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Abstract
A (hyper-)cuboid, also known as a hyper-rectangle or a box, is a compact body of dimension three or higher, extending

its two-dimensional analog, rectangles. A cuboidal shell is the compact volume between a cuboid and its inward offset.

In this paper, we address the problem of computing a minimum-width cuboidal shell that encloses at least n – k points out

of n given points in Rd when d ≥ 3. The number k is given as input and the k excluded points as a result are considered

outliers of the n input points. Prior to our work, there was no known algorithm for the cuboidal shell problem considering

outliers. We solve the problem for the first time by presenting two efficient algorithms. Our algorithms run in O(k 2d n)

time and O(n) space or in O(n logd-1 n + k 2d logd n) time and O(n logd-1 n) space.
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I. INTRODUCTION

A family of optimization problems in computational

geometry ask to find a certain geometric shape, such as a

circle, a square, or a rectangle, that encloses a given set of

points and optimizes a predefined objective function on

the shapes. The smallest enclosing circle problem is such

a well-known example, which involves determination of

the smallest circle enclosing a given set of points in the

plane. Encompassing a wide range of applications in

multiple areas, including shape recognition, facility

location, and data analysis, these problems have been

studied extensively in computational geometry.

As a variation and an extension of these geometric

problems, determination of a minimum shape covering

all but a few input points is of great interest in view of

outlier removal. More precisely, given n input points and

an integer k ≥ 0, we want to find a smallest shape

enclosing at least n – k out of the n input points. From the

viewpoint of optimization, excluding the k points reduces

the objective value the most, given the relatively high

cost of inclusion. In this sense, such excluded points are

considered as outliers of the given point set. From the

concept of outliers, the input number k is often assumed

to be very small relatively to the number n of data points,

such as a constant or at most k = O(log n).

Specifically, the problem of finding an axis-parallel

square or rectangle that encloses n given points in the

plane R2 but excludes k outliers was of great interest in

the 1990’s. Aggarwal et al. [1] presented algorithms of

running time O((n – k)2n log n) both for square and

rectangle cases. For the rectangle case, Segal and Kedem

[2] presented an O(n + k2(n – k))-time algorithm and

Atanassov et al. [3] and Ahn et al. [4] introduced an

improvement to O(n + k3) time. For the square case,

Chan [5] presented a randomized algorithm that runs in

O(n log n) expected time, and was improved later by Ahn

et al. [4] to O(n + k log k) time. More general frameworks
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to handle outliers as violations of constraints for LP-type

optimization problems have also been introduced by

Matoušek [6] and Chan [7]. The computation of a

minimum enclosing circle, square, or rectangle falls into

the LP-type problems.

Another recent popular shape studied in this research

stem is the annulus, which is informally a ring-shaped

region between two concentric circles. The width of an

annulus is the difference in radii of the two circles

defining the annulus. The minimum-width annulus problem

seeks to determine an annulus of minimum width that

encloses n input points. After early work on the problem

with O(n2)-time algorithms [8-10], the first subquadratic

O(n8/5+ε)- time algorithm was proposed by Agarwal et al.

[11] and the currently best algorithm takes O(n3/2+ε) time

by Agarwal and Sharir [12]. The minimum-width

annulus problem can be extended by considering annuli

of different shapes such as squares and rectangles. A

square/rectangular annulus is defined as a closed region

between a square/rectangle and its offset, and the width

of such an annulus is defined by the distance between the

two squares/rectangles. Abellanas et al. [13] presented an

O(n)-time algorithm for the rectangular annulus problem

and considered several variations of the problem.

Gluchshenko et al. [14] proposed an O(n log n)-time

algorithm for the square annulus, and proved that this is

optimal. Fig. 1 illustrates rectangular annuli.

