
Copyright 2019. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 13, No. 3, September 2019, pp. 107-123

An Experimental Investigation into Data Flow Annotated-
Activity Diagram-Based Testing
Aman Jaffari and Cheol-Jung Yoo*

Department of Software Engineering, Chonbuk National University, Jeonju, Korea

{aman, cjyoo}@jbnu.ac.kr

Abstract
With the acceptance of Unified Modeling Language (UML) as the de-facto standard for modeling software systems,

many research studies have addressed the necessity for utilizing models of systems under testing as inputs for test auto-

mation. Recently, activity diagrams have been used as a basis to derive test cases. Current studies have focused on ana-

lyzing the control flow of activities. However, examining the control flow among activities is quite simple and such

testing on its own is insufficient. This study proposes technique for test case generation that complements an activity dia-

gram with data flow information. To investigate the potential benefits of this technique, we performed an experimental

investigation of well-known systems in testing literature. The experimental results were analyzed and compared with a

state-of-the-art test suite generation tool as an alternative approach to fault detection effectiveness and efficiency. Over-

all, the results indicate that the proposed technique outperforms the alternative approach by detecting 27.3% more faults

on average. In particular, the proposed technique yielded the best results in detecting faults related to arithmetic opera-

tions or parts used for calculation in our context.

Category: Software Engineering

Keywords: Model-based testing; Activity diagram-based testing; Data flow-annotated activity diagram; Data flow

information

I. INTRODUCTION

Testing constitutes a significant proportion of software

development efforts. In particular, test design is the most

challenging and time-consuming part of testing. To test

software, testers need to develop cases to demonstrate the

presence of defects. Designing appropriate test cases is

the key factor revealing the extent of defects. Along with

the adaptation of Unified Modeling Language (UML)

diagrams as the de-facto standard for modeling software

systems, it has become necessary to utilize models of the

system under test (SUT) as inputs for test models [1-3].

Accordingly, the research community has shifted its

focus on design and development of test cases based on

different structural and behavioral models. In particular,

researchers have placed more emphasis on investigating

the generation of behavioral model-based test cases using

activity diagrams (ADs) [4-15], sequence diagrams, state

machine diagrams [3, 16], and a combination of two or

more types of diagrams [17].

Towards this end, the AD has been regarded as an

important design artifact to identify test cases [9].

Currently, the main focus of existing studies is on test

automation based on analysis of an AD to gather various

Received 09 July 2019; Accepted 16 September 2019

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2019.13.3.107 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 108 Aman Jaffari and Cheol-Jung Yoo

types of control flow information. However, examining

the control flow among design elements is quite simple

and straightforward [18, 19]. Testing only based on the

sequence of activities in an AD is probably not sufficient

for fault detection. Thus, finding ways to improve the test

quality based on design elements such as an AD is an

important ongoing issue. An activity represents system

behavior to ensure its accuracy, besides automatically

analyzing its control flow. These activities also need

further analysis in terms of data flow information.

ADs are used to model system behaviors and the ways

in which these behaviors interact with each other by

defining the sequence of actions among them. Actions

are regarded as the main capabilities of activities and are

central to the data flow of activities [2, 17]. Empirical

studies in the literature indicate that AD is the most

comprehensive [20] and suitable design artifact among

the behavioral models, defining the control flow among

objects in an object-oriented system [9]. Moreover, an

AD is regarded as the best intermediate model between

the software specification and the code that provides a

rich source of information for data flow analysis. Thus,

ADs are investigated further for other purposes such as

automatic code generation [21-23].

In this study, we have performed an experimental

investigation on an AD-based test case generation

technique including data flow information (DFI). This

study extends our previous work [24] that was presented

at a conference. The AD of a SUT is annotated with DFI

to facilitate data flow coverage (DFC) criteria. The

inclusion of DFI, instead of the AD of an SUT without

DFI, facilitates the analysis of the control flow infor-

mation, enables detection of definition-use pairs of object

variables across activities that support the generation of

highly improved test cases. For example, it can be used to

detect data flow anomalies that can also validate the

model itself before extraction and execution of test cases

and faults that require more precise oracles such as

calculation. After annotating the AD with DFI, it is

mapped to an intermediate model, a so-called data flow

graph (DFG), which is comparatively simple and more

appropriate for manipulation by automated means.

Subsequently, the test paths are generated from DFG in a

depth-first search (DFS) manner using specific DFC

criteria, and the concrete tests are executed with the

oracles and input values provided. Finally, the results are

presented and evaluated against the expected outputs.

The experimental investigation was carried out with

the commonly used software systems for comparing and

assessing both new and existing tools and techniques in

testing literature. A comparative analysis of the experi-

mental investigation that employed two techniques,

namely data flow annotated activity diagram-based

testing (DFAAD), and a so-called state-of-the-art test

suites generation tool (EvoSuite) [25], was performed.

The impact of the proposed approach on fault detection

effectiveness and efficiency was discussed. In the context

of this study, effectiveness means revealing the maximum

number of faults without considering the number of

executed tests, whereas efficiency means revealing the

maximum number of faults with the minimum number of

executed tests. The experimental investigation was

performed to further validate the claims regarding fault

detection effectiveness and efficiency. Thus, we aimed to

answer the general research question (RQ): How does the

proposed DFAAD-based testing technique perform

compared to a well-practiced alternative in terms of fault

detection effectiveness? In Section 4, our general RQ was

further divided into sub-questions.

The rest of the study is organized as follows: Section 2

discusses related work and compares current AD-based

test case generation techniques. Section 3 presents the main

approach including the basic concepts and definitions,

running examples to illustrate the overall concepts, a

simple description for identifying and annotating DFI, and

also the steps for extracting the DFG from the DFAAD.

An experimental study to investigate the potential benefits

of this technique against an alternative testing technique

is provided in Section 4. Sections 5 and 6 discuss the

findings and threats to validity, respectively. Finally, Sec-

tion 7 provides the conclusion and future study directions.

II. RELATED WORK

This section discusses related work and provides a

simple comparison of current studies in the literature

involving AD-based test case generation techniques. ADs

are used to model the dynamic behavior of the SUT and

are widely practiced to support testing. These models are

very useful and provide a significant testing opportunity

because they precisely describe the functionality of the

SUT in a way that can be easily manipulated via automation

[26]. ADs can be used to model a system from a high-

level business process to each individual unit of the

system, as well as the internal logic of a complex unit. In

general, there are a number of benefits associated with

AD-based testing, such as generating test cases early

during software design, better documentation of test cases,

early discovery of specification errors, and reduction of

the test cost and effort.

There are several studies in the literature with different

strategies that have used ADs for test case generation. An

AD-based test case generation approach was introduced

[14] that uses UML 2.0 with a use case scope based on an

AD from a high-level of abstraction. The purpose of the

study is to detect greater synchronization and additional

loop faults following activity path coverage criteria. An

AD-based testing method [11] constructs condition-

classification trees by collecting control flow information

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 109 http://jcse.kiise.org

from decision points and guard conditions. The information

is stored in a table and each row of the table represents a

test case.

Another technique [10] known as coverage-driven

automatic test generation considers both the control flow

and data flow by parsing the AD. The study extracts and

analyzes the structure of the AD by collecting data

members to provide input for a new symbolic model

checker (NUSMV). However, it is not clear how the data

members are mapped to the NUSMV [27] input and their

contribution to test case generation. The test case generation

technique using an AD based on a gray box method [5]

generates test cases directly from the AD. The study

combined the white box and the black box methods. To

identify any inconsistency between the implementation

and the design, a category-partition method was used to

generate the possible values of the input/output parameters.

