an “on-the-fly” normal vector

estimation method using adaptive sampling in the local

space of the voxel in contact.

A. Linear Octrees

The main objective of our octree representation is to

minimize the number of voxel collision tests against the

distance field object. Therefore, efficient memory techniques

for the octree representation, such as locational code and

condensation, are not considered here. Instead, we

implement an octree with additional information for child

nodes in order to reduce the tree search time for collision

detection and update time along with volume modification.

This is inspired by the complete hyper octrees described

by Yau and Srihari [31]. Each node contains the minimum

and maximum values of its boundary rather than simple

index encoding of the relative position from the position

of its parent. Every internal (non-leaf) node also has child

node status (CNS), a variable used to aggregate the

existence of child nodes. The range of CNS is the set L =

{0, 1, 2}, where elements 0, 1, and 2 denote no children,

full of children (8 children), and one or more but fewer

than 8 children (1 to 7 children), respectively. All valid

voxels are stored in the leaf nodes as a compact

representation: each 3D indexing variable p(i, j, k) in Z3

is converted into one 32-bit integer variable, where i, j,

and k evenly take 10 bits. In our implementation, the

octree is stored in a linear array without parent and child

pointers, and all nodes at the same level are contiguous

within the array, i.e., it is a pointerless full octree.

B. Lazy Evaluation Scheme

The most prevalent methods for volume modification

apply constructive solid geometry operations (e.g., union,

difference, and intersection) between volume models. If

the volume model is modified, the topology of the octree

must be updated recursively to ensure proper and efficient

tree search. However, global reconstruction techniques

with octrees cannot easily be carried out in one haptic

cycle. Therefore, we deactivate empty nodes first, i.e., the

CNS becomes 0, and apply a lazy evaluation scheme that

delays updating the node until it is required. Whenever an

internal node with no child nodes is found, i.e., every

CNS of child nodes is 0, the CNS of the internal nodes

becomes 0. Note that the lazy evaluation scheme

distributes a recursive update of parent nodes over the

next several haptic frames.

C. Penalty Force Estimation

Once the colliding voxels have been identified, the

following equation is used to calculate the contact

penalty force for the ith voxel in contact [9]:

(1)

where ki is the penalty force stiffness, di is the distance

value obtained by the distance field (di < 0), and  is the

voxel normal in the world coordinate space. Constant ki
can be derived from the mechanical properties of the

workpiece such as stiffness, hardness, and strength to

support physically-based haptic display and inhomogeneous

haptic representation.  corresponds to the voxel gradient

[22] or the inward normal of the point shell point [8]. We

Fi kidiNi–=

Ni

Ni



Voxel-Based Haptic Rendering Using Adaptive Sampling of a Local Distance Map

Kimin Kim and Jinah Park 69 http://jcse.kiise.org

must focus on the evaluation of these values in order to

achieve a stable haptic interaction with numerical

integration. Both ki and di determine the magnitude of the

contact force while Ni decides the direction of the contact

force. To prevent a sudden change in the magnitude of

the contact force, we need to scale ki down proportionally

to the number of colliding voxels, as described in [20,

32]. The trilinear interpolation of the distance field keeps

di continuous. Our primary concern is to compute 

along with the volume change of the workpiece.

IV. VOXEL CLASSIFICATION

A. Definition

This paper follows the definitions suggested by Cohen

et al. [33]. A 3D discrete space Z3 consists of a set of grid

points (sample points) with three integer elements, which

is the subset of the 3D Euclidean space R3. A voxel is a

cube enclosing all points in R3 that are closer to some

grid point p than to any other grid point, i.e., the Voronoi

neighborhood of p. Each voxel contains a binary value

that is either 1 for “foreground” objects or 0 “background”.

Nm(v) denotes m-neighbourhood of a voxel v. N6(v)

represents 6 voxels sharing a face with v, N18(v)

represents 18 voxels sharing a vertex or an edge with v,

and N26(v) represents 26 voxels sharing a vertex, an edge,

or a face with v. In other words, N6(v) is 6-adjacent to v,

N18(v) is 18-adjacent to v, and N26(v) is 26-adjacent to v.

A m-path means a sequence of voxels p = v1, v2, ..., vn of Z3

such that consecutive pairs (vi and vi+1 with 1 < i ≤ n–1)

are m-adjacent. A subset Σ of Z3 is said to be m-

connected in Σ if there exists an m-path between every

pair of voxels in Σ.