The minimum-width annulus problem with outliers has

also been studied recently. The author considered the

square and rectangular annulus problem with outliers and

presented the first algorithms [15]. Later, these algorithms

were improved by Ahn et al. [16]. Specifically, given n

points in the plane and an integer k ≥ 0, a minimum-width

axis-parallel square annulus that encloses at least n – k

input points can be computed in O(k2n log n) time and a

minimum-width axis-parallel rectangular annulus with the

same property can be computed in O(n log n + k4 log2 n)

or O(nk2 log k + k4 log2 k) time. See Fig. 1(b).

In this paper, we consider the extension of the

minimum-width rectangular annulus into three or higher

dimensions with outliers, namely the minimum-width

cuboidal shell problem with outliers. A cuboid, also often

called a box, a hyper-rectangle, or an orthotope, is

represented by a Cartesian product of three or more

intervals, while a rectangle is represented by a Cartesian

product of two intervals. A cuboidal shell is a closed

volume between a cuboid and its inward offset.

Specifically, given a set P of n points in Rd for d ≥ 2 and

an integer k ≥ 0, the k-CUBSHELL problem asks to find a

cuboidal shell of minimum width that encloses at least

n – k points in P. Note that for d = 2 the k-CUBSHELL

problem is equivalent to the minimum-width rectangular

annulus with k outliers.

We present two algorithms to solve the k-CUBSHELL

problem in O(k2dn) and O(n logd-1 n + k 2d logd n) time

respectively, for any fixed d ≥ 3 and any input k. To our

best knowledge, no nontrivial algorithm was known for

the problem with d ≥ 3 and k ≥ 1. Note that k is assumed

to be very small relative to n. When no outlier was

allowed, that is, k = 0, a linear-time algorithm for the

problem was presented by Mukherjee et al. [17].

The remainder of the paper is organized as follows.

After some preliminaries are given in Section II,

algorithms for the k-CUBSHELL problem are described

and analyzed in Sections III and IV. Finally, Section V

concludes the paper with remarks and discussion.

II. PRELIMINARIES

In this paper, we consider the Euclidean space Rd for

fixed d ≥ 3 with d orthogonal axes, called the

, so any point  is represented by a

tuple of d coordinates ( ).  Throughout the paper,

we mean by a (hyper-)cuboid a compact subset defined to

be a Cartesian product of d closed intervals:

such that  for each i = 1,...,d. Hence, a cuboid is

determined by two points a = (a1, ...,ad), b = (b1, ...,bd)

 as shown in Fig. 2(a). A cuboid is also represented

by the intersection of 2d half-spaces whose bounding

hyperplane is orthogonal to one of the axes: more

x1,x2,...,xd axes– p R
d

∈

x1,x2,...,xd

a1,b1[ ] a2,b2[ ]× ...× ad,bd[ ] R
d

⊂×

ai bi≤

R
d

∈

Fig. 1. Illustrations of (a) a rectangular annulus defined by a
rectangle R and its offset R’ by δ (shaded area), (b) a minimum-
width rectangular annulus enclosing all input points but 2 inside
outliers and 5 outside outliers. Note that a rectangle is a 2-
dimensional cuboid and a rectangular annulus is a 2-dimensional
analog of a cuboidal shell.

Fig. 2. (a) A 3-dimensional cuboid R. (b) A 3-dimensional
cuboidal shell defined by outer cuboid R (gray) and its offset R’
(black).
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precisely, if a cuboid is determined by two points a and b

as above, it is equal to the set

,

where each of the 2d inequalities corresponds to such a

half-space orthogonal to an axis. Note that when d = 2, a

cuboid is known as a rectangle in the plane R2.

Consider a cuboid R defined by two points .

Note that R has 2d facets and 2d vertices. For i = 1,...,d,

we call  the xi-span of R. The dimension of R is d

minus the number of its xi-spans that are zero; R is a d-

dimensional cuboid if none of its xi-spans is zero.

Suppose that R is a d-dimensional cuboid and w is the

minimum value of the xi-spans of R over i = 1,...,d. The

(inward) offset of R by δ for any  is a cuboid

obtained by sliding the 2d facets of R inwards by δ. The

offset of R by  is degenerated to a cuboid of

dimension less than d. Fig. 1(a) will be helpful for

intuitive understanding of the inward offset of R by δ.

