
Copyright 2019. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 13, No. 4, December 2019, pp. 141-150

A Low Latency Non-blocking Skip List with Retrial-Free
Synchronization
Eunji Lee*

Department of Smart Systems Software, Soongsil University, Seoul, Korea

ejlee@ssu.ac.kr

Abstract
The underlying technology trend stresses the design of the software. With increasing use of many-core computers that

equip a large number of independent processor units, enhancing scalability and concurrency of commercial software is of

crucial importance. To fulfill this demand, non-blocking implementations of the popular data structures are extensively

explored both in academia and industry to effectively harness the massive parallelism in a many-core system. This paper

presents a new non-blocking skip list that is not only scalable but also provides low latency even under high-concurrency

pressure. Existing techniques for parallelizing skip lists rely on retrying insertion operations which fail because one

thread interferes with another. This approach can introduce long-tail latency when multiple threads compete for access to

the same links. We address this issue by exploiting the probabilistic nature of the skip list by allowing insertion opera-

tions to terminate after a failure, even if all the links from a node have not been updated. The resulting reduction in the

heights of many nodes changes the statistical properties of the links, on which the efficiency of the skip list depends. We

compensate this side-effect by recording reductions in node height and recompense for them when new nodes are cre-

ated. To demonstrate the effectiveness of our approach, we implement a prototype of our low-latency non-blocking skip

list, and the measurement study with various workloads shows that our skip list provides more scalable performance and

lower tail latency compared to existing skip lists.

Category: Databases / Data Mining

Keywords: Skip list; Data structures; Database systems; Concurrent computing; Scalability; NoSQL systems

I. INTRODUCTION

Computer hardware technologies have undergone

massive improvements over the last decades. These

advancements have been fueled by the exponential

improvement in the transistor density, which is generally

referred to as Moore’s law [1]. More recently, however,

the increase in performance comes instead from on-die

parallelism. Since the power of individual processors is

limited by the scalability of silicon processes and power

consumption, efforts to develop faster computers are

increasingly focused on multi-core processors [2-4].

However, parallelization of algorithms and synchroni-

zation of parallel processes are well known complex

problems. Parallel programming requires an intricate

analysis of the underlying algorithms and a complicated

synchronization protocol is needed to mediate concurrent

execution flows. While numerous studies have been

carried out to improve the scalability of the computing

systems [5-21], the parallel programming still remains a

challenge.

In line with previously reported studies, our work is

Received 09 December 2019; Accepted 17 December 2019

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2019.13.4.141 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 13, No. 4, December 2019, pp. 141-150

http://dx.doi.org/10.5626/JCSE.2019.13.4.141 142 Eunji Lee

motivated by an observation that current skip lists have

limited scalability despite continual improvements over

the years. The skip list is a multi-layer linked list which

offers a good compromise between complexity and

performance; insertion and lookup both have logarithmic

time complexity. It is extensively used in key-value and

NoSQL databases [22-27], as summarized in Table 1,

while its adoption is also being considered in Linux

Kernel, for replacing a few previous data structures in

task scheduling component and the file system of recent

Linux kernels [28-30].

However, the type of skip list currently used in

commodity software lacks scalability. Inserting data into

a skip list involves multiple pointer updates, which are

difficult to perform atomically without using a mutex

lock. Thus, LevelDB [22], a key-value store (KVS)

developed by Google, uses a blocking version of a skip

list that relies on the condition variable to provide mutual

exclusion. This unscalable implementation of the skip list

severely limits the parallelism of applications, thereby

failing to support scalability at high concurrency. More

recent KVSs such as Facebook’s RocksDB have a more

scalable memory component with a non-blocking skip

list [9, 10], which allows concurrent writes without a

mutex lock. However, this skip list runs in an infinite

loop until all the updates in a transaction are atomically

completed. Under high concurrency, inopportune inter-

leaving of threads causes failures and undesirable increases

in latency.

To address these issues, we present a low-latency non-

blocking skip list, which exploits the probabilistic nature

of the skip list to eliminate long and unpredictable delays

under concurrent writes. The heights of the nodes in a

skip list (i.e., the number of pointers pointing to other

nodes) are randomly determined using a probability

function so that they have a set distribution. Changing this

distribution does not affect the correctness of a skip list as

it simply produces a marginal reduction in performance.

We exploit this property to reduce the latency of

concurrent transactions. During a transaction, we update

pointers from the bottom up, and if a pointer update fails

due to interference from other threads, it is never retried.