This technique is similar to our study in that it generates

test cases that can be used to test the system at code level.

However, the technique still focuses on the control flow

of operations/method sequences in an AD and applies the

basic path coverage criteria. In our study, we explicitly

annotated the AD of the SUT with data flow information

and used data flow coverage criteria. To improve the test

effectiveness, a rule-based approach [4] was presented to

derive a combinatorial test design model from ADs. The

main idea is to provide rules for identifying the parameters

with their corresponding values and constraints by parsing

the AD.

For further information on AD-based testing, Table 1

provides a simple comparison of the several perspectives

such as the technique used, the existing work. The current

studies are compared from research objective, the

intermediate model used to generate test cases, and the

coverage criteria employed, as well as issues related to

these techniques based on our perception. The objective

Table 1. A comparison of activity diagram-based test case generation techniques

Study Techniques Objective
Intermediate

model

Coverage

criteria
Related issues

[14] UML 2.0 modeling

capabilities with use

case scope

Detecting

synchronization

and loop faults

Activity graph Activity

path

High level of abstraction, missing

details of individual activity

[11] Condition

classification tree

Test automation,

generate tests early

during development

Condition

classification

tree

Decision

point

Difficulties in identifying all feasible

paths with complex control flow and

their nested combinations (loops)

[5] Gray box Test automation, find

inconsistency between

implementation

and design

None Basic path Test cases are generated based on

assumption that concurrent activity

states will not access the same object

and only execute asynchronously

[6] XML-based Test automation, save

time and effort

Activity

dependency

table (ADT)

Branch,

predicate,

basic path

Lacking validation of fault detection

capability with reduced set of

generated test paths

[4] Combinatorial

test design model

Test automation, reduce

effort, improve

effectiveness

CTDM model Parameter-

value

Difficulties on identifying constraints

from activity diagram, and constraints

linking the parameters and values

[7, 8] I/O explicit

activity diagram

Minimize number of TC Directed graph All paths Generalizability and vagueness on

identification of input/output activity,

domain specific

[9] Classification of

control constructs

Identification of all

possible scenarios

Intermediate

testable model

Selection,

loop

adequacy

Generating and running too many test

cases to cover every possible path is

not feasible as it causes path explosion

and reduces test efficiency

[10] Automated test

generation using

model checking

Test automation,

reduce time and

validation effort

Formal model

(NUSMV input)

Activity,

transition,

key-path

Leading to state explosion, ambiguity

on using data members for test

generation

[12] Automatically

generate

random TC

Test automation,

minimize number of TC

consistency checking

None Activity,

transition,

simple path

Randomness limits the reliability of

the generated test cases

[13] Construct activity

dependency table

To achieve all path

coverage, improve fault

detection

Activity

convert [8]

grammar

All paths Manually generating AC grammar and

feasible paths with complex AD

including loops, detecting only design

errors

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 110 Aman Jaffari and Cheol-Jung Yoo

of the comparative analysis is to provide a general

overview of the current status of AD-based testing.

Although we have highlighted several related issues of

the current AD-based testing techniques, we have not

addressed each and every issue.

The results presented in Table 1 lead to the conclusion

that existing approaches primarily focused on test

automation based on analysis of various items of control

information in an AD. However, examining only the

control flow among the activities is not sufficient for

testing the whole SUT. Although test automation based

on analyzing the control flow information is a good idea

for improving test efficiency, test quality is more

important. In other words, the generated test cases should

be capable of detecting faults. Accordingly, improved

fault detection capability of the conventional AD-based

testing is an ongoing challenge. The experimental

investigation in this study improved the coverage criteria

for increased fault detection capability by annotating ADs

with DFI. Initially, data flow-based testing techniques

were introduced to complement conventional control

flow-based testing techniques [28, 29].

Some studies also investigated the incorporation of DFI

in a model-based testing environment, for example using

UML class diagrams [30] and state machine diagrams

[19, 31, 32]. However, class diagrams are limited to the

static view of SUT and miss dynamic behavior. Also,

state machine diagrams are limited to representing the

interaction between complex objects and do not represent

all of the properties of the SUT [33]. In contrast to

existing studies, this study investigates how annotating

DFI can improve fault detection capability in the context

of an AD.

III. DATA FLOW ANNOTATED ACTIVITY
DIAGRAM-BASED TESTING

In this section, we describe the basic concepts and

definitions used in this study and provide an overview of

DFAAD-based testing. We also describe each of the

activities in further detail such as the circumstances for

identifying and annotating DFI and the steps for extracting

a DFG based on an annotated AD, along with a running

example.

A. Basic Concepts and Definitions

Most of the definitions and terminologies used in this

study are derived from standard software testing textbooks

[18, 34], existing documentation, and research studies

with slight modification [2, 9, 10].

Definition 1. Data flow-annotated activity diagram.

DFAAD is an extension of the original activity diagram

representing the sequence of actions in which the flow of

data is explicitly marked across activities. Similar to

ADs, a DFAAD can be described formally as a graph,

G = (A, E, C) where:

- A is a set of actions/activities including A0 and Af,

where each A except A0 and Af is annotated either

with d, u, cu or a combination thereof following the

name of the data members with stereotype notation in

which d stands for defined, u stands for used, and cu

stands for calculation use, and A0 represents initial

activity, where A0 ⊆ A and A0 ≠ Ø, and Af is a set of

final activities, where Af ⊆ A and Af ≠ Ø.

- E denotes a set E of edges, where E is a subset of A × A

- C = Dn Jn Fn Mn is a set of control nodes such

that Dn is a set of decision nodes, Jn is a set of join

nodes, Fn is a set of fork nodes, and Mn is a set of

merge nodes. In terms of data flow, Dn is analogous to

p-use that stands for predicated use.

We restrict both the AD and the data flow graph

containing a single initial node.

Definition 2. Data flow graph. A DFG is a simplified

representation of an annotated activity diagram (AAD)

that can be formally defined as:

- a set N of nodes, where each node is explicitly marked

with DFId, u, cu, and p-use
- a set N0 of initial nodes, where N0 ⊆ N and N0 ≠ Ø

- a set Nf of final nodes, where Nf ⊆ N and Nf ≠ Ø

- a set E of edges, where E is a subset of N × N

Definition 3. All d-use path coverage (ADUPC). For

each def-pair set S = d-use (ni, nj, v), TR contains every

path d in S [18]. TR stands for test requirements, d-use

for definition use, and ni and nj represent node i and node

j, respectively.

B. Overview of DFAAD-based Testing

This section provides an overview of DFAAD-based

testing and describes the major activities in detail. In

model-based testing (MBT), a model (e.g., an AD, a state

machine diagram) specifies the behaviors of a SUT.

According to [1], a typical MBT activity includes three

main tasks: design of a functional test model to represent

the expected operational behavior of the SUT, determination

of test generation criteria to limit the number of generated

tests, and generation of tests that can be fully automated.