The set of voxels in the neighborhood size (NS) of a

voxel v contains all voxels such that the shortest 26-path

to v is greater than 0 and lower than or equal to NS. The

neighborhood is a cube with side length 2NS + 1. The

number of neighborhoods for v with NS is the same as

(2NS + 1)3 – 1. For example, if NS = 1 for v, the

neighborhood voxels are the same as the ones in N26(v).

The discrete surface Sd is defined by the relaxed adjacency

condition [24] as follows: Let Sd be a 26-connected

subset of Z3. For each voxel v of Sd, Sd divides N26(v) into

two disjoint components, Id and Od, where Id corresponds

to the inside of the surface and Od corresponds to voxels

outside of the surface. v is 6-adjacent to Od and 26-

adjacent to Id.

B. Voxel Types for Directions of Projection

Each voxel in Sd has hidden faces according to its

connectivity, which is particularly related to algorithms

for drawing lines or planess in Z3. Debled-Rennesson and

Reveilles [34] introduced algorithms for drawing a digital

naive plane in Z3. In order to avoid computing the hidden

face in a discrete plane, they identified three kinds of

voxels: corner voxels, ridge voxels, and middle voxels.

Three faces are involved in a corner voxel, two faces are

involved in a ridge voxel, and only one face is involved

in a middle voxel. For normal computation, Tellier and

Debled-Rennesson [27] also divided Sd into two cases:

non-regular cases and regular cases. Non-regular cases

are voxels that have at least two opposite faces adjacent

to the edge and corner or side voxels. Regular cases

possess 1, 2, or 3 faces.

The objective of our voxel classification is to restrict

the direction leading to the appropriate local distance

maps without boundary artifacts. We divide Sd in Z3 into

three cases of voxels according to the number of potential

search directions: unidirectional, bi-directional, and tri-

directional cases. Note that the number of visible faces of

a voxel does not correspond to the number of search

directions. The red voxels in Fig. 1 represent the uni-

directional cases, the green voxels represent the bi-

directional cases, and the blue voxels represent the tri-

directional cases. The red solid arrows show the potential

search directions. The red dotted arrows represent pairs

of opposing directions that are not considered as potential

search directions, since boundary artifacts of the distance

maps could occur along those directions.

C. Encoding of Voxel Cases

Since the discrete surface Sd is 26-connected and each

voxel v of Sd is 6-adjacent to the outside of the surface Od,

it is sufficient to test 6 directions from v, i.e., –X, +X, –Y,

+Y, –Z, and +Z, in searching the outward directions of v.

The 6 directions are the same as the six face normals of

Ni

Fig. 1. Three cases of voxels according to the number of
potential search directions: uni-directional (red voxels), bi-
directional (green), and tri-directional (blue). 



Journal of Computing Science and Engineering, Vol. 13, No. 2, June 2019, pp. 66-77

http://dx.doi.org/10.5626/JCSE.2019.13.2.66 70 Kimin Kim and Jinah Park

the axis-aligned bounding box of a volume model.

We propose a case table of 6-adjacent neighborhoods

to determine the outward directions of v. Neighbor status

variables (NSV) encode 6-adjacent cases (26 = 64) as a

bit array; potential directions of projection (PDP) are

complementary of NSV. Each bit of NSV indicates

whether there exists a corresponding neighborhood (see

Fig. 2). On the other hand, each bit of PDP indicates

whether the corresponding direction from v is outward. If

one of the bits in PDP is true, the local distance map

(LDM) can be generated along the corresponding direction.

D. Voxel Type Reduction

Some PDP could include pairs of opposing directions.

Fig. 3 shows a case containing both the positive z

direction and the negative z direction at voxel v. Note that

both z1 and z2 in NSV have the same value, i.e., one. In

this case, we negate pairs of 2 bits corresponding to

opposing directions in order to prevent redundant

computation and boundary artifacts before building an

LDM. There are 38 PDP involved in pairs of ill-posed

directions (number of single pairs of ill-posed directions,

27; of two pairs, 9; and of three pairs, 2). This reduces all

possible combinations of PDP from 64 cases to 26. By

enumerating 64 cases, we build a table that contains 64

elements with a list of the outward directions without

pairs of opposing directions. The key of the table is 6-bit

variables of PDP. Using this table, we can find outward

directions at p in constant time and remove pairs of

opposing directions.

