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Abstract
In this study, we have developed a point cloud segmentation algorithm for a collision avoidance system between cranes

and other objects in construction yards. We used the Dynamic Graph CNN (DGCNN) algorithm to segment the point

cloud of the entire yard into crane parts and backgrounds. The point cloud data were obtained from several LIDAR sen-

sors attached to the crane. All points were grouped into specific core clusters using the DBSCAN algorithm. The core

clusters were used to train the DGCNN after labeling with corresponding part names. This network classified the point

cloud into crane types and their part names. Experimental results show that the crane part segmentation performance of

the suggested algorithm is accurate enough to be used for collision avoidance system. It is possible to estimate the pose

of a crane by comparing the segmented point clouds with those of the CAD model.
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I. INTRODUCTION

Crane is a commonly used equipment for industrial

areas including shipyards and construction sites.

However, accidents involving a crane result in extensive

damage to humans and property. Usually, there is a signal

person who monitors the safety of the crane from outside

and transmits signals for operation of the crane.

However, complex industrial sites may have blind spots

that cannot be detected by the crane driver or signal

person, which increases the possibility of an accident.

Therefore, it is necessary to use an autonomous crane

monitoring system to avoid collisions.

The collision avoidance systems that operate using

GPS sensors [1] estimate the distance between the objects

to alert and warn the risk of crash. However, if the system

only measures the distance between installed objects,

other objects that do not have the sensor will not be

recognized as possible collision objects. In addition,

since the collision alarm is sounded when the distance

between two objects is close, a false alarm may occur

during normal operation (for example, involving a crane

and an object or when a crane lifts another crane).

To solve these problems, all objects near the crane

should be included in the collision risk areas. Also, if the

crane movement can be predicted, it is possible to reduce

Received 05 August 2019; Revised 09 September 2019; Accepted 11 September 2019

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2019.13.3.99 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 99-106

http://dx.doi.org/10.5626/JCSE.2019.13.3.99 100 Hyeonho Jeong et al.

false alarm during the normal operation of the crane. In

this study, we used a light detection and ranging (LIDAR)

sensor-based collision avoidance system instead of GPS

to detect all objects near the crane, and constructed a

system that allows the driver to visually check the

surrounding environment. In addition, the part segmentation

algorithm was applied to the point cloud data to detect the

different types of crane and to segment the parts of each

crane, including jib and mast.

The part segmentation algorithm divides the point cloud

data of the crane into several clusters using density-based

spatial clustering of applications with noise (DBSCAN)

[2]. DBSCAN is a density-based clustering method used

to classify the clusters into 13 classes applying the deep

learning-based Dynamic Graph CNN (DGCNN) [3].

Classification of crane parts can help prevent crane

collision and predict crane pose and movement path.

II. RELATED WORK

Machine learning techniques used to process point

cloud data process images by projecting them into a 2D

space instead of 3D coordinates [4]. However, the 2D

projection method is limited by the complex and changing

dimensions in addition to the associated losses and

deformations of the 3D coordinates.

The PointNet [5] architecture is one way to resolve 3D

point cloud problems. It can perform classification and

segmentation while using original 3D coordinate data.

Since there is no projection into 2D space, the calculation

is fast without loss of 3D coordinate information, resulting

in higher accuracy than the existing algorithms. Based on

these advantages, PointNet architecture resulted in state-

of-the-art performance in indoor environmental data

classification and segmentation in 2017. However, one of

the disadvantages of PointNet is that it cannot distinguish

3D and local features between points because they learn

3D coordinate points separately. In order to overcome the

disadvantage, the PointNet ++ [6] architecture considers

the distance between points by learning points hierarchically.

However, it still does not directly determine the geometric

features between points.

DGCNN [3] is able to distinguish the geometric features

between points by adding an edge convolution layer to

existing PointNet architecture. The part segmentation

performance is improved because the local geometric

features of the object can be learned.