In this study, we followed a behavioral MBT in which

the AD of the SUT was selected on a test basis. Similar to

an MBT approach, the DFAAD-based testing includes

three major activities, namely behavioral test model design,

test generation, and test execution. In order to facilitate

DFC criteria, the DFI was identified and annotated within

the AD of the SUT. The AAD was mapped into an

intermediate model known as DFG for simplification and

further automation. The deliverable of this activity was

⊃ ⊃ ⊃

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 111 http://jcse.kiise.org

an intermediate test model used to generate test paths

based on existing graph traversal algorithms such as DFS

or BFS. To generate the tests, testers need to determine the

test generation criteria (for example, du-path coverage) to

limit the number of generated test cases. In this study, we

used d-use coverage for data flow testing. Next, in order

to adapt the generated test cases, testers provided oracles

and input values. Finally, the generated tests were executed

and the test results were reported. An overview of

DFAAD-based testing is shown in Fig. 1.

1) Identification and Annotation of DFI

This section presents the circumstances in which the

DFI can be identified and annotated in an AD. The

control flows among activities are depicted in an AD, and

ADs can model a system from a high-level business

process to interaction and state changes among activities,

returning values, and computations. They represent the

sequence of actions among activities. Actions are

required for any significant capabilities and are central to

the data flow aspect of an AD [2]. The sequence of actions

among activities provides useful information about

messages, such as the sender and the receiver object, state

changes, exchanging parameters, returning values, and

guard conditions. These are valuable references to identify

DFI of an AD. Also, other supportive references include

specification documents, in particular, the use case

specification that is the foundation of an AD. The steps

and circumstances in which the DFI can be identified and

annotated with the AD are as follows:

(1) Identification of participating data members in an

AD: Annotating an AD with DFI first requires identification

of the participating data members in the AD. There are

several possible ways to identify a data member across

activities as mentioned above. The easiest way to identify

a data member is to use the information in the guard

condition. Also, the input or output parameters that are

specified in the Action Pin assist the identification of the

data members.

(2) Detection of DU pairs across activities: After the

participating data members in an AD are identified, there

are different situations in which the DU pairs of data

members can be detected. An action behavior is depicted

by the descriptive name and types of the action. Therefore,

one approach is to analyze the encapsulated behavior of

each action. It is possible that the different DU pairs of

Fig. 1. Overview of DFAAD-based testing.

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 112 Aman Jaffari and Cheol-Jung Yoo

data members across activities can be detected in the

following situations: (a) A define may occur in an A in

the following situations: In an ExecutableNode that is the

source ActivityNode that gets the variable objects by

input (define by input). In an ExecutableNode in which the

variable objects are initialized (defined by assignment).

(b) A use may occur in an A in the following situations:

In an ExecutableNode that is invoked by other behaviors

and operations on input data, deliver or return the data

to other activities through outgoing edges without

modification. The data is received from the sender object

and passed or returned to the receiver object without

modification. (c) A c-use may occur in an A in the

following conditions: In an ExecutableNode that executes

a subordinate behavior (e.g. arithmetic computation,

manipulation of object contents). (d) A p-use may occur

in an A in the following situations: In a C node of an AD

with Dn and a guard condition, C nodes without guard

conditions being excluded (e.g. Jn, Fn, Mn).

(3) Annotation of the DFI in an AD. After the data

members are identified and their DU pairs are detected,

this information is annotated with the AD using stereotypes,

for example, if a variable is defined in a particular activity

it is represented as <<d(variable name)>>. Further infor-

mation can be found in the running example and the case

study sections.

2) Extraction of DFG

With reference to the UML documentation and existing

studies, it is possible to easily associate the AD syntax

with the DFG syntax. A DFG encapsulates AD constructs

systematically for further automation [14]. We can

extract test cases either directly from an AD or convert it

into a DFG that is an intermediate model and generate

test cases by traversing the graph. For the purpose of

simplification, we prefer converting the AD into a DFG

that simplifies the concepts by encapsulating various

syntax of an AD into DFG nodes. The DU pairs that are

annotated in an AD are labeled with the corresponding

nodes of the DFG. Since, both the AD and DFG are

directed graphs, mapping the annotated AD into the DFG

is straightforward, and basically involves the following

steps:

1. The set A of activities is mapped to the set N of

DFG nodes (Aactivity → Nnode), and the occurrences of

d-use information are included with the corresponding

nodes

2. The A0 node of an AD is mapped to the N0 node of a

DFG (A0 → N0)

3. The Af node of an AD is mapped to the Nf of a DFG

(Af → Nf)

4. The Cn nodes of an AD are mapped to the N of a

DFG (Cn → N)

5. The edge E of an AD is mapped to the edge E of a

DFG

The graph theory is a long-standing practice in software

testing that provides an important simplification mecha-

nism for testers. An advantage of the AD to DFG conversion

is that the DFG has a more simplified structure. Hence,

generating test cases based on a DFG is comparatively

easy. Also, in the case of a DFG, many algorithms already

exist for traversing the graph to generate tests.

3) Generation of Test Paths

The test paths are generated based on the intermediate

test model known as DFG. To limit the number of

generated tests, it is necessary to determine appropriate

test coverage criteria (TCC). The most commonly adopted

coverage criteria include branch coverage, decision

coverage, simple path coverage, and statement coverage

that require the test cases to cover and execute every

branch, decision, statement, or path. However, they are

not capable of discovering many common faults [28].

Hence, the DFC is introduced to supplement the control

flow coverage criteria and the most well-known is the

DU path coverage. In our approach, we applied ADUPC

for the DFC criteria. The basic concepts and definitions

are provided in Section III-1, and Section III-3 provides

some examples. After determining the TCC, a graph

traversal algorithm (GTA) is needed to extract the abstract

tests based on the chosen criteria. The most common

graph traversal algorithms include DFS and breadth-first

search (BFS). In our case, we have traversed the DFG in

a DFS manner. After generating the relevant test paths,

these paths are used to design concrete tests by providing

additional information such as oracles and input values.

4) Design Test Cases

After generating and obtaining the abstract tests, test

oracles and input values are needed to transform the

abstract tests into concrete tests. This activity is an

important aspect of test generation activity that needs

particular attention. Currently, many guidelines and test

oracle strategies exist in the literature. A number of oracle

strategies for model-based testing have been reported and

their fault detection capability investigated [35]. Though

the test oracle strategy is not our main concern, we

followed the existing strategies and guidelines to design

the concrete tests.

5) Execution of Tests

As the final activity, test cases were executed against

the SUT, and the test results were reported. Currently,

many test execution frameworks exist that can be used to

execute designed test cases. In this study, we have used

JUnit as an execution tool that facilitates the comparative

analysis against the alternative approach, but any other

tools can be used to execute the generated executable

tests.

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 113 http://jcse.kiise.org

C. Running Examples

For the ease of understanding, in this section, we

provide two running examples using a customer billing

service application and a triangle problem. The first

example illustrates the annotation of data flow in an AD

and the latter further exemplifies the generation of DFG

and test cases.

