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Abstract
Currently, mixed-criticality systems (MCSs) are rapidly adopted by the automotive industry, with the shift in electrical-

electronic architecture from federated to integrated design to reduce developmental costs, pull in the development schedule,

and easy reconfiguration of the system with service-oriented architecture. Several studies have been based on Vestal’s

original MCS model, in which the criticality modes are the same as criticality levels. However, the MCS model does not

fit the automotive industry or the safety perspective. In this study, we identify the divergence of theory and automotive

practice for real-time MCS. We also propose a generalized MCS model close to industry practice and a priority assignment

algorithm along with schedulability analysis for both online and offline phases. Further, we present a practical example of

memory partition and decomposition tasks based on AUTomotive Open System Architecture (AUTOSAR). The proposed

design is currently being developed for battery management systems of electric and plug-in hybrid electric vehicles.

Category: Real-Time Systems
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I. INTRODUCTION

The hard real-time (HRT) mixed-criticality system

(MCS) is more general than the soft real-time (SRT)

MCS, since architects usually do not intend to combine

non-safety with safety subsystems during whole system

design. Intuitively, we can imagine that a DVD player

will not be integrated with a hybrid control unit, battery

management system, energy management system, and

motorcontrol unit (MCU), all of which are MCSs.

Therefore, we can easily expect that MCSs will generally

be required to be HRT rather than SRT systems. In his

investigation, Vestal [1] also raised the following question:

“How can we have a highly assured worst-case execution

time for a piece of low-assurance software? Defects that

may impact timing (e.g., infinite loops) are not assured to

be absent to the degree required”. This concern is the

main reason why a scheduler handles an HRT MCS

differently from a general HRT system. The question

does not mean that a missed deadline is allowed because

of an incorrectly estimated worst-case execution time

(WCET). Instead, it means that tasks have different

probabilities of failure according to their assurance levels,

because software (SW) and hardware (HW) components
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have different reliability and diagnostic coverage values

based on the assurance levels. In fact, it is not easy to

provide the rationale for a task with an additional estimated

WCET related to assurance levels for a certification

accessor in practice. Vestal’s research and subsequent

studies accommodate a missed deadline caused by a

scheduling fault if the actual execution time (AET)

exceeded the estimated WCET [1-10]. Unfortunately, this

is not a general assumption in industry practice, since it is

difficult to identify timing errors induced by incorrect

WCET estimates or errors associated with the timer or

scheduler, which may induce a common cause failure.

Nevertheless, prior studies are invaluable and can be used

in industry practice if an incorrectly estimated WCET can

be separated from other defects due to timing errors. The

method of setting an additional expected WCET as

assurance level for tasks is similar to assurance-dependent

development and assurance-dependent requirement. Prior

works reported two rationales (R1 and R2) for a task

carrying one more estimated WCET as follows:

(R1) A task has two extra job sets. Each job set

corresponds to different critical modes according to the

safety scenarios and each job set is run in different

criticality modes; and

(R2) The confidence of estimated WCETs depends on

the assurance level. An estimated WCET with a high

assurance level is more precise than the one with a low

assurance level.

For safety certification, presenting the evidence or

rationale for a task with more than two WCETs is

difficult, since certification assessors are not usually

scheduling experts. At the least, safety and scheduling

engineers, architects, and domain experts should cooperate

in safety scenarios. Significant efforts are also needed to

ensure that the test verifies and validates scenarios in

every developmental phase, which is obviously difficult

when considering development schedules, resources, and

costs. Thus, a scientific method of assigning different

WCETs to different safety integrity levels (SILs) is

helpful for substantially reducing the required effort.

Previous studies have investigated the probability of the

WCET, which can be used to set the deadline tolerance

for different SIL tasks [11-14]. The SIL is used in

scheduling also because of the timing partition, where

lower SIL tasks do not interfere with higher ones.

However, when all the tasks are scheduled, the SIL

inversion is not a challenge. Instead, we need to develop

a method to detect timing errors, for e.g., when AET

exceeds the estimated WCET, or the minimum arrival

time of sporadic tasks and inter-arrival time of periodic

tasks are not tolerable. The methods entail live monitoring,

program flow monitoring, and execution budgets.

Scheduling errors stem from underestimated WCETs,

SW modules, and random HW or systematic faults, such

as miscalculations during schedulability tests. Thus, in

this study, we use assurance levels and safety scenarios

instead of criticality levels to avoid mixing SILs with

safety scenarios. 