Instead, the height of the node is simply reduced to the

number of pointers we have successfully updated. This

mechanism prevents continual failures by multiple threads

causing large increases in latency, even under high

concurrency.

However, repeated changes in the node heights resul-

ting from a carefully built probabilistic function will

increase the time complexity of the skip list. We remedy

this side-effect by run-time tuning of the probability with

which different node heights are selected: the probability

associated with the height that a node would have had

before the intervention of our mechanism is increased

and that associated with the new height produced by our

mechanism is reduced. Thus, the intended distribution is

restored and maintained.

To assess the effectiveness of our approach, we imple-

ment three types of skip lists, including the proposed skip

list, which we evaluate under various workloads. The

experimental results show that our skip list provides more

scalable performance with lower tail latency than current

versions of a skip list under a highly concurrent workload.

The remainder of this paper is organized as follows. In

Section II, we provide a brief overview of the skip list. In

Section III, we explain the design and implementation of

our low-latency non-blocking skip list. In Section IV, we

describe the evaluation methodology and present experi-

mental results. In Section V, we discuss the proposed

design in relation to prior work, and in Section VI we

draw conclusions.

II. THE SKIP LIST

This section briefly describes the structure and opera-

tions of the skip list. The skip list is organized in a multi-

layered linked list [31]. Its bottom layer is a standard

linked list in which each node points to the next. In the

higher layers, nodes point ahead by skipping some of the

intermediate nodes. Each node has three components: a

pair of key and value, and a set of pointers to succeeding

nodes. The nodes are sorted in key order. A skip list of

this sort supports a probabilistic binary search over the

sorted data, allowing O(logN) insertion and retrieval

times. Fig. 1 shows the structure of a basic skip list in

Table 1. Data structures in NoSQL systems

Data store In-memory structure On-storage layout

LevelDB Skip list LSM tree

RocksDB Skip list LSM tree

HBase Skip list LSM tree

DynamoDB Skip list LSM tree

Memcached Hash table Archival log

Redis Hash table Archival log

Fig. 1. Initial state of a skip list.

A Low Latency Non-blocking Skip List with Retrial-Free Synchronization

Eunji Lee 143 http://jcse.kiise.org

which the maximum height of a node (the number of

links) is 3. A skip list supports PUT, GET, and DELETE

operations.

A. PUT

The PUT operation inserts a new node at an appropriate

position in a skip list. Fig. 2 shows how this operation

inserts the key ‘25’ with the value ‘David’. First, a new

node is allocated and initialized with the key and value.

The height of the node refers to the number of the links

that the node has, and it is determined using a random

number generated from a probability function, which

makes the likelihood of a node having a particular height

50% of the likelihood that it has one link fewer [32]. This

distribution has been shown to produce O(logN) lookup

and insertion times [31]. Once the height is decided, the

location of the new node in the sorted dataset is found.

The node is then added to the list by updating the pointers

at all levels. In this example, the key 25 should be placed

between key 3 and key 36 and three preceding pointers

need to be updated.

A second version of the put operation is the update. In

the original formulation of skip lists [31], updates were

performed in place. However, the skip list commonly

used in commercial software interprets an update as the

insertion of a new value for an existing key in front of the

previous value, which is never overwritten. This allows

all versions of the data to be contained, making it easy to

support snapshot isolation [33] through multi-version

concurrency control (MVCC) [34], in which all the views

are consistent at any point in time. In addition, append-

only insertions allow multiple writers to manipulate the

data structure concurrently in a thread-safe manner,

through atomic operations such as a compare-and-swap

(CAS) instruction. Fig. 3 shows what happens when the

value of key ‘47’ is updated from ‘Tom’ by inserting a

new node containing the new value, ‘Tony’, at key ‘47’.

B. GET

The GET operation retrieves the value associated with

a given key k by searching the skip list. Starting at the

head, the search traverses the list using a stack,

comparing k with the key at each node that it encounters.

If k is greater than the key at a node, the node is pushed

on to the stack and the search follows the link pointing to

the next node at the same level. If k is smaller than the

key, the search backtracks by popping the previous node

from the stack and follows a link at the level below the

link that it followed previously. The search concludes

when the given key is found and returns the corres-

ponding value.

A search of an append-only skip list cannot terminate

reliably when the given key k is found, as it could be only

one of the numbers of instances of k, as a result of

previous append operations. The search must, therefore,

descend to the lowest level of links and identify the first

occurrence of k, which will correspond to the most

recently inserted value.