V. COMPUTING A NORMAL VECTOR USING
A LOCAL DISTANCE MAP

A. Adaptive Local Distance Maps

In the previous section, we defined the three kinds of

voxel types based on the outward direction and found a

total of 26 different cases for PDP. Each of the 26 PDP

values corresponded to each face normal of the

rhombicuboctahedron in Fig. 4 where the normal vectors

of the red, green, and blue faces (also see Fig. 1)

correspond to the 6, 12, and 8 PDP values for the

unidirectional case, bidirectional case and tri-diractional

case, respectively. Now that the outward directions are

determined at a voxel v, we can discuss a way to build an

LDM along a specific direction.

Fig. 4 is an example of a 3×3 LDM construction using

a set of voxels. The PDP of the center voxel corresponds

to +Y. Let π be a plane in Z3 with a center point of v and a

direction of +Y. The left LDM contains indices of

elements; each element of the right LDM contains signed

minimum distances from π to most outer voxels pi (1 ≤ i

≤ 8) along the Y axis. pi is a subset of Sd (blue voxels in

Fig. 4). n penetrates 9 voxels: one is v and the others are

the eight adjacent voxels of v, i.e. N8(v). Let qi (1 ≤ i ≤ 8)

be the 8-adjacent voxels of v. Using a simple voxel

readout scheme, we traced each pi from qi. If pi is a

member of Id or Sd, we search along the positive direction

(the red dotted arrow in Fig. 4) for qi. If it is not found,

i.e., if pi is a member of Od, we trace qi along the negative

direction (the blue dotted arrow in Fig. 4).

The range of tracing is limited by the maximum

distance value α (α > 0). If α is 1, the range of the voxel

readout corresponds to N26(v). Therefore, the minimum

and maximum values in the LDM are α and –α,

respectively. Although the optimal α value depends on

Fig. 2. Denition of NSV and PDP.

Fig. 3. Negate bits related to mutually opposite directions. Fig. 4. (a) Rhombicuboctahedron and (b) a 3×3 LDM construction.



Voxel-Based Haptic Rendering Using Adaptive Sampling of a Local Distance Map

Kimin Kim and Jinah Park 71 http://jcse.kiise.org

the connectivity of the model, we suggest that α is

between 4 and 5 voxel units, based on the findings of

previous studies. Sramek and Kaufman [35] found that

the optimal width of the filter is 2×1.7 voxel units for

gradient estimation by central differences [35]. Flin et al.

[28] also showed that α = 5 voxel unit provided acceptable

results.

In order to prevent over-smoothed results of sharp

features, we build the LDM adaptively; early rejections

for building the LDM are allowed according to the

distance value of LDM zi. First, we start at NS = 1, i.e.,

the size of the LDM is 3×3. If any | zi | is greater than α, a

normal is computed by the central differences with

N26(v). Otherwise, NS is increased by one, i.e., the size of

the LDM is expanded to 5×5, and then the distance

values of additional zi are computed. These operations are

repeated until either the criteria of early rejection are met

(any | zi | is greater than a) or NS is smaller than α.

B. Computing Normal from Local Distance
Maps

The summary of the normal estimation is described in

Algorithm 1. Each pixel of the LDM contains the signed

minimum distance from the position of a pixel to the

most outer voxel along the PDP. The gradient  of the

LDM corresponds to the vector with a direction from the

minimum distance to the maximum one, and the magnitude

of  is the corresponding change in distance at the

center voxel.  is computed by a weighted summation

with a neighborhood with NS. Local averaging of the

operator reduces the occurrence of discretization artifacts

caused by voxelization. We selected the reciprocal of the

Euclidean distance to compute the weighting factors because

square root computation can be avoided as follows:

(2)

(3)

without 

(4)

without 

where s indicates the number of antipodal pairs in the

LDM that is ((2NS + 1)2 – 1)/2. Using the unit normal vector

of π, , the gradient of the LDM, , can be computed by

(5)

Finally, normalizing  yields the contact normal of the

voxel.

VI. EXPERIMENTS

All experiments were conducted on a computer with an

Intel Core i7-4790K CPU 4.0 GHz processor with 4

physical cores and 8 logical cores, an NVIDIA GeForce

GTX 960 graphics card, and 16 GB of memory. In order

to take advantage of the multi-core processors, the codes

for collision detection and normal estimation were

parallelized using Microsoft Parallel Patterns Library.

Floating-point operations were performed on 32-bit

variables.