II. THE DIVERGENCE OF THORY AND PRACTICE

A. Static Mixed-Criticality-No Monitoring

Vestal [1] assumed that in  for static

mixed-criticality with no runtime monitoring (SMC-NO),

A is the highest level and D is the lowest level. In his

example, , , ,  and

, , , . He also mentioned

that “deadline monotonic is not optimal since if task 1 is

assigned the highest priority, task 2 sees a processor that

already has 100% of its available level A time set aside

for task 1. However, the system is feasible (as determined

by the previous multi-criticality analysis algorithm) if

task 2 is assigned the highest priority)” [1]. In Vestal’s

example, different WCETs are not set for R1; if WCETs

are assumed to be set for R1, the task set is not

schedulable, because the execution time of task 1 is 2 and

that of task 2 is 1 in assurance level A. The total

utilization exceeds 100%, which is not schedulable.

Hence, we can conclude that the WCET is set for R2. In

addition, tasks with a lower assurance level missing the

deadline in high-criticality mode do not lead to system

failure, while tasks with a lower level of assurance

meeting the deadline in high-criticality mode may affect

system performance in the SRT system.

Vestal [1] also stated that “for each task ti we want to

assure to level Li that ti never misses a deadline. This

level of assurance is achieved when the analysis is based

on computational times with the same level of assurance”.

Intuitively, we understand that measured WCETs for a

task with a low level of assurance are less exact than

measured WCETs for a task with a high level of

assurance due to different test efforts for execution time

measurement. The measured WCETs for tasks with a

high level of assurance can be directly used for WCETs

for both high and low assurance levels because it is the

exact value that can be used in high-criticality mode.

However, measured WCETs for low-assurance tasks

cannot be directly used for high-assurance WCETs. A

margin value is added to the original WCET for high-

assurance WCET in low-assurance tasks. Hence, the

difference between WCETs for low and high assurance

levels in a task with a low assurance is larger than the gap

between WCETs for low and high assurance levels in a

high-assurance task. For example, CiA, CiB, CiC and CiD of

level A assurance task ti can be equivalent, since a WCET

is measured at assurance level A. However, CjA and CjB of

level B assurance task tj can differ, since a WCET is

measured at assurance level B, and the WCET of

assurance level A is set to a more conservative value than

CiA CiB CiC CiD≥ ≥ ≥

T1 D1 2= = L1 B= C1B 1= C1A 2=

T2 D2 4= = L2 A= C2B 1= C2A 1=
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that of assurance level B. CjB, CjC, and CjD of level B

assurance task tj will again be equivalent. Hence, high-

assurance tasks are likely to be deemed high priority,

even in low-criticality mode, and thus approach criticality

as priority assignments (CAPAs). Hence, if a set of level

A and level B assurance tasks are not schedulable the B

assurance tasks will be assigned a lower priority even

though they have a smaller relative deadline. Further, if a

fault from a high priority and low-criticality task occurs

in a low-criticality mode without execution time monitoring,

and as a result the execution time exceeds WCET, the

high-criticality task may also miss the deadline. Hence,

criticality inversion may result in high-criticality tasks

missing deadlines.

B. Static Mixed Criticality

WCETs are set differently based on the criticality of a

task, because executed jobs show different levels of

criticality (as opposed to conservativity) of WCETs

compared with static mixed criticality (SMC) [8]. The

same priority assignment as in Audsley’s approach and

SMC response time analysis (RTA) are used for both

SMC with no runtime monitoring (SMC-NO) and SMC.

The only difference between SMC-NO and SMC is that

jobs will be aborted in SMC if the AET exceeds WCET

during execution monitoring, whereas jobs cannot be

aborted in SMC-NO even if AET exceeds WCET since

there is no execution monitoring. Vestal [1] designed

algorithms for use in small computing power systems

without execution time monitoring.

C. Adaptive Mixed Criticality

If AET is greater than Cl(LO) for tasks with a low

criticality level, the system criticality level is changed

from low to high, and all low-criticality tasks are abandoned

[8]. The main difference between adaptive mixed criticality

(AMC) and SMC is that AMC drops all low-criticality

tasks if AET is higher than Cl(LO) for any task, while

SMC only drops a task if AET is higher than Cl(LO) for a

low-criticality task. In the discussion regarding SMC-NO

in Vestal’s work, the main purpose of different WCETs is

conservation of criticality. A conservative WCET can be

used for a high-assurance task, which may reduce the test

effort for determining the precise WCET. Vestal [1] focused

on preventing the high-assurance task from missing the

deadline of criticality inversion with conservative WCET

(without execution monitoring and with reasonable WCET)