Fig. 4 shows a search for the most recent value at key

‘47’. The search finds a node with a key 47 by traversing

the links at the highest level, but it continues to traverse

lower levels. At the next level, it proceeds forward until it

finds a node with a smaller key than 47, and then moves

to the lowest level. When the search finds a node with a

key 47, it stops and returns the corresponding value. If

the given key does not exist in a skip list, the search stops

between the consecutive nodes bracketing the given key k

at the lowest level.

C. DELETE

The DELETE operation removes a node with a specific

key from the skip list. In the original skip list, a deleted

node is returned to the free list and the links to and from

that node are reconnected. However, in an append-only

skip list, a new node is inserted with the same key as the
Fig. 2. How a PUT operation inserts a new node.

Fig. 3. How a PUT operation updates a node by inserting the
updated value in a new node. Fig. 4. A GET operation on an append-only skip list.

Journal of Computing Science and Engineering, Vol. 13, No. 4, December 2019, pp. 141-150

http://dx.doi.org/10.5626/JCSE.2019.13.4.141 144 Eunji Lee

node to be deleted with a special value (often called a

tombstone flag). This is intended to provide high con-

currency with snapshot isolation among multiple threads

and to obviate the need for height rebalancing of the

remaining nodes after deletion.

III. A LOW-LATENCY NON-BLOCKING SKIP
LIST WITH RETRIAL-FREE SYNCHRONIZATION

We now describe the scalability limitations of existing

skip lists and present our low-latency non-blocking skip

list.

A. Blocking Skip Lists

When a new data is inserted into a skip list, it is

necessary to update a sequence of pointers. If these

updates fail to be performed atomically, the structure of

the skip list can become inconsistent. Fig. 5 shows an

example in which PUT operations with keys ‘25’ and

‘28’ arrive at almost the same time. Both the inserted

nodes should be placed between the nodes with keys ‘3’

and ‘36’ as the two PUT operations are contending for

the same group of links. Unless mutual exclusion is

enforced on these updates, the skip list may enter an

inconsistent state, such as that shown in Fig. 5, in which

links (i.e. the colored links) that should point to the same

node (i.e. the node with 25) point to the different nodes

(i.e. one link points to the node with 28).

To circumvent this undesired outcome, we should be

able to update a set of pointers all or nothing, allowing no

in-between state visible. A blocking skip ensures the

atomicity of multiple pointer updates through the queue-

based serialization mechanism; it maintains a wait queue

at the front end and places arriving PUT requests in the

queue. The group of PUT operations are popped from the

queue and processed serially by a leading thread chosen

among the calling threads, while the remaining threads

are temporarily blocked. On the completion of the group

of PUT operations, the leading thread wakes up the

associated calling threads so that they can continue.

This single-queue approach addresses an inconsistency

problem of a skip list by serializing concurrent updates

with a wait queue. However, this benefit comes at the

cost of poor scalability; the bottleneck that it introduces

severely limits the scalability of a parallel implementation

of a skip list.

B. Non-blocking Skip Lists

Many modern processors offer a CAS instruction,

which compares the contents of a memory location with

an expected value; if they match, it overwrites the

contents of the location with a given new value. The

availability of this functionality as an operation which is

atomic, and therefore cannot be interrupted, allows single

pointer updating to be thread-safe without the need for a

lock. This is the basis of the non-blocking skip list [9].

The non-blocking skip list ensures the atomic mutation

of a series of pointers that need to be updated together

based on the CAS operation with some ordering

constraints on the updates [9]. Upon a put operation, the

non-blocking skip list first searches all the pointers that

need to be updated and store them in a queue. Sub-

sequently, a new node can be inserted, and the pointers

are retrieved from the queue. By updating the pointers

using CAS instructions, it is possible to check that the

pointers in the skip list itself still correspond to those in

the queue of stored pointers. The pointer updates are

enforced from the bottom upwards, and if any pointer has

been changed by another thread then the update is

aborted and retried, starting with a new search for the

remaining pointers. The process is repeated until successful.

Figs. 6 and 7 show an example of two concurrent put

operations. Both of them need to create a new node,

which is assigned a height of 3, and both of these nodes

need to be placed between the keys ‘3’ and ‘35’. Three

preceding pointers need to be updated in both the

operations and the consistency of these updates is critical.

Fig. 6 shows the timeline of these PUT operations in

which one thread is interrupted within a critical section.

A failure occurs (at timestamp 8) because the second

Fig. 5. An inconsistent skip list with non-atomic concurrent
writes.