G

G

G

G Gu Gv+=

Gu

1
s
---  zij

i NS–=

NS

∑
j NS–=

NS

∑
i

i
2

j
2

+
-----------=

i 0=   j 0=∧

Gv

1
s
---  zij

i NS–=

NS

∑
j NS–=

NS

∑
j

i
2

j
2

+
-----------=

i 0=   j 0=∧

P N′

N′ P G–=

N′



Journal of Computing Science and Engineering, Vol. 13, No. 2, June 2019, pp. 66-77

http://dx.doi.org/10.5626/JCSE.2019.13.2.66 72 Kimin Kim and Jinah Park

For the workpiece with shape changes, we selected a

human mandibular molar that was scanned using a

SkyScan 1076 Micro-CT system with a voxel size of

34.8 μm. We then constructed a 512×512×512 resolution

volume with binary values segmented from the Micro-CT

tooth data. The volume was recursively subdivided into 8

nodes in a linear octree with a maximum height of 6.

Therefore, each leaf node contained an 8×8×8 resolution

volume. In order to probe or cut the volumetric tooth, a

polygonal mesh model of the burr bit was created. A

capsule covering the mesh model was computed for a

broad-phase collision detection that extracts leaf nodes of

the octree that potentially collided with the burr bit. The

signed distance field for the burr bit was constructed and

stored in a 128×512×128 resolution volume. Each voxel

in the octree nodes extracted from the broad-phase collision

detection was subject to exact collision detection with the

signed distance field of the burr bit.

We conducted a tooth probing and cutting simulation

using those representations. The trajectory of the haptic

interface was generated for a simulation object, a polygon

model of the burr bit, to touch a valley on the surface of

the tooth. The movement of the haptic device was

simulated at a constant velocity in the trajectory. The

contact normal of the tooth was estimated using the LDM

as described in Section V. The maximum distance value

of the LDM α was 5. The NS of the LDM is 6, i.e., the

size of the LDM was 13×13.

In order to assess the accuracy of the feedback force

and torque, our results were compared to those computed

in an offline simulation using an exact normal computation.

The offline simulation first applied the exact Euclidean

distance transformation [36] within the 13×13×13 local

volume at every voxel in contact, and the gradient vector

field was generated using a 3D Prewitt mask [37] with 1

NS. Adaptive distance gradient filtering with angle and

symmetry criteria was used to compute the normal

vectors [28]. Table 1 presents the summary statistics for

contact configuration and the root mean squared error

(RMSE) of the feedback force and torque. The next

section provides an analysis of two experiments: probing

and cutting.

A. Analysis of Probing Tooth

The first experiment evaluated the efficiency of our

collision model and the accuracy of our normal estimation

method under a small number of contacts. The movement

of the haptic interface was simulated at a constant

velocity along the direction of a positive X-axis. As

shown in Fig. 5, the burr bit, i.e., the simulation object,

moved along the tooth sulcus, which is a valley on the

occlusal surface. As shown in Table 1, the mean number

of leaf nodes in contact was 48. This suggests that the

broad phase collision detection algorithm, performed

between the octree and the capsule, identified 48 leaf

nodes in contact on average. As shown in Table 1, the

mean number of voxels traversed for feedback force

computation was 9333; in other words, the mean number

of distance queries for exact collision detection, performed

between a tooth voxel and a distance field of the burr bit,

was 9333. The results obtained from the real-time

simulation with our method are summarized in the graphs

in Fig. 5. From the feedback force and torque profiles, we

can see that our normal estimation method presents

results quite similar to those computed by the offline

Fig. 5. Simulation results on tooth probing the tooth. Red lines
indicate results from the offline simulation results. The common
horizontal axis on the graph shows the haptic frames.

Table 1. Statistics for contact configuration and feedback force
and torque errors

Variables Probing Cutting

Average number of leaf nodes in contact 48 83

Average number of voxels in contact 10 351

Average number of voxels traversed 9333 17577

Max number of voxels in contact 69 1180

Mean haptic frame rate (μs) 92 468

RMSE if force magnitude (N) 0.13 0.15

RMSE of torque magnitude (mN·m) 5.01 6.33



Voxel-Based Haptic Rendering Using Adaptive Sampling of a Local Distance Map

Kimin Kim and Jinah Park 73 http://jcse.kiise.org

simulation (red line). Moreover, the mean time of haptic

frames (92 μs) was about 20 times less than that of the

offline simulation (1800 μs).