III. LIDAR-BASED CRANE COLLISION 
AVOIDANCE SYSTEM

Unlike other crane collision avoidance systems, the

LIDAR sensor-based crane collision prevention system

of FutureMan (FM) Electronics [7] of Korea prevents

collisions between cranes as well as with other objects.

The LIDAR sensor applied to the system has been

renovated using Velodyne LIDAR Puck sensor to rotate

along the vertical and horizontal axes, allowing the

sensor to see a wider range with denser point cloud data.

In this study, we have installed collision avoidance

systems on three types of cranes as follows (Fig. 1).

(1) Goliath crane (GC), which has two legs, is

characterized by simultaneous movement of the controller

and the workpiece.

(2) Level luffing crane (LLC), in which the jib moves

up and down.

(3) Tower crane (TC), which has a fixed mast and a jib

rotating at 360º.

Five, three, and two LIDAR sensors were installed in

the three cranes, respectively.

IV. CRANE PART SEGMENTATION ALGORITHM

The crane part segmentation algorithm consists of three

steps. First, a sampling process is performed to reduce the

number of points obtained from the LIDAR sensor. Then,

the sampled point cloud is divided into clusters using

DBSCAN, and the noise clusters are removed. Finally, a

segmentation process is performed to classify the points

belonging to each crane part. Fig. 2 depicts the part

segmentation algorithm.

A. Sampling

When importing point cloud data from a LIDAR

Fig. 1. The position of the sensor attached to the crane is
marked with a red dot.
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sensor, the number of points is approximately 150,000 to

600,000. The large number of points affects the real-time

performance of the algorithm. Therefore, a sampling

process is required to reduce the number of points.

We compared two sampling methods: Gaussian random

sampling and grid sampling. We selected grid sampling

because due to the LIDAR sensor characteristics, the

point near the sensor is denser than the point away from

the sensor. With Gaussian random sampling, points are

sampled with probability, such that points that are far from

the sensor can hardly be sampled due to low density. Grid

sampling does not suffer from the density problems.

Grid sampling was performed by dividing the full

scene point clouds obtained by the LIDAR sensor into

0.5 m × 0.5 m × 0.5 m voxels and obtaining the average

values of the point coordinates in one voxel. We tried a

heuristic method to find the appropriate size of the voxel

to reduce the number of point clouds for efficient

computation while maintaining the original shape. As a

result of sampling, the number of points has been reduced

to 10% (Fig. 3).

B. Clustering

The purpose of clustering is two-fold. First, it filters

out noisy line points, which means that clusters with a

small population are neglected. Second, it considers only

the clusters that are near the crane body, which implies

that the clusters far from a specific crane are neglected in

the segmentation process.

We selected DBSCAN as a clustering technique. Because

we do not know the number of objects that are likely to

collide with the crane, we cannot use a clustering method

that pre-determines the total number of clusters (e.g., k-

means). A disadvantage of DBSCAN is that clustering

does not work well when the density differences of each

point cloud are large. However, we have already alleviated

the density difference via sampling process. Therefore,

DBSCAN clustering is an appropriate method for this

problem.

There are two parameters to set when using DBSCAN.

To obtain a clustered density criterion, you must set the

radius ε and the minimum number m of points that must

be within a circle with radius ε. The method consists of

three steps: (1) for every point, ensure that you have at

least m points in a circle with radius ε, and consider these

points as the core point. (2) If the core points are in a

single circle, they are grouped into one cluster, except for

points that are not core points. (3) Points that are not core

points but within the cluster are considered as border

Fig. 2. Algorithm flow chart.

Fig. 3. Example of one cluster after grid sampling the point
cloud obtained from LIDAR sensor and dividing the point cloud
into multiple clusters through DBSCAN: (a) Cluster of Goliath
crane and (b) cluster of level luffing crane.