Fig. 6. Timeline of concurrent PUT operations in a non-blocking
skip list.

A Low Latency Non-blocking Skip List with Retrial-Free Synchronization

Eunji Lee 145 http://jcse.kiise.org

thread has changed the value of the pointer (P3). The first

thread, therefore, resumes operation, with a new search

for pointers to be updated (P3).

This stop-and-retry mechanism is effective unless

many threads are operating on the same part of a skip list.

In that case, threads will continually interfere with each

other’s attempts to retry link updates, leading to long and

highly unpredictable delays. In multi-tenant systems, this

long-tail latency can violate service level agreement

(SLA).

C. A Low-Latency Non-blocking Skip List

We introduce a new form of skip list, which addresses

the issue of long-tail latency, based on the observation

that the O(logN) property of a skip list depends on the

statistical properties of the heights of all the nodes. The

height of some nodes can be reduced to simplify the

concurrent operations, provided that compensatory

increases in height are made to other nodes, to restore the

overall distribution of node heights. Height reduction and

statistical compensation are addressed in the following

two sections.

1) Post-failure adaption:

The skip list is inherently a probabilistic data structure

where the node height (i.e., the number of pointers

pointing to the next nodes) is randomly determined by a

probability function [32]. The heights eventually have an

intended probabilistic distribution in which the O(logN)

insertion and lookup times are ensured. The proposed

skip list addresses the long-tail latency problem by

exploiting this randomness property. We allow PUT

operations to terminate in failure, despite the fact that all

the pointers from a node have not been updated. Instead,

we reduce the node height to the number of pointers that

have been successfully updated before a failure.

Fig. 8 shows how our low-latency non-blocking skip

list copes with a pointer update failure, as demonstrated

in the example of Fig. 7. The thread, which has failed to

update the highest-level link of a preceding node during a

PUT operation for key ‘25’ because of interference from

the other thread, modifies the height of the node to two,

which is the number of pointers that have been

successfully updated. This adaptation eliminates the need

to retry the updates.

2) Dynamic probability tuning:

One primary challenge of our low-latency non-blocking

skip list is how to ensure the intended distribution of node

heights against post-failure changes to them in failure;

the mutation of the statistical properties of the heights

may increase the time complexity of the skip list.

In a skip list, the probability P(h) that a new node n is

given a height h is ph, where p is usually set to 1/2. The

height is initialized to 1, and a random number is

generated between 0 and 1. If the random number is

smaller than p, the height of a new node is set to the

current height, which is 1. Otherwise, the height is

incremented by 1, and a new random number is generated.

Thus, the number of nodes of each height exponentially

decreases in proportion to that of height, yielding O(logN)

search and insertion times in a skip list.

We need to adapt this procedure for choosing node

heights, so as to compensate for the nodes which are

reduced in height as a result of failed updates. There is no

obvious way of modifying the very straightforward

Fig. 7. Snapshots over PUT operation timeline.

Fig. 8. Consistency support in the LLNB skip list.

Journal of Computing Science and Engineering, Vol. 13, No. 4, December 2019, pp. 141-150

http://dx.doi.org/10.5626/JCSE.2019.13.4.141 146 Eunji Lee

method of node height determination described above.

Instead, we introduce a hash table of node heights that

have been replaced and indexed by their node heights

(Fig. 9). When a new height is generated by the procedure

described above, the hash table is consulted to find out

whether any nodes have been modified to that height. If

an entry is found, then the new node is given the height of

the node that was previously modified. In other words,

for each change in height that is used to deal with an

update failure, an opposite change is made from the data

stored in the hash table.

IV. PERFORMANCE EVALUATION

This section describes the evaluation methodology and

experimental results for the performance evaluation of

the proposed low-latency non-blocking skip list.

A. Methodology

To assess the effectiveness of our skip list, we

implement the original blocking skip list (B-SKIP), the

non-blocking skip list (NB-SKIP), and our low-latency

non-blocking skip list (LLNB-SKIP). For a comprehensive

analysis, we also study the no-hotspot skip list (NH-

SKIP), which has been recently designed to improve

concurrency through asynchronous link updates [35].

Specifically, the NH-SKIP maintains a background thread

that builds indexing links asynchronously, while the

foreground writers only insert data into the lowest layer.

Accordingly, the NH-SKIP avoids undesired interferences

across threads and achieves a fast response time under

high concurrency.