B. Analysis of Tooth Cutting

In the second experiment, the position of the haptic

interface was followed by the reverse trajectory of the

first experiment with the same speed. However, the tooth

voxel modification was allowed. Fig. 6 shows the results

of tooth cutting according to positional changes of the

haptic interface. The volume removal rate ΔV at every

voxel in contact was computed using the principle of

conservation of energy [38, 39] as follows:

(6)

where , , and K indicate the tangential force, relative

velocity of the cutting edge, and fracture toughness,

respectively. According to the grinding theory [40], the

force exerted by the tooth against the burr can be

separated into a tangential component  and a normal

component , as shown in Fig. 7. Since the magnitude

of the two force components had a linear correlation, the

tangential force was derived by

(7)

where β indicates a constant related to burr properties

such as rack angle and sharpness. James et al. [41]

provided an in-depth analysis of the β.  is computed by

the cross product angular velocity of the burr bit ω with a

local vector from the rotational axis to the voxel in

contact. ω was set for 7000 RPM. Fracture toughness is a

material constant that indicates the resistance of a

material to the propagation of a crack. Arola et al. [42]

reported on the fracture toughness of hard tissue. Since

 is linearly related to the depth of the cut [41],  can

be substituted with the contact force at each voxel in

contact.

A cutting simulation was performed in a haptic

rendering loop, i.e., a multi-rate rendering approach [43]

was not used. A ploughing and sliding simulation of the

burr during cutting was not considered. The total number

of voxels removed was 10103 for 20000 haptic frames.

The number of voxels in contact reached its peak (1180)

at the 6554th haptic frame. As a result, the haptic frame

rate around that frame is decreased, sometimes to less

than 1 msec. The computation time gradually decreased

as the number of voxels in contact grew. This is because

each voxel in contact required more computation time

than in the first experiment; computing the volume removal

ratio and octree updates were necessary. Although our

method presents a force profile quite similar to the offline

simulation results, the maximum difference between

force magnitude was 0.4686 N at the 12546th frame.

However, the mean time of the haptic frame (468 μs) was

significantly lower than that of the offline simulation

(40670 μs).

ΔV
Ftvr

K
--------∝

Ft vr

Fn

Ft

Ft β Fn

vr

vr

-----–=

vr

Fn Ft

Fig. 7. (a) Force analysis for volume removal ratio. (b) Two force
components: a tangential force and a normal force.

Fig. 6. Simulation results on tooth cutting.



Journal of Computing Science and Engineering, Vol. 13, No. 2, June 2019, pp. 66-77

http://dx.doi.org/10.5626/JCSE.2019.13.2.66 74 Kimin Kim and Jinah Park

C. Accuracy and Time Complexity

An experiment was also performed to verify the

precision and efficiency of our normal estimation method.

A sphere was used for a quantitative comparison of the

different methods because it can be simply represented as

an implicit form. Sramek and Kaufman [35] also

mentioned the adequacy of the sphere for comparing the

performances of different algorithms due to its simple

representation and constant curvature. The sphere was

voxelized into a resolution volume of 256×256×256.

Voxels in the discrete surface Sd are only allowed to

compute normal vectors. Sd contains 108760 voxels. The

accuracy and time complexity of the generated normal

vectors were evaluated by comparing them with those

computed by the implicit equation of the sphere. We also

measured the results from the different algorithms:

weighted summation (WS), Principle Component Analysis

(PCA), and moving least squares (MLS). The reciprocal

of the Euclidean distance was used for the weighting

factor of WS [24]. PCA and MLS was implemented

using the Point Cloud Library [44].

As shown in the time graph in Fig. 8, the time

complexity of our method is significantly different from

the others. Our method involves a time complexity of

O(n2) with neighborhood size n while the other methods

run in O(n3). Each pixel of the LDM requires a voxel

readout of less than or equal to α where α indicates the

maximum distance value. In fact, most pixels of the LDM

require a voxel readout smaller than α because each voxel

readout starts from a plane π generated from the center

voxel. If the distance of the surface voxel from π has a

uniform distribution in the LDM, we can assume that the

number of the voxel readout is half of α.

The mean absolute error (MAE) graph in Fig. 8 shows

that every method dropped sharply up to 3 NS and

remained steady over 4 NS. The MAE of our method

(LDM) reached near that of PCA or MLS when the size

of the LDM was equal to or more than 7×7. The MAE of

PCA, MLS, and LDM reached a low point near zero;

however, WS converged to 2 degrees. This suggests that

simple linear computation has a limitation in compensating

errors from binary volume data. Fig. 9 shows detailed

results such as error distribution, computation time, and

precision. WS has the fastest performance until NS = 4,

although its precision is the worst. PCA and MLS do not

differ much in terms of precision; however, MLS is 2.7

times slower than PCA when NS = 6. The larger NS, the

closer our approach (LDM) is to the precision of MLS.