For any positive , consider the inward offset R' of

R by δ. Then, the closed volume A between R and R',

including its boundary, is called a cuboidal shell with the

outer cuboid R and the inner cuboid R', as shown in Fig.

2(b). Note that when d = 2, a cuboidal shell is called a

rectangular annulus as shown in Fig. 1. The distance δ

between R and R' is the width of the cuboidal shell A. The

complement Rd \ A of the shell A is separated into two

connected components. We shall call the outside of R the

outside of A and the inside of R' the inside of A.

Given a set P of n points in Rd and a non-negative

integer k, the k-CUBSHELL problem asks to find a

minimum-width cuboidal shell that encloses at least n – k

points of P. The k points that are not covered by the

resulting shell are called outliers. Since the complement

of any cuboidal shell is separated into its inside and

outside, such an outlier may lie either in the inside or the

outside of the shell. We call an outlier an outside outlier

if it lies in the outside of the resulting shell, or an inside

outlier, otherwise. In some applications, no inside outlier

would be allowed while outside outliers are allowed, and

vice versa, or even the numbers of inside and outside

outliers are prescribed. This motivates to a variation of

the problem, called the (kin, kout)-CUBSHELL problem for

non-negative integers kin and kout, in which at most kin
inside outliers and at most kout outside outliers are allowed.

When no outlier is allowed, i.e., k = 0, the 0-CUBSHELL

problem can be solved in O(n) time by Mukherjee et al.

[17]. Their linear-time algorithm is based on the

following observation, which will be useful for further

discussions.

LEMMA 1 (Mukherjee et al. [17]). There exists a

minimum-width cuboidal shell A enclosing all points in a

given set P of points in Rd such that the outer cuboid of A

is the smallest cuboid enclosing P. □

III. FIRST ALGORITHM

In this section, we present a first algorithm for the k-

CUBSHELL problem and the (kin, kout)-CUBSHELL problem.

Recall that the dimension d ≥ 3 is a fixed constant and we

are given a set P of n points in Rd.

Note that the k-CUBSHELL problem can be solved by

solving k + 1 instances of the (kin, kout)-CUBSHELL problem.

Any feasible solution to the k-CUBSHELL problem is a

cuboidal shell with kin inside outliers and at most 

outside outliers. Hence, an algorithm for the (kin, kout)-

CUBSHELL problem can be used to develop an optimal

solution to the k-CUBSHELL problem by invoking it for

the ( )-CUBSHELL problem for .

Thus, we mainly discuss the (kin, kout)-CUBSHELL

problem. We start with a crucial observation.

LEMMA 2. There exists a minimum-width cuboidal

shell that is an optimal solution to the (kin, kout)-

CUBSHELL problem for points P such that each facet of

its outer cuboid contains at least one point in P.

Proof. Let A be any minimum-width cuboidal shell

that is an optimal solution to the (kin, kout)-CUBSHELL

problem for point set P. Let P' := P ∩ A be the set of

points in P that are contained in A. As required, we have

|P' | ≥ .

Now, consider a minimum-width cuboidal shell A' that

contains all points in P' such that its outer cuboid R' is the

smallest cuboid enclosing all points of P'. Such a

cuboidal shell A' is guaranteed to exist by Lemma 1.

Since R' is the smallest cuboid enclosing P', each side of

R' must contain at least one point of P'. Note that the

width of A' is at most that of A by definition.