1) Example 1

As a first running example, we have used a modified

version of a cellular service customer billing application

[36]. The application calculates billing based on the

customer’s usage amount and offers three different types

of discount. The following is a simple description for

“Calculate Billing Service” use case specification:

Normal flows:

1. The application obtains the usage amount from the

actor of the system

2. If the usage is greater than zero, it calculates the bill

based on the type of discount

3. If the usage is between 100 and 200, a discount type

A is applied (50 cents for every additional minute)

4. If the usage is greater than 200, a discount type B is

applied (10 cents for every additional minute)

Alternate/exceptional flows:

1.1 If the usage is less than or equal to zero, the bill is

zero

4.1 If the bill is greater than 100, a discount type C is

applied (10% discount from the total amount)

The use case specification is the foundation for generating

an AD. It is also counted as a rich source of information

for identifying DFI in an AD. The original AD for billing

service is depicted in Fig. 2(a), and the corresponding

AAD is shown in Fig. 2(b). The AD represents the sequence

of actions that are required to calculate the billing

amount. Actions are regarded as the main capabilities of

activities and are central to the data flow aspects [2]. We

can use Action Pins to represent data values passed out of

and into an Action. For annotating the AD with DFI we

apply the three steps defined previously. The first step is

to identify the participating data members across

activities using the information in the guard conditions

and the in/out put parameters specified in the Action

Pins. In Fig. 2(b), a total of two data members (Usage,

Bill) were identified by analyzing the action pins and

guard conditions. Subsequently, we detected the DU pairs

of each identified data member across activities by

analyzing the encapsulated behavior of Actions. In the

final step, the AD was annotated with the identified DU

pairs.

For better understanding, Table 2 illustrates the DU

pairs associated with the data members across different

activities in a simple format. Table 2 also shows abstract

and concrete tests that include input values and expected

outputs. In this example, the input and expected values in

Table 2 represent only dummy values used for demon-

stration purposes. In this context, in this running example,

we did not perform any mapping between the AD and

DFG. The abstract test cases were directly extracted by

manually traversing the DFAAD. Identifying the DU

pairs across activities also facilitates the detection of data

Fig. 2. (a) Customer billing service AD; (b) Customer billing service DFAAD.

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 114 Aman Jaffari and Cheol-Jung Yoo

flow anomalies. Based on Table 2, we can see that the

Bill variable appears as define-define, which is a double

definition that is considered as a potential bug. Detection

of such anomalies in the model helps prevention of

similar anomalies in the code.

2) Example 2

This example further illustrates the data flow annotation,

the conversion of DFAAD to DFG using triangle problem.

Triangle problem specification: the triangle problem

takes three positive whole-numbers as input. The program

responds with a description of the triangle as follows:
● If all three sides have equal length, classify it as an

equilateral triangle;
● If two sides have equal length, classify it as an

isosceles triangle;
● If one angle is a right angle, classify as a right-angled

triangle;
● If all sides have different lengths, and no right angles,

classify it as a scalene triangle;

Table 2. du-pairs of data members across activities, the abstract and concrete tests

Variable

Activity nodes

Calculate

Bill

Decision

(node1)

Basic

Amount

Decision

(node2)

Discount

TypeA

Discount

TypeB

Decision

(node3)

Discount

TypeC

Merge

node

Submit

Bill

Usage d pu pu cu cu

Bill d d cu, d cu, d pu cu, d u

Abstract tests
Concrete tests

Input value Expected output

Usage

du-pairs

CalculateBill → Decision node1 → Decision node2 → DiscountTypeA 199 89.5

CalculateBill → Decision node1 → Decision node2 → DiscountTypeB 900 99.0

Bill

du-pairs

applyBasicAmount → DiscountTypeA 150 140

applyBasicAmount → DiscountTypeB 230 110

DiscountTypeA → SubmitBill 120 120

DiscountTypeB → Decision node3 → SubmitBill 600 400

DiscountTypeB → Decision → DiscountTypeC → SubmitBill 200 120

DiscountTypeC → SubmitBill 300 150

Fig. 3. a. Triangle problem DFAAD, b. Triangle problem DFG.

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 115 http://jcse.kiise.org

● If the given sides do not form a triangle, classify it as

impossible;
● Calculate the triangle perimeter and area.

The DFAAD of the triangle problem is depicted in

Fig. 3(a), and the corresponding data flow graph extracted

from the DFAAD is shown in Fig. 3(b). The abstract test

cases generated from the DFG in Fig. 3(b) are presented

on the left in Table 3.

IV. EXPERIMENTAL DESCRIPTION

This section describes the experiment carried out to

evaluate the proposed technique, following existing

guidelines for empirical research and experimentation in

software engineering [37-39]. Section IV- A presents the

experimental definition and context. Section IV- B describes

the experimental procedure and design, and Section IV- C

presents the experimental results.

A. Experimental Definition and Context

The experimental investigation was performed to

compare and assess the proposed DFAAD-based testing

technique with an alternative approach. Therefore, the

experiment was focused on examining the potential

effectiveness of the proposed technique to reveal faults

compared with an existing well-practiced test case

generation technique regarding the formulated research

questions. Hence, we performed our experimental

investigation involving three subject systems, namely the

Cruise control system, Elevator system, and Coffee maker.

To ensure that the experimental subjects were realistic

(e.g., in terms of size and complexity) and suitable for

our experiment, they were selected manually based on

the following criteria.
● Large and logically complex systems containing a

minimum of four classes, 60–80 branches, and 150–

170 non-commenting statements.

● Systems comprising all the required artifacts available

(e.g., class diagrams and a high-level description of

the system’s functionalities) for modeling the system

behavior.
● Systems not excessively large or complex that

prevent experimentation within the time constraint or

inappropriate for alternative approaches to generate

tests.

Table 4 summarizes the full description of the three

experimental subject systems. All the required artifacts,

including the source code of the systems, are available in

the Software-Artifact Infrastructure Repository (SIR) for

Elevator and Cruise control systems (https://sir.csc.ncsu.

edu/content/sir.php) [40] and NCSU website (https://

www.ncsu.edu/) for the Coffee

maker.

The experiments address the following RQ and sub-

RQs that expand our general RQ given in Section I.

RQ1.1: How does the proposed DFAAD-based test

case generation technique perform compared with an

alternative approach in terms of overall fault detection

effectiveness?

RQ1.2: What is the difference in effectiveness

between the proposed DFAAD-based test case generation

technique and the alternative approach regarding the type

of faults detected?

RQ2: What is the relative efficiency, measured by the

number of faults detected and the number of test cases

generated?

Table 3. Concrete tests and execution results for the triangle problem

Coverage TC ID Test paths
Input values

Expected outputs Results
s1 s2 s3

ADUPC TC1 1-2-3 - pu (s1,s2,s3) 20 0 10 Impossible P

TC2 1-2-6-7 u (s1,s2,s3) 40 50 20 40,50,20 P

TC3 1-2-6-8 cu (s1,s2,s3) 60 70 80 210 P

60 0 80 -1 P

TC4 1-2-6-8-9 cu (s1,s2,s3) 40 60 60 113137.085 F

TC5 1-2-6-10-11-12 pu (s1,s2,s3) 200 200 200 Equilateral P

TC6 1-2-6-10-11-14-5 pu (s1,s2,s3) 13 55 55 Isosceles F

TC7 1-2-6-10-11-12-13-5 pu (s1,s2,s3) 12 21 33 Impossible F

Table 4. Description of experimental subject systems

Systems #LOC Classes
Mutants

Min Mean Max

Cruise control 358 4 15 27.25 48

Elevator 581 8 2 30.9 111

Coffee maker 393 4 24 39 68

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 116 Aman Jaffari and Cheol-Jung Yoo

RQ1.1 investigates whether the proposed technique

can reach a certain level of effectiveness in terms of fault

detection that is comparable to a well-practiced test suite

generation approach like EvoSuite.