for schedulability, since there is a very low probability of

the worst case occurring in all tasks simultaneously. Both

high-assurance and low-assurance tasks run on high-

criticality mode. According to Baruah et al. [8], in SMC

and AMC, the main goal of different WCETs is executing

different jobs according to criticality. Hence, the WCET

of every job with a high assurance level may be tested,

and low-assurance tasks will not be executed in high-

criticality mode in AMC. However, executed jobs of

high-assurance tasks may not differ between high-

criticality and low-criticality modes in practice. Instead,

the jobs required to run on high-criticality mode will be

allocated to high-assurance tasks, and other jobs required

to run on low-criticality mode will be allocated to low-

assurance tasks. Baruah et al. [8] proposed RTA for the

stable mode and the terms AMC-rtb and AMC-max for

the changed criticality. However, generally, the mode of

criticality is changed to high level for degradation or safe

state of the system that is used to recalculate the deadline

within the fault-tolerant time interval (FTTI) at the

beginning of a timing fault in low-criticality mode in

practice. AMC was extended to minimize stack size and

multiple frequencies [15, 16].

D. Zero-Slack Scheduling

Zero-slack scheduling (ZSS) has been developed to

resolve criticality inversion, which is the only challenge

in an overload condition [17, 18]. Task ti in ZSS consists

of two WCETs for normal mode Ci
0 and critical mode Ci,

and Ci ≤ Ci
0 because the normal mode allows overload

conditions, whereas the critical mode does not. Hence,

Ci
0 is deemed a conservative WCET. In normal mode, the

scheduler is intended to maximize schedulability with Ci
0

as a rate-monotonic (RM) or deadline-monotonic (DM)

parameter. RM and DM are used for optimal fixed-

priority scheduling. During runtime, admission control is

required for mode switching. Admission control is used

to calculate the slack time of higher criticality and lower

priority tasks compared with a running task. If slack time

for Ci
0
 is not adequate in a task with higher criticality and

lower priority, the mode is switched from normal to

critical, and tasks are scheduled as CAPAs. In critical

mode, the priority blocking of lower criticality tasks is

increased, with Ci
0 of higher criticality tasks exhibiting a

lower priority. Hence, the schedulability of ZSS is poor if

the schedulability of CAPA is worse than that of DM or

RM, and this disadvantage is more serious as the

criticality level is increased. Another disadvantage is that

the scheduling overhead is not minor since the slack time

of higher criticality tasks is continuously calculated. De

Niz and colleagues [17, 18] did not explain the procedure

to set WCET in the original research for ZSS; however,

they provided examples such as practices adopted in the

automotive industry to set the task parameters. Nevertheless,

it was not a general MCS model for the automotive

industry since a task does not carry different criticality

levels in a case scenario, because the task is generally

partitioned not only for timing but also memory, as in

ISO26262. ZSS has recently been extended with a

dynamic budget [2, 3].
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E. Earliest Deadline First-Virtual Deadline

Earliest deadline first with virtual deadline (EDF-VD)

reduces the deadline for high-criticality tasks to resolve

the criticality inversion challenge in an overload [4, 5].

To guarantee that high-criticality tasks meet the deadline

in the offline phase, high-criticality tasks use a virtual

deadline , which is calculated by . The scaling

factor x is defined as follows: In the runtime phase, tasks

with lower criticality than the current critical mode are

discarded, and the virtual deadline of high-criticality

tasks is not used as a substitute for the original deadline.

Hence, the algorithm guarantees that high-criticality

tasks meet their deadlines. However, total utilization is

decreased under overload, as total utilization is calculated

in the low-criticality level due to a smaller deadline

increase. Thus, the criticality is easily switched from low

to a high mode. Similarly, EDF scheduling based on the

demand-bound function was developed for MCS [6, 7].

These studies assumed that the relative deadlines of tasks

can be freely altered if the deadlines are not beyond the

true relative deadline specified by the system designer.

Hence, they set the relative deadline smaller than the

original relative deadline for lower-criticality mode. The

effect of smaller deadline for lower-criticality mode is

similar to that of the larger WCET in high-criticality

mode. However, both the smaller deadline and the larger

WCET decrease schedulability. In practice, adequate

CPU resources are not available since computing power

is related to cost. Generally, it is hard to make a feasible

system even when the maximum relative deadline is

specified by the system designer. The EDF-VD has

recently been extended in many studies. Chen et al. [9,

10] have extended EDF-VD under the assumption that

multiple-criticality modes exist and a fault from high-

criticality tasks does not trigger a switch to high-criticality

mode. Liu et al. [19] have extended the assumption of

imprecise WCET of low-criticality tasks, and Guo et al.

[20] have extended it to support a switch back from high to

low-criticality mode according to the task completion rate.