The last step of our proof is done by observing that A'

is also an optimal solution to our original (kin, kout)-

CUBSHELL problem. Let Qin and Qout be the sets of inside

and outside outliers of P with respect to A. Similarly, let

 and  be the sets of inside and outside outliers of P

with respect to A'. First, observe that = Qout since the

outer cuboid R' of A' is the smallest cuboid enclosing P' =

P ∩ A. However, note that P ∩ A = P' = P \ (Qout Qin)

and P ∩ A = P' ⊆ P ∩ A' = P \ ( ). We thus have

 = (P \ ) \ (P ∩ A')
       ⊆ (P \ (Qout

) \ (P ∩ A)

                           = Qin,

since (P ∩ A, Qin, Qout) forms a partition of P and so does

(P ∩ A', , ). Hence, we conclude that | | ≤ |Qin| ≤

kin, which means that A' is also a feasible solution to the

original (kin, kout)-CUBSHELL problem for a point set P.

This implies that A' is another optimal cuboidal shell that

satisfies the condition stated in the lemma. □

The above lemma enables us to consider a finite

x1,...,xd( ) R
d
 ∈  ai xi bi≤ ≤ , i 1,...,d={ }

a, b R
d

∈

bi ai–

0 δ w 2⁄≤ ≤

δ w 2⁄=

δ w≤

k kin–

kin, k kin– 0 kin k≤ ≤

n kin kout+( )–

Qin′ Qout′

Qout′

⊃

Qout′

⊃

Qin′

Qin′ Qout′

Qin′ Qout′ Qin′
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number of multiple candidate outer cuboids. Note that a

cuboid is bounded by 2d facets or hyperplanes that are

orthogonal to each of the d axes in Rd. Thus, our

approach is to determine the best outer cuboid among

those candidates by testing each of them. If we fix a

candidate outer cuboid, the problem is reduced to finding

a best inner cuboid for the fixed outer one. This problem

is formulated into a more general form, called the offset

cuboid problem.

A. The Offset Cuboid Problem

In the offset cuboid problem, we are given a set P of n

points in Rd, a d-dimensional cuboid R, and an integer kin
≥ 0, and we want to find the largest inward offset R' of R

that contains the maximum kin points of P in its interior.

This problem can be easily solved in O(n) time,

independently of kin, as follows. For each ∩ R, let

 ≥ 0 be the real number such that the offset of R

by  contains p on its boundary. Note that those

 lying outside of R can be ignored to solve the

offset cuboid problem. Suppose that p is the point with

the m-th largest  value among points in P ∩ R.

Then, the offset of R by  is the largest offset of R

containing the maximum m – 1 points of P in its interior.

Hence, the offset cuboid problem can be solved by

selecting the (kin + 1)-th largest value among 

over ∩ R.

LEMMA 3. Given a set P of n points in Rd, a d-

dimensional cuboid R, and an integer kin ≥ 0, the offset

cuboid problem can be solved in O(n) time and O(n)

space.

Proof. First, we collect all the points in P ∩ R in O(n)

time. For all ∩ R, the values of  are

computed and stored in an array in O(n) time. Finally, the

(kin + 1)-th largest value among the array is determined

by executing any linear-time selection algorithm such as

the median-of-medians algorithm described in [18]. The

time and space spent is O(n).□

We can devise algorithms for the (kin, kout)-CUBSHELL

problem by using the algorithm described in Lemma 3

above for the offset cuboid problem as a subroutine. The

resulting offset of R is observed, together with R, forming

a minimum-width rectangular annulus with the maximum

kin inside outliers. In case where no outside outlier is

allowed, i.e., kout = 0, an optimal cuboidal shell exists

with its outer cuboid being the smallest cuboid enclosing

P by Lemma 2. Thus, this special case can be handled by

solving the offset cuboid problem with the smallest

cuboid enclosing P in O(n) time.

LEMMA 4. For any fixed d ≥ 3, a set P of n points in

R
d, and an integer kin ≥ 0, the (kin, 0)-CUBSHELL problem

can be solved in O(n) time and O(n) space.