Fig. 4. DBSCAN point types. Core point: if there are more points
than the minimum number of points p in radius ∈, Cluster: a
collection of core points, Border point: a point that is not a core
point but is within another core point area, Noise point: points
that are neither core points nor border points.
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points, and if they are outside the cluster, they are

considered as noise points (Fig. 4).

In this study, we set the radius ε to 2 m and the minimum

number m of points to 10. After DBSCAN, we only

selected clusters within the maximum distance at which

the crane was in danger of collision. In this work, the

maximum distance was selected as 50 m. Also, a cluster

containing fewer number of points than the reference

point is regarded as a noise cluster, and was removed.

C. Segmentation

After finishing the data sampling and clustering process,

the crane part segmentation was performed using the

DGCNN [3] architecture (Fig. 5). DGCNN is a network

structure inspired by PointNet [5] architecture. The basic

structure is similar, but an edge convolution layer is

added to compensate for the disadvantages of PointNet.

By performing the edge convolution calculation, we can

learn the geometric relation between points that cannot be

learnt in PointNet architecture. Also, DGCNN exhibits

both translation-invariant and non-locality characteristics.

The calculation of the edge convolution layer is as

follows. First, an F-dimensional point cloud is considered

with n points. Each point can be thought of as a 3D

coordinate Xi = (xi, yi, zi), i.e., F = 3. We can add additional

information, such as color and surface normals. The

graph G = (V, E), which is shown in the middle of Fig. 6,

represents the partial local structure of the point cloud,

where V and E are vertices and edges with the form V =

[1, …, n], and E = V × V, respectively. The graph G is

constructed through the K-nearest neighbors (K-NN).

The K-NN algorithm is an algorithm that finds the

nearest K points based on a point.

Fig. 6 represents the calculation of operation edge

convolution. From the point Xi, we find the proximity

points (Xji1), (Xji2)...(Xjik) through K-NN, and the edge

feature as eij = hθ(Xi, Xj), where hθ () is a parametric non-

linear function and θ are the learned parameters in the

function hθ().

Finally, X' = maxj:(i,j)∈Eeij is the output, in which X' can

be thought of as a new point that includes an edge

feature. Then, if we consider a collection of multiple X' as

another point cloud, we can construct a new graph G' and

repeat this process to learn DGCNN.

Fig. 5. Dynamic graph CNN model architectures.

Fig. 6. Computing an edge feature and visualization of the Edge Convolution operation adapted from Wang et al., “Dynamic graph CNN
for learning on point clouds,” 2018 [3]. Edge convolution is the process of finding the edge feature eij through hθ(Xi, Xj), and selecting the
largest of them to create a new point called X’.
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V. EXPERIMENT

The two neural network algorithms based on PointNet

and DGCNN were tested. The same training and testing

data were used to test the two algorithms.

A. Data Training and Testing

The data used in the part segmentation algorithm were

obtained by taking the point cloud obtained from the

LIDAR sensors installed on the cranes and manually

labeling them using the semantic segmentation editor

program [8] (Fig. 7).

The goliath crane carries five labels: a girder on top of

the crane, an I-shaped main leg, a triangular hinge leg, a

driver’s cockpit on the crane, and a hook hanging under

the cockpit.

The level luffing crane contains four labels: a jib that

corresponds to the arm of the crane, a girder that supports

the jib, a hook that hangs at the end of the jib, and a mast

that corresponds to a column of a crane.

The tower crane has three labels: a jib that rotates

360°, which corresponds to the crane’s arm, a hook that

hangs at the end of the jib, and a mast that corresponds to

the crane column. Finally, all non-crane objects were

labeled in the background and classified into a total of 13

classes.

The shape of the input data is (xglobal, yglobal, zglobal, xcluster,

ycluster, zcluster).

We normalized the global coordinate value (xglobal, yglobal,

zglobal) in full scene and the local coordinate value (xcluster,

ycluster, zcluster) in one cluster to values between -1 and 1,

and concatenated the two coordinate values. In addition,

we removed the data below 6 m from the ground level,

which is not the area of interest (Fig. 8).