Our experiments are performed on a machine with an

Intel Xeon 48-core E5-2650 running at 2.2 GHz with a

32 GB main memory. We measure the performance of the

skip lists by running a microbenchmark that generates a

million PUT and a million GET operations for three

different workloads, each of which is sequential, random,

and skewed. The skewed workload mimics a real-world

workload that has a locality and is coined based on a

Zipfian distribution function provided by a numpy library.

The key and value are both set to 16 bytes in size.

B. Throughput

Fig. 10 shows the IOPS (input/output operations per

second) of the PUT and GET operations for the four types

of skip lists under various workloads. We measure the

performance by varying the number of threads from one

to 64.

For PUT operations, all the non-blocking skip lists

(NB-SKIP, LLNB-SKIP, and NH-SKIP) scale well with

the increased number of threads, while the blocking skip

list (B-SKIP) exhibits poor performance under high

concurrency. The LLNB-SKIP achieves almost identical

performance to the NB-SKIP across all workloads. It is

apparent that removing retrials for link updates is

scarcely effective in improving throughput, and suggests

that the distribution of the node heights is effectively

maintained by the compensation mechanism in the

LLNB-SKIP.

One noticeable result is that the NH-SKIP displays

disparate performance trends compared to the other skip

lists. It provides excellent performance when the number

of threads is smaller than 16, but its performance

significantly drops under more threads. Our in-depth

analysis reveals that in the NH-SKIP, the indexing links

are solely built by a background thread. Thus, if a large

number of requests arrive concurrently before the

background thread appropriately makes the indexing

links, the performance dramatically decreases. In extreme

cases, the time complexity of the insertion operation

increases to nearly O(N) because the NH-SKIP can

linearly search the nodes and does not skip the in-

between nodes. Furthermore, the performance of the NH-

SKIP is also highly affected by the underlying scheduling

policy. If the execution of the background thread is not

properly scheduled, the NH-SKIP introduces severe

performance fluctuations as shown in the random

workloads, which can be a fatal weakness in terms of

SLA governance.

Despite the weaknesses above, the NH-SKIP achieves

the best performance for all the thread numbers under the

skewed workloads. This superiority, however, comes at

the cost of sacrificing consistency. As described in

Section II, the skip list used in KVS typically supports

MVCC, which enables consistent data access without

blocking under concurrent reads and writes. To support

this property, B-SKIP, NB-SKIP, and LLNB-SKIP do not

allow overwrites but insert the updated data as another

node. This append-only behavior enables MVCC through

snapshot isolation but incurs an overhead cost of inserting

and maintaining the duplicated keys. In contrast, NH-

SKIP, which is intended for general purposes, has no

support for MVCC and simply overwrites an existing

Fig. 9. Hash table containing modified heights.

A Low Latency Non-blocking Skip List with Retrial-Free Synchronization

Eunji Lee 147 http://jcse.kiise.org

value upon an update, which is less costly than insertion.

This relaxation yields a large performance benefit for the

skewed workload, as it includes a significant number of

updates.

On GET workloads, while all of the skip lists are

scalable, the degree to which the performance scales

varies. There is little variation in performance between

the B-SKIP, NB-SKIP, and LLNB-SKIP because they all

enable non-blocking reads. In contrast to PUT operations,

the NH-SKIP provides inferior performance for GET

operations. The primary reason for this is that the data

structures of the NH-SKIP incur more cache misses than

others. All the skip lists other than the NH-SKIP use a

consecutively allocated table for the node structure,

which mimics the skip list design of the commercial-level

KVS. However, the NH-SKIP, which is publicly

available at [36], uses a linked list to implement a node

structure that can dynamically adjust the node height with

a background thread. This flexibility adversely affects the

performance by increasing the number of cache misses,

thereby resulting in an average performance loss of 45%.

C. Tail Latency

To investigate the effectiveness of the proposed

techniques in terms of the SLA requirement, we measure

the latency of individual requests for different workloads.

Fig. 11 shows the cumulative distribution function of the

PUT latency as the number of threads varies from 4 to 64.