Proof. The smallest cuboid enclosing P can be computed

in O(n) time by computing the maximum and the minimum

values of the coordinates of n points in P. We then apply

Lemma 3 for the set P of n points and integer kin with the

cuboid enclosing P obtained above. The time and space

spent is bounded by O(n) by Lemma 3. □

B. The First Algorithm

We then solve the general case of kout > 0. For each

i = 1,...,d, let  be the sorted array

consisting of the xi-coordinates of n points in P, so that

. Consider any hyperplane H

of Rd that is orthogonal to the xi
-axis, that is, represented

by {xi
= a} for some . Such a hyperplane H is

uniquely determined by a xi
-coordinate. Suppose that the

xi
-coordinate of H is equal to Xi

[ j] for some 0 ≤ j < n. For

each 1 ≤ i ≤ d and 0 ≤ j ≤ n – 1, let  be the hyperplane

in Rd represented as  = { }, that is,  is

orthogonal to the xi-axis and its xi-coordinate is equal to

. Let  and  be the two open half-spaces

separated by  in the +xi-direction and –xi-direction,

respectively.  consists of at most j points in P and 

consists of the maximum n – j – 1 points in P.

By selecting 2d indices , ,…, , ,…, , with 0

≤ ≤ ≤ n – 1 for each 1 ≤ i ≤ d, a cuboid R( ,…,

, ,…, ) is defined as the intersection of 2d half-

spaces, namely,

:= ∩

= .

In order to solve our problem, by Lemma 2, it suffices

to try all cuboids R( ,…, , ,…, ) for all combinations

of 2d indices as outer cuboids such that R( ,…, , ,

…, ) contains at least n – kout points in P. Based on the

above discussion, 

.

Hence, 

 and ,

for each i = 1,...,d, 

This implies that the (kin, kout)-CUBSHELL problem is

reduced to  instances of the case of no outside

outlier, yielding an -time algorithm by Lemma 4.

More precisely, this can be done by iterating all possible

combinations of 2d indices ( ,…, , ,…, ) and

solving the (kin, 0)-CUBSHELL problem for point set

p P∈

δ p, R( )

δ p, R( )

p P∈

δ p, R( )

δ p, R( )

δ p, R( )

p P∈

p P∈ δ p, R( )

Xi Xi 0[ ],...,Xi n 1–[ ]( )=

Xi 0[ ] Xi 1[ ] ... Xi n 1–[ ]≤ ≤ ≤

a R∈

Hi,j

Hi,j xi Xi j [ ]= Hi,j

Xi j [ ] Hi,j
+

Hi,j
−

Hi,j

Hi,j

−

Hi,j

+

j
−

 1 j
−

 2 j
−

 d j
+

 1 j
+

 d

j
−

 1 j
+

 1 j
−

 1

j
−

 d j
+

 1 j
+

 d

R j
−

 1,..., j
−

 d, j
+

 1 ,..., j
+

 d( )

 ∩
i 1,...,d=

H
i,j
i

−

 −
H

i,j
i

+

 +

X1 j
−

 1[ ], X1 j
+

 1[ ][ ] ...× Xd j
−

 d[ ], Xd j
+

 d[ ][ ]×

j
−

 1 j
−

 d j
+

 1 j
+

 d

j
−

 1 j
−

 d j
+

 1

j
+

 d

j
−

 1

i 1,...,d=

∑ n 1– j
+

 i kout≤–
i 1,...,d=

∑+

0 j
−

 i kout≤ ≤ n 1– kout j
+

 i n 1–≤ ≤–

O kout

2d
( )

O kout

2d
n( )

j
−

 1 j
−

 d j
+

 1 j
+

 d
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P ∩ R( ,…, , ,…, ) by applying Lemma 4. Since 0

≤  ≤ kout and n – 1 – kout ≤  < n – 1, the number of

such combinations is bounded by , which results

in time complexity  for any kout > 0.

In the following we show that the number of

combinations of 2d indices tested as candidates can

indeed be reduced to , so that the (kin, kout)-

CUBSHELL problem can be solved in  time, for

any kout > 0.