We can see that our method is about 3 times faster than

PCA, and about 9 times faster than MLS when NS = 6.

To analyze the ability to sharp feature preservation, we

measured the results from the different algorithms with a

cube volume model, as shown in Fig. 10. WS, PCA, and

MLS showed more errors as the NS increased. The errors

are mainly distributed throughout the edges of the cube.

However, our method showed a constant error as the NS

increased.

Fig. 9. Error distribution of a sphere model with dierent
methods for normal estimation. The number of surface voxels is
108760. NS indicates the neighborhood size.

Fig. 8. (A) Mean absolute error and (B) time complexity of
different methods for normal estimation.



Voxel-Based Haptic Rendering Using Adaptive Sampling of a Local Distance Map

Kimin Kim and Jinah Park 75 http://jcse.kiise.org

VII. CONCLUSION

This study has shown that the voxel-based haptic

rendering algorithm can be extended for use in environ-

ments involving topological changes. Our volumetric

collision model adopts a binary volume model for an

object with shape changes, as well as a signed distance

field for a tool object. Our on-the-fly contact normal

computation with a local distance map allows for the

presence of shape changes in the volume model at time-

critical haptic rendering. The present method involves a

time complexity of O(n2) with neighborhood size n in

volumetric data. Our approach significantly reduces the

voxel readout, which allows for the model to handle more

than ten thousand voxels at haptic rates. The results of a

tooth cutting simulation confirm that our method can

generate accurate and stable haptic displays under

progressive shape changes of the volume model.

One important issue that merits further research is

spatial coherence. Since our normal estimation is locally

performed, the distance calculations of some of the pixels

of the distance map may be redundant. Another possible

area of investigation for future research is haptic-enabled

fluid simulation. The past decade has seen the rapid

development of real-time fluid dynamics. Our collision

model may be applicable to provide haptic feedback for

interactive applications with fluid dynamics.

REFERENCES

1. Y. Kim, L. Kim, D. Lee, S. Shin, H. Cho, F. Roy, and S.

Park, “Deformable mesh simulation for virtual laparoscopic

cholecystectomy training,” The Visual Computer, vol. 31,

no. 4, pp. 485-495, 2015.

2. C. J. Paulus, L. Untereiner, H. Courtecuisse, S. Cotin, and D.

Cazier, “Virtual cutting of deformable objects based on

efficient topological operations,” The Visual Computer,

vol. 31, no. 6-8, pp. 831-841, 2015.

3. M. Müller, S. Schirm, M. Teschner, B. Heidelberger, and M.

Gross, “Interaction of fluids with deformable solids,”

Computer Animation and Virtual Worlds, vol. 15, no. 3-4,

pp. 159-171, 2004.

4. M. Arbabtafti, M. Moghaddam, A. Nahvi, M. Mahvash, B.

Richardson, and B. Shirinzadeh, “Physics-based haptic

simulation of bone machining,” IEEE Transactions on

Haptics, vol. 4, no. 1, pp. 39-50, 2010.

5. K. Kim and J. Park, “Virtual bone drilling for dental implant

surgery training,” in Proceedings of the 16th ACM Sympo-

sium on Virtual Reality Software and Technology, Kyoto,

Japan, 2009, pp. 91-94.

6. C. H. Ho, C. Basdogan, and M. A. Srinivasan, “Efficient

point-based rendering techniques for haptic display of virtual

objects,” Presence, vol. 8, no. 5, pp. 477-491, 1999.

7. M. A. Otaduy and M. C. Lin, “Sensation preserving simpli-

fication for haptic rendering,” in Proceedings of the ACM

SIGGRAPH 2005 Courses, Los Angeles, CA, 2005.

8. W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six

degree-of-freedom haptic rendering using voxel sampling,”

in Proceedings of the ACM SIGGRAPH 2005 Courses, Los

Angeles, CA, 2005.

9. J. Barbic and D. L. James, “Six-DoF haptic rendering of

contact between geometrically complex reduced deformable

models. IEEE Transactions on Haptics, vol. 1, no. 1, pp. 39-

52, 2008.

10. G. Cirio, M. Marchal, S. Hillaire, and A. Lecuyer, “Six

degrees-of-freedom haptic interaction with fluids, ”IEEE

Transactions on Visualization and Computer Graphics, vol.

17, no. 11, pp. 1714-1727, 2010.

11. C. Osnes and A. J. Keeling, “Developing haptic caries

simulation for dental education,” Journal of Surgical

Simulation, vol. 4, pp. 29-34, 2017.