The performance at other threads is omitted owing to

limited space. In Fig. 11, it can be seen that the LLNB-

SKIP reduces tail latency at high concurrency, compared

to NB-SKIP. In particular, the LLNB-SKIP is effective in

taming tail latency under the skewed workloads, reducing

the 99.9th percentile latency by 23% on average, and up

to 68% compared to the NB-SKIP. When the workloads

have a strong locality, threads contend for the popular

group of links, which inevitably increases the latency

through more conflicts. Fig. 12 shows the number of

CAS failures due to conflicts during concurrent writes

and draws similarities to the CDF study. For the

sequential workloads, we partition the entire dataset into

a disjointed sub-dataset and allocate each sub-dataset to

different threads. This reduces the chances of interference

of threads with each other and the ratio of conflicts is

negligible (less than 0.001%). However, under the

skewed workloads where a small set of popular data is

frequently accessed, the possibility of occurrence of

conflict increases by up to 2%. Consequently, the NB-

SKIP incurs a significant number of CAS failures for the

Fig. 10. IOPS of the PUT (a) and GET (b) operations.

Journal of Computing Science and Engineering, Vol. 13, No. 4, December 2019, pp. 141-150

http://dx.doi.org/10.5626/JCSE.2019.13.4.141 148 Eunji Lee

skewed workloads that are orders of magnitude larger

than those in the other workloads. In contrast, the LLNB-

SKIP demonstrates great effectiveness in reducing tail

latency in the settings, reducing the number of CAS

failures by 13% on average and up to 23% compared to

the NB-SKIP.

V. RELATED WORK

There is a long history of modifying data structures for

concurrent programming. Michael [5] presents the first

implementation of a lock-free hash table by making use

of a CAS instruction. Thread-safe insertion and retrieval

of data with a hash table are relatively straightforward,

but resizing the table is more difficult. This can be

approached through data-structure revision and optimization

techniques [6, 7]. Michael and Scott [37] invent a queue

that supports concurrent enqueue and dequeue operations

by separating locks for head and tail accesses using a

dummy node. Moir and Shavit [8] present a concurrent

linked list that uses a hand-overhand locking mechanism

instead of global locking.

Among the previous studies, the most related work

includes ones on the scalability of a skip list. The first

concurrent lock-free skip list is introduced by Fraser [9]

and Harris [10] and its practical implementation by Lea

[6] is adopted in the JavaTM SE 6 platform. Herlihy et al.

[11] present a lock-based concurrent skip list that ensures

the correctness of updates with a momentary locking and

Fig. 12. The number of CAS failures.

Fig. 11. Cumulative distribution function of the put latency: (a) sequential workloads, (b) random workloads, and (c) skewed workloads.

A Low Latency Non-blocking Skip List with Retrial-Free Synchronization

Eunji Lee 149 http://jcse.kiise.org

reducing the time delay which a lock needs to be applied.

They argue that this approach strikes a balance between

complexity and concurrency. Alam et al. [12] introduce a

distributed version of a skip list for fast range queries that

uses a message-passing mechanism and scales well on a

cluster of multi-core computers. Our work shares similari-

ties with these studies, but has notable differences in that

we improve the scalability of the skip list in terms of a

tail latency, which is a primary concern in multi-tenant

systems.

Another class of studies examines the scalability of the

Linux systems. A study of MIT investigates the scalability

of a large set of applications in multicore systems and

reveals a scalability bottleneck in Linux, which they

eliminate by introducing a scalable counting technique

called a sloppy counter [13]. An operating system structure

that mimics a distributed system running over independent

cores by means of message passing is proposed [14] to

overcome the limited scalability of legacy operating

systems. Boyd-Wickizer et al. [15] reveal that the file

descriptor access and the memory management codes

lack scalability due to their unnecessary sharing across

processes. They address this challenge by dedicating

cores to specific functions of the operating systems and

thus avoiding inter-core bottlenecks.

Scalability has also been actively studied in data

management systems. Cheng et al. [16] present a parallel

OLAP query processor called ‘PhiDB’ which efficiently

handles concurrent operations with multi-threads on

multi-core architectures. Cui et al. [17] also scale OLTP

applications to utilize the increasing number of cores in

computing systems. They observe that both applications

and the Linux kernel have scalability bottlenecks and

propose several techniques such as a scalable database

lock and a spin lock to address them. Balkesen et al. [18]

perform an empirical study on parallel join algorithms

(sort-merge and hash join) on multi-core systems.

Chhugani et al. [19] modify the merge sort algorithm for

multi-core architectures. Han et al. [20] improve the

scalability of the KVS by combining two complementary

data structures as a unified memory component, and

Merritt et al. [21] present a scalable log-structured KVS

to support concurrent writes on the multi-core servers

with large memories.