RQ1.2 further examines whether the proposed technique

was more or less effective in detecting distinct faults

compared with the alternative approach. For example, a

positive response to this question will indicate the

detectability of certain types of fault using the DFAAD-

based approach, which is not detectable with the alternative

one. RQ2 investigates if the test suites generated by one

technique were capable of detecting additional faults with

fewer tests than others.

Variable selection: The independent variable for all

RQs is the type of technique used as a basis for test suite

generation (e.g., DFAAD or the alternative technique).

The dependent variables are related to effectiveness and

efficiencies of fault detection, such as killed or survived

mutants, and various fault types.

Mutation seeding: Fault instrumentation is a common

approach used in software testing, to generate mutants for

our experimental subjects. We used the PIT mutation

testing system, a recently developed automatic mutation

testing tool, which works fast at the bytecode level (http://

pitest.org). A potential benefit of automatic mutation

testing is generation of a large number of mutants, which

can increase the statistical significance of results obtained

[41]. An empirical investigation of the effectiveness of

mutation testing tools [42], revealed the outperformance

of PITEV (evaluation version) compared with other tools.

PIT provides three levels of mutator preferences (default,

stronger, and all mutators). In our experiment we used the

default mutators: increments mutator (IM), void method

call mutator (VMCM), return value mutator (RVM),

math mutator (MM), negate conditional mutator (NCM),

invert negative mutator (INM), and conditional boundary

mutator (CBM).

B. Experimental Procedure and Design

The focus of this experiment is to compare and assess

the proposed technique via an alternative approach, in

terms of fault detection effectiveness and efficiency.

Accordingly, in the context of this study, we defined the

terms efficiency and effectiveness as follows:

Effectiveness (E): The goal of effectiveness is to detect

the maximum number of faults/killed mutants seeded in a

program. It is measured based on the ratio between the

number of detected faults/killed mutants per technique

and the total number of existing faults/seeded mutants. In

this study, the terms ‘mutants killed’ and ‘faults detected’

are used interchangeably.

(1)

Efficiency (EF): The goal of efficiency is to detect the

maximum number of faults with the minimum sets of test

cases. It is measured based on the ratio of the number of

faults detected/mutants killed per technique and the

number of associated executable test cases. Hence, the

efficiency indicates the number of detected faults per

executed test on average.

(2)

The experiment was carried out considering all the

activities presented in Section III as follows: (1) Because

the DFAAD models were not available, given the three

systems with all the required artifacts, the student created

the required ADs for each subject system using the

Enterprise Architect modeling tool. (2) The DFI was

identified and annotated within the ADs of the SUT by

applying the three steps. (3) Based on the DFAADs, a

data flow graph was extracted and abstract test cases

were generated. (4) A concrete test was designed by

providing oracles and input values. Finally, the test was

executed against the SUT and the results were reported.

As described in Section III, the DFAADs contain the

sequences of actions, guard conditions, forks, joins, data

members, and input parameters specified in the Action

Pin. The data flow is explicitly annotated across activities.

Figs. 4 and 5 demonstrate examples of such DFAADs for

the car simulator and coffee maker activities, respectively.

Depending on the nature of the SUT, DFAADs can be

very complex or very simple. For example, a model of a

running car simulation algorithm (Fig. 4) is quite complex

compared to adding, deleting, or editing recipes in a coffee

maker. Such differences in the complexity of experimental

subjects significantly affect the performance of the tools

or technique employed, and represent good examples for

assessing and comparing their effectiveness.

Alternative approach: As an alternative approach for

comparison and assessment, we selected EvoSuite4 a so-

called state-of-the-art test suite generation system [25,

42]. Generating test cases with EvoSuite is a simple task,

which is carried out by right-clicking and pressing generate

tests with EvoSuite. We selected EvoSuite because it has

been practiced widely across different types and sizes of

open-source as well as industrial software programs,

reporting several real faults [43]. Also, EvoSuite attained

the highest overall scores in the SBST 2016 and 2017

tool competition [44, 45]. Moreover, EvoSuite provides

support for PIT mutation coverage.

C. Experimental Results

This section presents results obtained with the three

experimental subjects.

RQ1.1: How does the proposed DFAAD-based test

case generation technique perform compared with an

E
of killed mutants

Total numbers of seeded mutants
--- 100×=

EF
of detected faults

of generated executable test cases
--=

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 117 http://jcse.kiise.org

alternative approach in terms of overall fault detection

effectiveness?

RQ1.1 investigates the capability of the two approaches

with regard to overall fault detection.

Fig. 6 presents our results of overall comparison of the

two approaches. The figure depicts the number of faults

detected or failed-to-detect by different techniques and

their corresponding effectiveness scores (in percentages).

As can be seen from Fig. 6, test cases generated from

DFAAD was successfully applied to all experimental

subjects reaching an overall effectiveness of 67.9% in the

case of Cruise control, 69.6% in the case of Elevator, and

84.6% in the case of Coffee maker. However, test cases

derived from the alternative approach managed to reach

44% effectiveness in the case of Cruise control, 24.3% in

the case of Elevator, and 83.8% in the case of Coffee

maker. The results indicated an overall difference in

effectiveness of 23.9% in the case of Cruise control

system and 45.3% in the case of Elevator. By contrast,

both approaches attained a similar level of effectiveness

in the case of Coffee maker. The observed difference in

effectiveness was significantly large in the case of Elevator

system. The factors contributing to these differences are

further explained in Discussion.

The results in Fig. 6 indicate the improved fault detection

capability of DFAAD compared with the alternative

approach. To determine whether or not the observed

difference was statistically significant, we performed a

non-parametric Wilcoxon signed rank test [46] with a

statistical significance level less than 0.05. The null and

alternative hypotheses were as follows:

H0: no difference between the proportion of faults

detected by DFAAD and alternative approaches;

H1: a difference between the proportion of faults

detected by DFAAD and alternative approaches. As a

result, the Wilcoxon signed rank test indicated that the

DFAAD (mean rank = 7.36) was rated more effective

than the alternative (mean rank = 5.0) with p-value =

0.013 and z-score = -2.488. Thus, we rejected the H0 null

hypothesis and concluded that the observed difference

was statistically significant.

RQ1.2: What is the difference in effectiveness between

the proposed technique for DFAAD-based test cases

generation and the alternative approach regarding the

type of faults detected?

This question evaluated the effectiveness in terms of

the fault types detected by each technique. Tables 5–7

present the respective results for each experimental subject

and the types of fault detected. Each table presents the

Fig. 4. An example of car simulator DFAAD for the Cruise control system.

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 118 Aman Jaffari and Cheol-Jung Yoo

total number of seeded mutants related to each mutation

operator, the number of mutants killed and survived, and

the corresponding rates of effectiveness. The most

remarkable results are bolded and are further discussed in

Discussion.

Fig. 7 further visually summarizes the types of mutants

killed by each technique across subject systems. As can

be easily observed from the results, DFAAD managed to

kill more mutants in almost all types of mutation operators

across subject systems except CBM in case of Coffee

maker, which is further discussed in the following section.

RQ2: What is the relative efficiency, measured by the

number of faults detected and the number of test cases

generated?

The answer to RQ2 provides insights into the relative

Fig. 5. An example of making coffee DFAAD for the Coffee maker system.