12. X. Chen and J. Hu, “A review of haptic simulator for oral

and maxillofacial surgery based on virtual reality,” Expert

Review of Medical Devices, vol. 15, no. 6, pp. 435-444,

2018.

13. Y. Yan, Q. Li, Q. Wang, and Y. Peng, “Real-time bone

sawing interaction in orthopedic surgical simulation based on

the volumetric object,” Journal of Visualization, vol. 21,

no. 2, pp. 239-252, 2018.

Fig. 10. Error distribution of a cube model with dierent
methods for normal estimation. The number of surface voxels is
302425. NS indicates the neighborhood size.



Journal of Computing Science and Engineering, Vol. 13, No. 2, June 2019, pp. 66-77

http://dx.doi.org/10.5626/JCSE.2019.13.2.66 76 Kimin Kim and Jinah Park

14. C. B. Zilles and J. K. Salisbury, “A constraint-based god-

object method for haptic display,” in Proceedings 1995

IEEE/RSJ International Conference on Intelligent Robots

and Systems: Human Robot Interaction and Cooperative

Robots, Pittsburgh, PA, 1995, pp. 146-151.

15. R. S. Avila and L. M. Sobierajski, “A haptic interaction

method for volume visualization,” in Proceedings of 7th

Annual IEEE Visualization, San Francisco, CA, 1996, pp.

197-204.

16. S. Gibson, J. Samosky, A. Mor, C. Fyock, E. Grimson, T.

Kanade, et al., “Simulating arthroscopic knee surgery using

volumetric object representations, real-time volume rendering

and haptic feedback,” in CVRMed-MRCAS'97. Heidelberg:

Springer, 1997, pp. 367-378.

17. K. L. Palmerius, M. Cooper, and A. Ynnerman, “Haptic

rendering of dynamic volumetric data,” IEEE Transactions

on Visualization and Computer Graphics, vol. 14, no. 2, pp.

263-276, 2008.

18. W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six

degree-of-freedom haptic rendering using voxel sampling,”

in Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques, Los Angeles, CA,

1999, pp. 401-408.

19. M. Renz, C. Preusche, M. Potke, H. P. Kriegel, and G.

Hirzinger, “Stable haptic interaction with virtual environments

using an adapted voxmap-pointshell algorithm,” in Proceed-

ings of Eurohaptics, Birmingham, UK, 2001.

20. M. Wan and W. A. McNeely, “Quasi-static approximation

for 6 degrees-of-freedom haptic rendering,” in Proceedings

of the 14th IEEE Visualization, Seattle, WA, 2003, pp. 257-

262.

21. L. S. Chen, G. T. Herman, R. A. Reynolds, and J. K. Udupa,

“Surface shading in the Cuberille environment,” IEEE

Computer Graphics and Applications, vol. 5, no. 12, pp. 33-

43, 1985.

22. U. Tiede, K. H. Hohne, M. Bomans, A. Pommert, M.

Riemer, and G. Wiebecke, “Investigation of medical 3D-

rendering algorithms,” IEEE Computer Graphics and

Applications, vol. 10, no. 2, pp. 41-53, 1990.

23. D. Gordon and R. A. Reynolds, “Image space shading of 3-

dimensional objects,” Computer Vision, Graphics, and Image

Processing, vol. 29, no. 3, pp. 361-376, 1985.

24. G. Thürmer and C. A. Wüthrich, “Normal computation for

discrete surfaces in 3D space,” Computer Graphics Forum,

vol. 16, no. 3, pp. C15-C26, 1997.

25. G. Thürmer and C. A. Wüthrich, “Varying neighbourhood

parameters for the computation of normals on surfaces in

discrete space,” in Proceedings of Computer Graphics

International (Cat. No. 98EX149), Hannover, Germany,

1998, pp. 616-625.

26. G. Thürmer, “Smoothing normal vectors on discrete surfaces

while preserving slope discontinuities,” Computer Graphics

Forum, vol. 20, no. 2, pp. 103-114, 2001.

27. P. Tellier and I. Debled-Rennesson, “3D discrete normal

vectors,” in Discrete Geometry for Computer Imagery.

Heidelberg: Springer, 1999, pp. 447-458.

28. F. Flin, J. B. Brzoska, D. Coeurjolly, R. A. Pieritz, B.

Lesaffre, C. Coleou, O. Teytaud, and J. F. Delesse, “Adaptive

estimation of normals and surface area for discrete 3-D objects:

application to snow binary data from X-ray tomography,”

IEEE Transactions on Image Processing, vol. 14, no. 5, pp.