For any fixed 2d – 1 indices,

and

,

let j* be the smallest index such that the number of points

in P ∩ R( ,…, , ,…, , j*) is at least n – kout. Such

an index j* is uniquely determined by the 2d – 1 indices

( ,…, , ,…, ). Also, for any index  > j* the

number of points in P ∩ R( ,…, , ,…, , j*) is at

most the number of those in P ∩ R( ,…, , ,…, , )

since Xd[ j*] ≤ , and thus

R( ,…, , ,…, , j*)

⊆ R( ,…, , ,…, , ).

This implies that the optimal cuboidal shell for the (0,

kin)-CUBSHELL problem is not worse for points

P ∩ R( ,…, , ,…, , j*) than for points P ∩ R( ,

…, , ,…, , ). Hence, we can ignore those combi-

nations ( ,…, , ,…, , ) for all j* <  ≤ n – 1. In

this way, we are done by checking  combinations

of 2d indices, and hence the same number of candidate

outer cuboids.

Now, we describe our algorithm in a precise way. See

Fig. 3 for a pseudocode of the algorithm.

First, we specify only 2kout + 2 entries of the sorted

array Xi for each i = 1,...,d, namely, Xi[0],..., Xi[kout],

Xi[n − 1 − kout],..., Xi[n − 1]. Note that we do not explicitly

sort all points to identify the sorted arrays Xi, while this

can be done in  time by selecting the

kout-th and (n − 1 − kout)-th value in Xi and sorting only

O(kout) values. We then consider all possible combi-

nations of 2d – 2 indices ( ,…, , ,…, ) by iterating

2d – 2 nested loops, which are compressed into line 6 in

the pseudocode of Fig. 3. In the innermost loop, we

increase  from 0 to kout and for each  we compute the

corresponding value of j*. This innermost loop takes

O(kout) time to specify j* for all 0 ≤  ≤ kout thanks to the

monotonicity: as  increases, j* increases or stays.

Thus, we can enumerate all  candidate combi-

nations of 2d indices in O(1) amortized time per each.

For each of them, we constructed the corresponding outer

cuboid R( ,…, , ,…, , j*) and apply Lemma 4.

The results in the following theorem.

THEOREM 1. Given n points and two integers kin, kout ≥

0, the (kin, kout)-CUBSHELL problem can be solved in

 time and O(n) space. Therefore, the k-

CUBSHELL problem can be solved in  time

and O(n) space for any k ≥ 0.

Proof. As discussed above, our algorithm consists of

2d – 2 nested loop for 2d – 2 indices running from 0 to

kout or from n − 1 − kout to n – 1 and the innermost loop

takes  time by Lemma 4. Hence, the total time

complexity is bounded by  for any kout > 0 and

kin ≥ 0. Together with Lemma 4, our algorithm solves the

(kin, kout)-CUBSHELL problem in  time

j
−

 1 j
−

 d j
+

 1 j
+

 d

j
−

 i j
+

 i

O kout

2d
( )

O kout

2d
n( )

O kout

2d 1–

( )

O kout

2d 1–

n( )

0 j
−

 1,..., j
−

 d kout≤ ≤

n 1– kout– j
+

 1 ,..., j
+

 d 1– n 1–≤ ≤

j
−

 1 j
−

 d j
+

 1 j
+

 d 1–

j
−

 1 j
−

 d j
+

 1 j
+

 d 1– j′ 

j
−

 1 j
−

 d j
+

 1 j
+

 d 1–

j
−

 1 j
−

 d j
+

 1 j
+

 d 1– j′ 

Xd j′ [ ]

j
−

 1 j
−

 d j
+

 1 j
+

 d 1–

j
−

 1 j
−

 d j
+

 1 j
+

 d 1– j′ 

j
−

 1 j
−

 d j
+

 1 j
+

 d 1– j
−

 1

j
−

 d j
+

 1 j
+

 d 1– j′ 

j
−

 1 j
−

 d j
+

 1 j
+

 d 1– j′ j′ 

O kout

2d 1–

( )

O n kout log kout+( )

j
−

 1 j
−

 d 1– j
+

 1 j
+

 d 1–

j
−

 d j
−

 d

j
−

 d

j
−

 d

O kout

2d 1–

( )

j
−

 1 j
−

 d j
+

 1 j
+

 d 1–

O kout 1+( )
2d 1–

n( )

O k 1+( )
2d

n( )

O koutn( )

O kout

2d 1–

n( )

O kout 1+( )
2d 1–

n( )

Fig. 3. Algorithm for the (kin, kout)-CUBSHELL problem.
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for any kin, kout ≥ 0.