VI. CONCLUSION

This paper revealed the scalability limitations of current

skip lists extensively used in commercial software. The

blocking skip list has poor scalability due to the per-

formance bottleneck caused by queue-based serialization,

while the non-blocking skip list suffers from long-tail

latency coming from its continual retry behavior to enforce

atomicity of a transaction against the interferences of

other threads. This paper overcomes this the limitation by

presenting a low-latency non-blocking skip list that

maintains the consistency of a skip list with retrial-free

synchronization. We achieve this goal with two strategies,

the post-failure adaptation, which simply reduces the

node height and eliminates the need of for a retry in

failure, and the dynamic probability tuning, which adjusts

the probability to compensate for the resulting reduction

in the node heights. The performance evaluation with

various workloads demonstrates that our skip list achieves

both a scalable performance and low-tail latency under a

highly concurrent circumstance. Given that the skip list is

widely used in a variety of environments, from Internet

service providers such as Google [22] and Facebook [23]

to block chain systems such as Hyperledger Fabric [38],

it is hypothesized that the proposed low-latency and

concurrent skip list will greatly help to improve the user’s

experience in real systems.

ACKNOWLEDGMENT

This work was supported in part by the Basic Science

Research Program through the National Research Foun-

dation of Korea (No. NRF-2017R1D1A1B03031494).

REFERENCES

1. G. E. Moore, “Cramming more components onto integrated

circuits,” Electronics, vol. 38, no. 8, pp, 1-4, 1965.

2. J. L. Manferdelli, N. K. Govindaraju, and C. Crall,

“Challenges and opportunities in many-core computing,”

Proceedings of the IEEE, vol. 96, no. 5, pp. 808-815, 2008.

3. R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating

Systems: Three Easy Pieces. Madison, WI: Arpaci-Dusseau

Books, 2015.

4. S. H. Fuller and L. I. Millett, The Future of Computing

Performance: Game Over or Next Level? Washington, DC:

National Academy Press, 2011.

5. M. M. Michael, “High performance dynamic lock-free hash

tables and list-based sets,” in Proceedings of the 14th Annual

ACM Symposium on Parallel Algorithms and Architectures,

Winnipeg, Canada, 2002, pp. 73-82.

6. Doug Lea’s Home Page, http://gee.cs.oswego.edu/.

7. O. Shalev and N. Shavit, “Split-ordered lists: lock-free

extensible hash tables,” Journal of the ACM, vol. 53, no. 3,

pp. 379-405, 2006.

8. M. Moir and N. Shavit, “Concurrent data structures,” in

Handbook of Data Structures and Applications. Boca Raton,

FL: Chapman and Hall/CRC Press, 2004.

9. K. Fraser, “Practical lock-freedom,” Computer Laboratory,

University of Cambridge, Technical Report No. UCAM-CL-

TR-579, 2004.

10. T. L. Harris, “A pragmatic implementation of non-blocking

linked-lists,” in Distributed Computing. Heidelberg: Springer,

2001, pp. 300-314.

11. M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, “A

Journal of Computing Science and Engineering, Vol. 13, No. 4, December 2019, pp. 141-150

http://dx.doi.org/10.5626/JCSE.2019.13.4.141 150 Eunji Lee

provably correct scalable concurrent skip list,” in Proceedings

of the 10th International Conference on Principles of

Distributed Systems (OPODIS), Bordeaux, France, 2006.

12. S. Alam, H. Kamal, and A. Wagner, “A scalable distributed

skip list for range queries,” in Proceedings of the 23rd

International Symposium on High-Performance Parallel And

Distributed Computing, Vancouver, Canada, 2014, pp. 315-

318.

13. S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M.

F. Kaashoek, R. T. Morris, and N. Zeldovich, “An analysis

of Linux scalability to many cores,” in Proceedings of

the 9th USENIX Symposium on Operating Systems Design

and Implementation, Vancouver, Canada, 2010, pp. 1-16.

14. A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs,

S. Peter, T. Roscoe, A. Schupbach, and A. Singhania, “The

multikernel: a new OS architecture for scalable multicore

systems,” in Proceedings of the ACM SIGOPS 22nd Symposium

on Operating Systems Principles, Big Sky, MT, 2009, pp.

29-44

15. S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.

Kaashoek, R. T. Morris, et al., “Corey: an operating system for

many cores,” in Proceedings of the 8th USENIX Symposium

on Operating Systems Design and Implementation, San

Diego, CA, 2008, pp. 43-57.

16. X. Cheng, B. He, M. Lu, C. T. Lau, H. P. Huynh, and R. S. M.

Goh, “Efficient query processing on many-core architectures:

a case study with Intel Xeon phi processor,” in Proceedings

of the 2016 International Conference on Management of

Data, San Francisco, CA, 2016, pp. 2081-2084.