585-596, 2005.

29. S. Fourey and R. Malgouyres, “Normals estimation for

digital surfaces based on convolutions,” Computers &

Graphics, vol. 33, no. 1, pp. 2-10, 2009.

30. I. Gargantini, “Linear octtrees for fast processing of three-

dimensional objects,” Computer Graphics and Image

Processing, vol. 20, no. 4, pp. 365-374, 1982.

31. M. M. Yau and S. N. Srihari, “A hierarchical data structure

for multidimensional digital images,” Communications of the

ACM, vol. 26, no. 7, pp. 504-515, 1983.

32. J. Barbic, “Real-time reduced large-deformation models and

distributed contact for computer graphics and haptics,” Ph.D.

dissertation, Carnegie Mellon University, Pittsburgh, PA,

2007.

33. D. Cohen-Or and A. Kaufman, “Fundamentals of surface

voxelization,” Graphical Models and Image Processing, vol.

57, no. 6, pp. 453-461, 1995.

34. I. Debled-Rennesson and J. P. Reveilles, “New approach to

digital planes,” in Vision Geometry III (Proceedings of SPIE

2356). Bellingham, WA: International Society for Optics and

Photonics, 1995, pp. 12-22.

35. M. Sramek and A. Kaufman, “Object voxelization by

filtering,” in Proceedings of IEEE Symposium on Volume

Visualization (Cat. No. 989EX300), Research Triangle Park,

NC, 1998, pp. 111-118.

36. Y. H. Lee, S. J. Horng, T. W. Kao, and Y. J. Chen, “Parallel

computation of the Euclidean distance transform on the mesh

of trees and the hypercube computer,” Computer Vision and

Image Understanding, vol. 68, no. 1, pp. 109-119, 1997.

37. Y. J. Zhang, “Quantitative study of 3D gradient operators,”

Image and Vision Computing, vol. 11, no. 10, pp. 611-622,

1993.

38. M. Mahvash and V. Hayward, “Haptic rendering of cutting:

a fracture mechanics approach,” Haptics-e, vol. 2, no. 3, pp.

1-12, 2001.

39. M. Mahvash, L. M. Voo, D. Kim, K. Jeung, J. Wainer, and

A. M. Okamura, “Modeling the forces of cutting with

scissors,” IEEE Transactions on Biomedical Engineering,

vol. 55, no. 3, pp. 848-856, 2008.

40. S. Malkin and C. Guo, Grinding Technology: Theory and

Application of Machining with Abrasives. New York, NY:

Industrial Press Inc., 2008.

41. T. P. James, J. J. Pearlman, and A. Saigal, “Predictive force

model for haptic feedback in bone sawing,” Medical

Engineering & Physics, vol. 35, no. 11, pp. 1638-1644, 2013.

42. D. Arola, D. Bajaj, J. Ivancik, H. Majd, and D. Zhang,

“Fatigue of biomaterials: hard tissues,” International Journal

of Fatigue, vol. 32, no. 9, pp. 1400-1412, 2010.

43. T. C. Knott and T. W. Kuhlen, “Accurate and adaptive

contact modeling for multi-rate multi-point haptic rendering

of static and deformable environments,” Computers &

Graphics, vol. 57, pp. 68-80, 2016.

44. R. B. Rusu and S. Cousins, “Point cloud library (pcl),” in

Proceedings of 2011 IEEE International Conference on

Robotics and Automation, Shanghai, China, 2011, pp. 1-4.



Voxel-Based Haptic Rendering Using Adaptive Sampling of a Local Distance Map

Kimin Kim and Jinah Park 77 http://jcse.kiise.org

Kimin Kim

Kimin Kim received the Ph.D. degree from the School of Computing at the Korea Advanced Institute of
Science and Technology (KAIST), in 2016. From 2016 to 2018, he was a postdoctoral researcher in the KAIST
Computer Graphics and Visualization Research Laboratory. Since 2018, he has been working at Samsung
Research Korea. His research interests include VR/AR, haptics, and real-time simulations.

Jinah Park

Jinah Park is currently an Associate Professor in the School of Computing at the Korea Advanced Institute of
Science and Technology (KAIST), where she leads the Computer Graphics and Visualization Research
Laboratory. She received her B.S.E. degree in Electrical Engineering from Columbia University in New York,
NY, and M.S.E. and Ph.D. degrees in Computer and Information Science from the University of Pennsylvania,
Philadelphia, PA, USA. Her research interests include medical-image data analysis and 3D interactive
visualization including computer haptics.