Fig. 6. Overall comparison of the two approaches in terms of
fault detection effectiveness.

Fig. 7. Comparative analysis of killed mutants across subject
systems.

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 119 http://jcse.kiise.org

efficiency of the techniques in terms of the numbers of

killed mutations per executed tests. We found that

DFAAD killed more mutants with fewer executable sets

of tests. The average numbers of killed mutants per

executed test was: 2.6 mutants against 0.6 in the case of

Elevator, 2 mutants against 0.7 in the case of Cruise

control, 3.7 mutants against 1.1 in the case of Coffee

maker, and finally 2.6 mutants against 0.8 in the overall

subject systems. Fig. 8 summarizes the cross-comparison

of the efficiency of two test case generation techniques.

V. DISCUSSION

This section discusses the impact of DFAAD-based

testing on fault detection effectiveness and efficiency.

The experimental results are used to compare and assess

the proposed technique. In order to better understand and

summarize the experimental results, we have formulated

a number of RQs and modified our discussion accordingly,

as follows:

Discussion of RQ1.1: To improve the validity of the

Table 5. Cross-comparison of detected fault types with Cruise control system

Mutation

operators

Total

mutants

Cruise control

DFAAD EvoSuite

Killed Survived Effectiveness (%) Killed Survived Effectiveness (%)

IM 0 0 0 0 0 0 0

VMCM 26 19 7 73 1 25 3.8

RVM 20 18 2 90 18 2 90

MM 20 6 14 30 3 17 15

NCM 33 31 2 94 26 7 78.8

INM 0 0 0 0 0 0 0

CBM 10 0 10 0 0 10 0

The most remarkable results are bolded.

Table 6. Cross-comparison of detected fault types with Elevator system

Mutation

operators

Total

mutants

Elevator

DFAAD EvoSuite

Killed Survived Effectiveness (%) Killed Survived Effectiveness (%)

IM 4 4 0 100 3 1 75

VMCM 76 45 31 59 11 65 14

RVM 45 34 11 76 16 29 35

MM 30 14 16 47 0 30 0

NCM 70 62 8 89 18 43 26

INM 1 1 0 100 0 1 0

CBM 21 12 9 57 12 9 57

The most remarkable results are bolded.

Table 7. Cross-comparison of detected fault types with Coffee maker system

Mutation

operators

Total

mutants

Coffee maker

DFAAD EvoSuite

Killed Survived Effectiveness (%) Killed Survived Effectiveness (%)

IM 6 6 0 100 6 0 100

VMCM 12 12 0 100 7 5 58

RVM 26 25 1 96 26 0 100

MM 9 9 0 100 4 5 44

NCM 40 40 0 100 40 0 100

INM 0 0 0 0 0 0 0

CBM 24 7 17 29 15 9 62

The most remarkable results are bolded.

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 120 Aman Jaffari and Cheol-Jung Yoo

conclusions for this question, we performed a statistical

analysis of the extracted data. Due to the small sample

size and non-normal distribution of the data, we used the

Wilcoxon signed-rank test, a non-parametric test of

statistical hypothesis with a statistical significance < 0.05.

Overall, the formulated null hypothesis was rejected (p-

value = 0.013) to conclude that the DFAAD managed to

reach greater effectiveness.

Fig. 9 depicts the overall ratio of distribution of detected

and undetected faults across DFAAD and EvoSuite

regarding all subject systems. In contrast to EvoSuite, the

DFAAD yielded a higher mean in the case of detected

faults and was lower in the case of failed-to-detect cases.

The DFAAD was found to be relatively effective in

detecting faults across all the experimental subjects.

However, the effectiveness of the alternative approach

varied across different systems. For instance, the

alternative approach resulted in better effectiveness in the

case of Coffee maker, and performed relatively well in

the case of Cruise control but very poor in the case of

Elevator system. This result was probably attributed to

the more complex and dynamic run time behavior of the

system. For instance, EvoSuite is good at maximizing the

branches and statements covered but is not adequately

capable of handling the real-time properties of the SUT.

However, in the case of DFAAD, the real-time behaviors

of the systems are captured more appropriately to improve

test cases.

Discussion of RQ1.2: This question investigated if the

proposed technique was more or less effective in detecting

different types of faults in contrast to the alternative.

Fig. 10 shows the distribution of fault detection ratio

across mutation operators and employed techniques. As

can be seen from Fig. 10, in contrast to the alternative

approach, on average, the DFAAD managed to detect a

higher number of faults regarding all mutation operators

except CBM. Particularly, the DFAAD achieved better

coverage, on average, in detecting NCM mutants (mean

difference +16.33), MM mutants (mean difference +7.33),

RVM mutants (mean difference +6.66), and VMCM

mutants (mean difference +19). However, the alternative

approach showed greater effectiveness in detecting CBM

mutants (mean difference +2.66). The difference is notable

in the case of Coffee maker and is possibly due to the

missing functionality while modeling the AD. It is possible

that even if the system is less complex, the modeler may

have applied less effort or attention, to model the system

adequately. No notable difference was observed between

the two approaches in detecting IM-related faults. Only a

single INM mutant was generated by the mutation tool, in

the case of Elevator, which is covered by DFAAD.

Discussion of RQ2: The efficiency or cost-effectiveness

of test case generation techniques can be measured from

different perspectives such as test execution and test

generation. In published studies, the cost-effectiveness is

measured according to various aspects, for example,

based on the size of test drivers in terms of LOC, the CPU

execution time, the number of methods calls [33], and the

proportion of faults detected per distinct assertions

created [35]. We assume that the efficiency of test case

generation is proportional to the size of executable tests

Fig. 8. Summary of efficiency results based on cross-comparison.

Fig. 9. Overall ratio of the distribution of detected and
undetected faults across techniques.

Fig. 10. Distribution of faults detection ratios across mutation
operators and techniques.

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 121 http://jcse.kiise.org

generated. Hence, the efficiency is estimated by detecting

maximum number of faults with minimum tests. Our

results indicated that test cases generated using DFAAD

managed to detect 2.6 faults on average, whereas, test

cases based on the alternative approach detected only 0.8

faults on average.

To summarize this discussion, the fault detection

performance of EvoSuite varied from system to system,

while DFAAD performance was almost constant across

systems. The effectiveness of EvoSuite was quite poor in

the case of Elevator system and relatively better in the

case of Coffee maker, suggesting that the effectiveness of

EvoSuite depends strongly on the nature of SUT. For

instance, EvoSuite is not fully cable of testing systems

with concurrent and dynamic run-time behaviors. By

contrast, DFAAD proved to be best suited for such types

of systems. Moreover, these results suggest that DFAAD

facilitated the detection of additional faults related to

arithmetic operations, which are regarded as more critical

and difficult to detect. Despite the fact that EvoSuite is

good at maximizing branches and coverage of statements,

our results indicate that it still does not reflect test

completeness. In addition to providing greater fault

detection effectiveness, DFAAD offers the full advantages

of model-based testing. However, we will not further

discuss the pros and cons of model-based testing, or its

comparison with other methodologies.