Recall that the k-CUBSHELL problem can be solved by

solving k + 1 instances of (kin, kout)-CUBSHELL problem

with kin + kout = k. Therefore, the k-CUBSHELL problem

can be solved in  time for any k ≥ 0.

It is not difficult to see that the space used in our

algorithm is bounded by O(n). □

IV. SECOND ALGORITHM

As discussed above, the offset cuboid problem is a

central subproblem for our purpose, which needs to be

solved a heavy number of times. Though an instance of

the offset cuboid problem can be solved in optimal linear

time, if we can do it more efficiently by paying some

preprocessing cost, then we will be able to obtain more

efficient algorithms for our main problem for non-

constant k.

Here, we present a data structure for the offset cuboid

query that solves the offset cuboid problem in poly-

logarithmic time for any query (R, kin) of cuboid R and

integer kin, given a fixed input set P of n points. As

defined in the previous section, let δ(p, R) be the real

number such that the offset of R by δ(p, R) contains p on

its boundary. In order to answer the offset cuboid query in

a desired time, we need to select the (kin + 1)-th largest

value among δ(p, R) for all ∩ R in poly-logarithmic

time.

A. Offset Cuboid Queries

For the purpose, we construct a data structure of points

in P that enables us to count the number of points of P

lying in the interior of a query cuboid in 

time. Such a data structure can be implemented using the

d-dimensional range tree for orthogonal range counting

with  preprocessing time and 

storage [19]. In addition, we build d balanced binary

search trees T1,...,Td such that Ti for each i = 1,...,d is

constructed on the xi
-coordinates of n points in P and

each node of Ti stores the corresponding point in P. These

binary search trees Ti can be built in O(n log n) time with

O(n) storage. See the book [18] for more details about the

balanced binary trees. The preparation of the above data

structures is done only once as a preprocessing.

Now, we describe how to handle an offset cuboid

query for given (R, kin). Our goal is to output the largest

offset R' of R that contains at most kin points of P in its

interior. Suppose that we are given a value δ ≥ 0, we are then

able to determime in  time whether or not the

offset of R by δ contains at most kin points in its interior

based on our data structure for range counting. This

represents our decision algorithm for a fixed δ ≥ 0.

Let δ * be the minimum value such that our decision

algorithm returns a positive answer, and R* be the inward

offset of R by δ *. Thus, the cuboidal shell determined by

R and R* represents the optimal solution for a given query

outer cuboid R, and its width is δ *. To reduce the search

space for δ *, we use the following observation:

LEMMA 5. Let R* be defined as above for a given query

(R, kin). Then, at least one point of P lies on the boundary

of R*.

Proof. Suppose to the contrary that the boundary of R*

contains no point in P. Then, by growing R* until it hits a

point P, there must be a larger offset of R that contains at

most kin points in its interior, which is a contradiction

Q.E.D.

Since a cuboid has 2d facets, at least one of the 2d

facets of R* should contain a point in P according to

Lemma 5. Consider the case where the facet of R*

orthogonal to the x1-axis with the smaller x1-coordinate

contains a point . Consider the two facets of R

orthogonal to the x1-axis and let  and  be their x1-

coordinates with < . It is obvious that the x1-

coordinate of p* lies in interval [ , x0], where x0 = .