As shown in Table 1, we have a severe data imbalance

problem. If you compare the background area with the

crane area, you can see additional points in the background

area. When viewed by the type of cranes, you can see that

the tower crane data are smaller than the other two crane

data.

In order to solve the data imbalance problem, Gaussian

noise was added to the coordinate value in the sampling

process, and the sampling was repeated three times. The

tower crane was repeated nine times because of insufficient

data. The data obtained included 7,892 clusters of training

data and 2,397 clusters of test data.

B. Results

Table 2 shows the segmentation performance of DGCNN

and PointNet with the same pre-processed training and

test data. Both algorithms showed relatively accurate

segmentation results by recording more than 90% of

recalls and precisions in most crane parts except LLC

hooks.

When comparing the recall, DGCNN was found to be

1%–2% higher on average than PointNet. The precision

shows that the results of the goliath and the tower crane

hooks in the PointNet were 10% lower than those of the

DGCNN. These results suggest that the DGCNN can

segment the crane parts and background more accurately

than the PointNet.

However, the two algorithms could not detect the

hooks of LLC cranes. Based on the number of training

Fig. 7. Crane labeling information: (a) tower crane, (b) level
luffing crane, and (c) Goliath crane.

Table 1. Training and test data point numbers

Background
Goliath crane Level luffing crane Tower crane

Girder Main leg Hinge leg Hook Control Girder Jib Hook Mast Jib Hook Mast

Train data 1,971,869 413,406 97,424 221,895 52,375 59,587 384,297 190,184 25 286,437 271,678 8,150 129,457

Test data 574,987 135,877 32,551 74,370 18,496 19,438 126,556 70,052 726 117,590 41,314 426 14,881
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data points, the number of hook data in LLC crane was

too small to be trained properly. For the test data, about

2.6% of the crane parts were misidentified, and half of

them were analyzed as other types of crane.

Labeling errors are one of the most likely factors

contributing to outperformance by PointNet compared

with DGCNN. Since humans do the labeling manually,

100% correct labeling is impossible. We think that incorrect

labeling may decrease the performance of DGCNN more

than PointNet since DGCNN utilizes local features.

Fig. 8. (a) Test point cloud ground truth, GC, LLC, TC order from above. (b) Results of segmentation algorithm.

Table 2. Segmentation algorithm performance comparison (%)

Background
Goliath crane Level luffing crane Tower crane

Girder Main leg Hinge leg Hook Control Girder Jib Hook Mast Jib Hook Mast

Recall PointNet 98.02 96.12 85.41 95.20 93.20 89.93 94.00 95.48 0 99.23 99.28 88.73 96.69

DGCNN 98.94 96.95 87.70 96.37 96.34 91.92 96.11 95.77 0 98.96 98.54 90.38 98.17

Precision PointNet 98.20 93.62 93.21 96.80 80.38 95.57 96.75 94.85 0 98.27 95.90 42.05 94.20

DGCNN 98.88 95.10 90.30 95.20 97.86 96.07 97.90 98.99 0 97.89 98.99 95.53 96.27
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VI. CONCLUSION

We designed a point cloud part segmentation algorithm

applied to a crane collision avoidance system. The training

and testing data were generated from raw point cloud

data obtained from LIDAR sensors mounted on cranes.

Using the DGCNN network structure, we classified crane

parts with greater than 90% accuracy. 

Additional data may facilitate better classification of

the crane hooks and further subdivision of the background

area. This algorithm can be applied to industrial places

such as smart factories and unmanned construction sites.

In a future study, we will utilize this algorithm to calculate

the crane pose by matching the point cloud data from CAD

model with the segmented crane parts. We also confirmed

the possibility of designing a point cloud matched with a

CAD model and a crane pose prediction algorithm.
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