VI. THREATS TO VALIDITY

In this section, we discuss various possible threats to

the validity of the experimental investigation performed

and how they can be mitigated. Threats to internal validity

relate to issues that impact the conclusions arrived at, for

example, the use of the original source code without

faults. Different conclusions were possible if systems

with real faults were used. However, identifying appro-

priate systems with real experimental faults is not easy,

and fault instrumentation is a common practice in testing

studies. We used EvoSuite as an alternative approach for

test suite generation and PIT mutation testing tool for

fault seeding. Therefore, the effectiveness strongly depends

on the characteristics of the employed tools. Hence, using

different techniques for test suite generation or tools (e.g.,

manually generated, Randoop [47]), or using real faults

or different mutation tools (e.g., MuJava) may yield

different results. Also, in our experiment, we did not

consider the impact of human subjects in generating test

cases. For example, in DFAAD-based approach, individuals

modeling the systems, and their role in modeling can

significantly influence the results.

Threats to external validity relate to the generalizability

of our study involving the experimental subjects and the

types of fault used. Despite our efforts to provide valid

results, we cannot be absolutely sure about the generali-

zability of the chosen subjects, because the results are

always related to the SUT. We may have achieved different

results by selecting different systems as our experimental

subjects, for example, with a different domain, size, type,

and complexity. To mitigate this threat, while choosing the

subject systems, we considered minimal criteria involving

the feasibility of the systems. Similarly, the tool used for

mutant seeding and the types of mutants provided by

such a tool may not be generalized to all cases. However,

we ensured selection of well-established and popular

tools, which are actively supported.

Threats to construct validity correspond to the

generalizability and the appropriateness of the measures

used in our experiments. To compare the fault detection

capability of our technique with the alternative approach,

we used the fault detection ratio, which is commonly

used for the assessment of test techniques in studies with

reliable outcomes [41]. Moreover, in our experiment, the

ratio between the numbers of detected faults and the

numbers of generated executable test cases might not

reflect the actual test efficiency. For example, the results

might have been different if we used alternative measure-

ments such as the ratio of detected faults to distinct

assertions created or the number of call methods.

VII. CONCLUSION AND FUTURE WORK

In this study, we have proposed a DFAAD-based test

case generation technique. The AD of the SUT is

annotated with DFI to facilitate DFC criteria and identi-

fication of the DU pairs of object variables across

activities for the design of more appropriate test cases. To

investigate the potential effectiveness of the proposed

technique, we performed an experimental investigation

using three commonly used systems in software testing

literature. The effectiveness and efficiency of the proposed

technique was evaluated by comparison with an alternative

state-of-the-art test suite generation tool.

The statistical significance of the experimental results

indicates that the proposed technique outperforms EvoSuite

in terms of effectiveness. The results also showed that the

proposed technique was comparatively more efficient in

detecting critical faults (e.g., arithmetic operations related

faults). It was quite remarkable that the results indicate

that the proposed technique facilitated the detection of a

wide range of faults, some of which are not detectable

using an alternative approach, despite the full advantages

of MBT.

In future, we have a plan to conduct comprehensive

experimental studies with different applications involving

additional variables such as time and cost efficiency.

Also, we will develop supporting tools for our test case

generation technique to facilitate automatic mapping of

the AD with the associated DFG, and to enable automatic

detection of DU pairs of object variables across activities.

Journal of Computing Science and Engineering, Vol. 13, No. 3, September 2019, pp. 107-123

http://dx.doi.org/10.5626/JCSE.2019.13.3.107 122 Aman Jaffari and Cheol-Jung Yoo

REFERENCES

1. I. Schieferdecker, “Model-based testing,” IEEE Software, vol.

29, no. 1, pp. 14-18, 2012.

2. Object Management Group, "Unified Modeling Language

Specification Version 2.5.1," 2017; https://www.omg.org/

spec/UML/About-UML/.

3. M. Shirole and R. Kumar, “UML behavioral model based

test case generation: a survey,” ACM SIGSOFT Software

Engineering Notes, vol. 38, no. 4, pp. 1-13, 2013.

4. P. Satish, K. Sheeba, and K. Rangarajan, “Deriving

combinatorial test design model from UML activity diagram,”

in Proceedings of 2013 IEEE Sixth International Conference

on Software Testing, Verification and Validation Workshops,

Luxembourg, 2013, pp. 331-337.

5. L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng,

“Generating test cases from UML activity diagram based on

gray-box method,” in Proceedings of 11th Asia-Pacific

Software Engineering Conference, Busan, Korea, 2004, pp.

284-291.

6. P. N. Boghdady, N. L. Badr, M. A. Hashim, and M. F.

Tolba, “An enhanced test case generation technique based on

activity diagrams,” in Proceedings of 2011 International

Conference on Computer Engineering & Systems, Cairo,

Egypt, 2011, pp. 289-294.

7. H. Kim, S. Kang, J. Baik, and I. Ko, “Test cases generation

from UML activity diagrams,” in Proceedings of 8th ACIS

International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing

(SNPD), Qingdao, China, 2007, pp. 556-561.

8. P. Mahali, S. Arabinda, A. A. Acharya, and D. P. Mohapatra,

“Test case generation for concurrent systems using UML

activity diagram,” in Proceedings of 2016 IEEE Region 10

Conference (TENCON), Singapore, 2016, pp. 428-435.

9. A. Nayak and D. Samanta, “Synthesis of test scenarios using

UML activity diagrams,” Software & Systems Modeling, vol.

10, no. 1, pp. 63-89, 2011.

10. M. Chen, P. Mishra, and D. Kalita, “Coverage-driven

automatic test generation for UML activity diagrams,”

in Proceedings of the 18th ACM Great Lakes Symposium on

VLSI, Orlando, FL, 2008, pp. 139-142.

11. S. Kansomkeat, P. Thiket, and J. Offutt, “Generating test

cases from UML activity diagrams using the Condition-

Classification Tree Method,” in Proceedings of 2010 2nd

International Conference on Software Technology and

Engineering, San Juan, PR, 2010.

12. C. Mingsong, Q. Xiaokang, and L. Xuandong, “Automatic

test case generation for UML activity diagrams,” in

Proceedings of the 2006 International Workshop on

Automation of Software Test, Shanghai, China, 2006, pp. 2-8.

13. K. Pechtanun and S. Kansomkeat, “Generation test case

from UML activity diagram based on AC grammar,” in

Proceedings of 2012 International Conference on Computer

& Information Science (ICCIS), Kuala Lumpur, Malaysia,

2012, pp. 895-899.

14. D. Kundu and D. Samanta, “A novel approach to generate

test cases from UML activity diagrams,” Journal of Object

Technology, vol. 8, no. 3, pp. 65-83, 2009.

15. P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba,

“A proposed test case generation technique based on activity

diagrams,” International Journal of Engineering & Technology

IJET-IJENS, vol. 11, no. 3, pp. 1-21, 2011.

16. C. H. Chang, C. W. Lu, W. C. Chu, X. H. Huang, D. Xu, T.

C. Hsu, and Y. B. Lai, “An UML behavior diagram based

automatic testing approach,” in Proceedings of 2013 IEEE

37th Annual Computer Software and Applications Conference

Workshops, 2013, pp. 511-516.

17. S. Dahiya, R. K. Bhatia, and D. Rattan, “Regression test

selection using class, sequence and activity diagrams,” IET

Software, vol. 10, no. 3, pp. 72-80, 2016.

18. P. Ammann and J. Offutt, Introduction to Software Testing.

New York, NY: Cambridge University Press, 2008.