17. Y. Cui, Y. Chen, and Y. Shi, “Scaling OLTP applications on

commodity multi-core platforms,” in Proceedings of 2010

IEEE International Symposium on Performance Analysis of

Systems & Software (ISPASS), White Plains, NY, 2010, pp.

134-143.

18. C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu, “Multi-

core, main-memory joins: sort vs. hash revisited,” Proceedings

of the VLDB Endowment, vol. 7, no. 1, pp. 85-96, 2013.

19. J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,

Y. K. Chen, A. Baransi, S. Kumar, and P. Dubey, “Efficient

implementation of sorting on multi-core SIMD CPU

architecture,” Proceedings of the VLDB Endowment, vol. 1,

no. 2, pp. 1313-1324, 2008.

20. Y. Han, B. S. Kim, J. Yeon, S. Lee, and E. Lee, “TeksDB:

weaving data structures for a high-performance key-value

store,” Proceedings of the ACM on Measurement and

Analysis of Computing Systems, vol. 3, no. 1, article no. 8,

2019.

21. A. Merritt, A. Gavrilovska, Y. Chen, and D. Milojicic,

“Concurrent log-structured memory for many-core key-value

stores,” Proceedings of the VLDB Endowment, vol. 11, no. 4,

pp. 458-471, 2017.

22. Leveldb, https://github.com/google/leveldb.

23. rocksdb, https://github.com/facebook/rocksdb.

24. Apache, “HBase,” https://hbase.apache.org.

25. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels, “Dynamo: Amazon's highly available key-value

store,” ACM SIGOPS Operating Systems Review, vol. 41,

No. 6, pp. 205-220, 2007.

26. What is Memcached?, https://memcached.org.

27. Redis, https://redis.io.

28. The skiplist data structure, https://lwn.net/Articles/552088.

29. B. Liu, “Btrfs: apply the probabilistic skiplist on btrfs,” 2012,

https://marc.info/?l=linux-btrfs&m=132618090507787&w=2.

30. A kernel skiplist implementation (Part 1), https://lwn.net/

Articles/551896/.

31. W. Pugh, “Skip lists: a probabilistic alternative to balanced

trees,” Communications of the ACM, vol. 33, no. 6, pp. 668-

676, 1990.

32. T. Papadakis, “Skip lists and probabilistic analysis of

algorithms,” Ph.D. dissertation, University of Waterloo,

Canada, 1993.

33. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and

P. O’Neil, “A critique of ANSI SQL isolation levels,” ACM

SIGMOD Record, vol. 24, no. 2, pp. 1-10, 1995.

34. P. A. Bernstein and N. Goodman, “Concurrency control in

distributed database systems,” ACM Computing Surveys, vol.

13, no. 2, pp. 185-221, 1981.

35. T. Crain, V. Gramoli, and M. Raynal, “No hot spot non-

blocking skip list,” in Proceedings of 2013 IEEE 33rd

International Conference on Distributed Computing Systems,

Philadelphia, PA, 2013, pp. 196-205.

36. V. Gramoli, “Synchrobench,” https://github.com/gramoli/

synchrobench.git.

37. M. M. Michael and M. L. Scott, “Nonblocking algorithms

and preemption-safe locking on multiprogrammed shared

memory multiprocessors,” Journal of Parallel and Distributed

Computing, vol. 51, no. 1, pp. 1-26, 1998.

38. IBM, “Hyperledger Fabric state database,” https://hyperledger-

fabric.readthedocs.io/en/release-1.4/ledger.html.

Eunji Lee https://orcid.org/0000-0001-5916-2301

Eunji Lee received a Ph.D. degree in computer engineering from Seoul National University in 2012. She was a
visiting scholar in the Department of Electrical Engineering and Computer Science at the University of
Michigan, Ann Arbor, MI, and a senior engineer at the Memory Division of Samsung Electronics, Co. Ltd. She
is currently an assistant professor in the Department of Smart Systems Software, Soongsil University, Seoul,
South Korea. Her research interests include cloud computing, data analytics platforms, data-centric
applications, and emerging memory technologies. She has published more than 40 papers in leading
conferences and journals in these fields, including the IEEE Transactions on Computers, the IEEE Transactions
on Knowledge and Data Engineering, and ACM Transactions on Storage. She also received the Best Paper
Awards at the USENIX Conference on File and Storage Technologies in 2013.