Now, we are ready to describe our algorithm to

determine p* and δ *. It starts with two standard search

queries for  and x0 on the balanced binary search tree

T1, resulting in two paths from the root to a leaf in T1. The

two search paths share a common component starting

from the root and then split at some node v of T1. We

traverse T1 again from the split node v. Based on the

construction, the x1-coordinate xv corresponding to v lies

in [ , x0]. We then apply our decision algorithm for

δ = xv – x
0. If the result is positive, we proceed to the left

child of v; otherwise, we proceed to the right child of v.

We apply our decision algorithm for the next node

repeatedly until we reach a leaf of T1. The leaf node

corresponds to the point p*, in this case. Since the height

of Tx is  and our decision algorithm takes

 time, the procedure terminates in 

time.

The other cases, where p* lies on one of the other 2d – 1

facets of R* is handled symmetrically by traversing one of

the d binary search trees T1,...,Td.

The following summarizes the above discussion.

LEMMA 6. Given a cuboid R and an integer kin, we can

compute in  time the largest offset of R that

contains at most kin points in its interior, after prepro-

cessing of time  to build our data structures.

B. Second Algorithm

Now, we return to the original (kin, kout)-CUBSHELL

problem. In the previous section, we showed that the
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(kin, kout)-CUBSHELL problem can be reduced to 

instances of the (kin, 0)-CUBSHELL problem (Fig. 3). By

Lemma 6, a single such instance can be handled in poly-

logarithmic time, after -time overhead for

preprocessing. More precisely, from the pseudocode in

Fig. 3, line 10 can be implemented by Lemma 6 to yield

the following result.

THEOREM 2. Given a set P of n points in the plane and

integers kin, kout ≥ 0, the (kin, kout)-CUBSHELL problem can

be solved in  time and

 space. Therefore, the k-CUBSHELL problem

for any k ≥ 0 can be solved in 

time and  space.

Proof. The description of this algorithm is almost

identical to that shown in Fig. 3, except that we build the

d-dimensional range tree on P for range counting queries

and the d binary search trees T1,...,Td as a preprocessing

time. Also, we apply Lemma 6, rather than Lemma 4, to

solve each instance of the (kin, 0)-CUBSHELL problem

occurring in the innermost loop of the algorithm.

The preprocessing step is completed in 

time as discussed above. Since we solve 

instances of the (kin, 0)-CUBSHELL problem in the

innermost loop, the total time complexity is bounded by

, by Lemma 6. The space used

is bounded by .

The k-CUBSHELL problem for k ≥ 1 is reduced to k + 1

instances of the (kin, kout)-CUBSHELL problem with kin + kout
= k. Therefore,  time is sufficient.

V. CONCLUSION REMARKS

We have presented two efficient algorithms that solve

the minimum-width cuboidal shell problem with outliers.

No algorithm for the problem has been published prior to

this work. Given n points in Rd for d ≥ 3 and the number k

of outliers, our algorithms solve the k-CUBSHELL problem

in  or  time. Since the

number of outliers (k) is often very small relative to the

number of data points (n), our algorithms are notably

efficient in most practical cases. If k is a constant, then

the former takes linear time, while the latter outperforms

the former when  Nonetheless, the first

algorithm is worth its simplicity. The second algorithm

makes use of standard data structures and algorithmic

techniques, which can be easily found in an open source

library.

The existing algorithms for d = 2 by Bae [15] and Ahn

et al. [16] are indeed faster than the present algorithms.

An interesting technique therein is the use of a kernel for

the problem. A kernel for our problem can be defined to

be a subset K of the input point set P such that the

minimum-width cuboidal shell with outliers for points K

is equivalent to that for points P. Bae [15] proved the

existence of a kernel of size O(k4) for the problem where

d = 2, and showed how to find such a kernel, resulting in a

faster -time algorithm. However,

the existence of such a kernel for d ≥ 3 is unknown. A

natural open question is whether there exists a kernel of

small size for the cuboidal shell problem with d ≥ 3. If

one could prove the existence of a kernel of small size for

d ≥ 3 and show how to compute it, then an improved and

faster algorithm for the k-CUBSHELL problem would be

obtained.
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