19. A. Rauf, “Data flow testing of UML state machine using ant

colony algorithm (ACO),” International Journal of Computer

Science and Network Security, vol. 17, no. 10, pp. 40-44,

2017.

20. M. Felderer and A. Herrmann, “Comprehensibility of system

models during test design: a controlled experiment comparing

UML activity diagrams and state machines,” Software Quality

Journal, vol. 27, no. 1, pp. 125-147, 2019.

21. D. Gessenharter and M. Rauscher, “Code generation for

UML 2 activity diagrams,” in Modelling Foundations and

Applications. Heidelberg: Springer, 2011, pp. 205-220.

22. M. Hossein, A. Hemmat, O. A. Mohamed, and M.

Boukadoum, “Towards code generation for ARM Cortex-M

MCUs from SysML activity diagrams,” in Proceedings of

2016 IEEE International Symposium on Circuits and

Systems (ISCAS), Montreal, Canada, 2016, pp. 970-973.

23. S. Schupp, “Code generation for UML activity diagrams in

real-time systems,” Ph.D. dissertation, Technische Universität

Hamburg, Germany, 2016.

21. A. Jaffari, J. Lee, C. J. Yoo, and J. H. Jo, “Test case

generation technique for IoT mobile application,” in Procee-

dings of 2017 Spring KIPS Conference, Jeju, Korea, 2017,

pp. 618-620.

25. G. Fraser and A. Arcuri, “EvoSuite: automatic test suite

generation for object-oriented software,” in Proceedings of

the 19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering, Szeged,

Hungary, 2011, pp. 416-419.

26. J. Offutt and A. Abdurazik, “Generating tests from UML

specifications,” in UML’99 – The Unified Modeling Language.

Heidelberg: Springer, 1999, pp. 416-429.

27. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri,

“NuSMV: a new symbolic model checker,” International

Journal on Software Tools for Technology Transfer, vol. 2,

no. 4, pp. 410-425, 2000.

28. P. G. Frankl and E. J. Weyuker, “An applicable family of

data flow testing criteria,” IEEE Transactions on Software

Engineering, vol. 14, no. 10, pp. 1483-1498, 1988.

29. G. Denaro, M. Pezze, and M. Vivanti, “On the right

objectives of data flow testing,” in Proceedings of 2014

IEEE Seventh International Conference on Software Testing,

Verification and Validation, Cleveland, OH, 2014, pp. 71-80.

30. R. Anbunathan and A. Basu, “Dataflow test case generation

from UML Class diagrams,” in Proceedings of 2013 IEEE

International Conference on Computational Intelligence and

Computing Research, Enathi, India, 2013, pp. 1-9.

An Experimental Investigation into Data Flow Annotated-Activity Diagram-Based Testing

Aman Jaffari and Cheol-Jung Yoo 123 http://jcse.kiise.org

31. L. Briand, Y. Labiche, and Q. Lin, “Improving the coverage

criteria of UML state machines using data flow analysis,”

Software Testing, Verification and Reliability, vol. 20, no. 3,

pp. 177-207, 2010.

32. T. Waheed, M. Z. Z. Iqbal, and Z. I. Malik, “Data flow

analysis of UML action semantics for executable models,” in

Model Driven Architecture-Foundations and Applications.

Heidelberg: Springer, 2008, pp. 79-93.

33. S. Mouchawrab, L. C. Briand, Y. Labiche, and M. Di Penta,

“Assessing, comparing, and combining state machine-based

testing and structural testing: a series of experiments,” IEEE

Transactions on Software Engineering, vol. 37, no. 2, pp.

161-187, 2010.

34. P. C. Jorgensen, Software Testing: A Craftsman’s Approach.

Boca Raton, FL: CRC Press, 2014

35. N. Li and J. Offutt, “Test oracle strategies for model-based

testing,” IEEE Transactions on Software Engineering, vol.

43, no. 4, pp. 372-395, 2016.

36. J. Badlaney, R. Ghatol, and R. Jadhwani, “An introduction

to data-flow testing,” North Carolina State University,

Technical Report No. TR-2006-22, 2006.

37. R. Malhotra, Empirical Research in Software Engineering:

Concepts, Analysis, and Applications. Boca Raton, FL: CRC

Press, 2015.

38. C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,

and A. Wesslen, Experimentation in Software Engineering.

New York, NY: Springer, 2012.

39. B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W.

Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg,

“Preliminary guidelines for empirical research in software

engineering,” IEEE Transactions on Software Engineering,

vol. 28, no. 8, pp. 721-734, 2002.

40. Software-artifact Infrastructure Repository, https://sir.csc.

ncsu.edu/portal/index.php.

41. J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation

an appropriate tool for testing experiments?,” in Proceedings

of the 27th International Conference on Software Engineering,

St. Louis, MO, 2005, pp. 402-411.

42. M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, N.

Malevris, and Y. Le Traon, “How effective are mutation

testing tools? An empirical analysis of Java mutation testing

tools with manual analysis and real faults,” Empirical

Software Engineering, vol. 23, no. 4, pp. 2426-2463, 2018.

43. M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J.

Benefelds, “An industrial evaluation of unit test generation:

finding real faults in a financial application,” in Proceedings

of the 39th International Conference on Software Engineering:

Software Engineering in Practice Track, Buenos Aires,

Argentina, 2017, pp. 263-272.

44. G. Fraser and A. Arcuri, “EvoSuite at the SBST 2016 tool

competition,” in Proceedings of 2016 IEEE/ACM 9th

International Workshop on Search-Based Software Testing

(SBST), Austin, TX, 2016, pp. 33-36. IEEE.

45. G. Fraser, J. M. Rojas, J. Campos, and A. Arcuri, “EvoSuite

at the SBST 2017 tool competition,” in Proceedings of 2017

IEEE/ACM 10th International Workshop on Search-Based

Software Testing (SBST), Buenos Aires, Argentina, 2017, pp.

39-42.

46. R. Lowry, “Concepts and Applications of Inferential

Statistics,” Vassar College, Poughkeepsie, NY, 2011.

47. C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-

directed random test generation,” in Proceedings of the 29th

International Conference on Software Engineering, Minnea-

polis, MN, 2007, pp. 75-84.

Aman Jaffari

Aman Jaffari received the M.Sc. degree in Software Engineering from Chonbuk National University in 2015.
He is currently a Ph.D. candidate in the Department of Software Engineering and a research fellow at
Chonbuk National University. His research interests are software quality assurance, model-based testing,
search-based software testing, etc.

Cheol-Jung Yoo

Cheol-Jung Yoo received B.S. degree in Computer Science and Statistics from Chonbuk National University,
Jeonju, Korea in 1982, then, M.S. degree in Computer Science and Statistics from Chonnam National
University, Gwangju, Korea in 1985, and then, Ph.D. degree in Computer Science and Statistics from
Chonbuk National University, Jeonju, Korea in 1994. He is currently a professor in the Department of
Software Engineering, Chonbuk National University, Jeonju, Korea. He is also the associate chair of the Korea
Information Processing Society. He has been a visiting professor in EECS at the University of California Irvine
(UCI) from January 2012 to July 2013. He has also been the chair of the Software Engineering Research
Society of the Korea Information Processing Society from 2014 to 2015. His current research interests include
software quality and testing, interoperability testing of embedded system and software, software
complexity, big data analysis, etc. He is a life member of the Korean Institute of Information Scientists and
Engineers and the Korea Information Processing Society.