III. MEMORY PARTITION AND LAYERS

A. Memory Partition

MCS require memory partitioning for freedom from

interference. Lower Automotive Safety Integrity Level

(ASIL) software components (SWCs) are not allowed to

write data to the memory area of higher ASIL SWCs. In

AUTOSAR, partitions can be made using application

containers that include tasks. We provide full permission

in supervisor mode to the highest SIL SWCs, which

access all memory areas and registers. Other SWCs are

required to set the accessible memory range in user

mode. In Fig. 1, each core contains three application

containers, where Application_ABC0 is ASIL A on core

0, Application BBC0 is ASIL B on core 0, and

System_Application_C0 is ASIL C on core 0. Figs. 1 and

2 show tasks assigned to core 0 and core 1, respectively.

The limitation of AUTOSAR is that a BSW stack is

placed only on a single core. We allocated the BSW stack

to core 0, as MPC5746 supports lock-step function for

core 0. The number of tasks in the system application ond̂i d̂i xdi=

Fig. 1. Tasks on core 0.

Fig. 2. Tasks on core 1.



Real-Time Scheduling for Mixed-Criticality Systems in the Automotive Industry

Junghwan Lee and MyungJun Kim 13 http://jcse.kiise.org

core 0 is higher than on core 1 since all device drivers are

allocated to core 0. Instead, we allocated all ASWs to

core 1 except for the sensor/actuator components.

B. Layered Architecture

Fig. 3 displays four layers: application, sensor/actuator,

BSW, and microcontroller abstraction (MCAL). AUTOSAR

consists of application, BSW, and MCAL layers. We added

a sensor/actuator (SA) layer to AUTOSAR to decouple

BSW from ASW, which facilitates encapsulation of HW

properties and decomposition of software components, as

partitioning of BSW and MCAL is difficult, considering

developmental efforts, performance, and modifiability.

Thus, we allocated all device drivers and BSWs to the

ASIL C partition. We minimized the complexity of the

device drivers by removing logic code to control HW due

to the exponential increase in the cost of development

with ASIL. The development and test efforts for ASIL C

are significantly greater than for ASIL A in ISO 26262.

Therefore, the device drivers provide only basic HW

peripheral functionality, such as analog-to-digital converters

(ADC), digital input/output (DIO), and serial peripheral

interface (SPI) communication as server SWC, which is

almost the same as the wrapper of MCAL. Sensor/actuator

SWCs control the HW communication with BSW via

client–server interface. Finally, we made the following

design decisions:

Design decisions for the partitions and layers

D1. Do not create a QM partition. Instead, the QM

component should be compliant with ASIL A.

D2. Create an ASIL C partition on both cores. The

diagnostic function for the MCU will support both

cores as ASIL C.

D3. MCAL, device drivers, and BSW stack are placed

on the same partition as ASIL C.

D4. ASWs and SAs are placed on the ASIL A or ASIL

B partition.

IV. DEADLINE MONOTONIC MIXEDCRITICALITY
(DM2C)

A. Decomposition of Software Components

The SWCs are typically decomposed to degrade SIL,

as decomposition helps to reduce developmental efforts

while maintaining the safety and integrity constant. The

developmental cost increases exponentially as ASIL is

changed from low to high [21, 22]. Supposing that we set

the WCET of tasks as QM (quality management), ASIL

A, ASIL B, ASIL C, and ASIL D in ISO26262, the ASIL

D task is split into four ASIL A(D) tasks. The four ASIL

A(D) tasks are deemed to be part of ASIL A. In previous

studies, four ASIL A(D) tasks were simultaneously

dropped in admission control, causing critical system

failure. Hence, we cannot drop the tasks by referring only

to ASIL. Another challenge is that there is no method to

ascertain whether the fault stems from an underestimated

WCET. Although we dropped some tasks for schedulability,

the running task set could not be scheduled if the fault

was due to a random HW or other systemic fault.

Therefore, we must ascertain that the fault is due to an

underestimated WCET if we drop lower SIL tasks as one

of the fault reactions. However, we could not identify a

method of discerning WCET faults from random HW or

other systemic faults. Therefore, the scheduler was assigned

to the highest ASIL as a common cause of failure. Hence,

we cannot provide a rationale for dropping lower criticality

tasks to safety assessors during the certification process

in practice. Instead, we use execution budgets or deadline

monitoring to prevent higher SIL tasks from not being

schedulable due to lower SIL tasks. 

DEFINITION 1. In implicit criticality mode (ICM), the

number of criticality modes is equal to the number of

assurance levels. The number of assurance levels is the

same as the number of criticality modes, and a set ofFig. 3. Layered architecture.
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tasks with an  assurance level runs in a criticality

mode , with the following parameters:

A set of criticality modes: M = {M1, ..., Mn},

A set of assurance levels: L = {L1, ..., Ln}.

DEFINITION 2. In explicit criticality mode (ECM), the

criticality modes are not equal to the assurance levels.

The number of assurance levels differs from the number

of criticality modes, and a set of tasks with different

assurance levels  can run in a criticality mode ,

where:

A set of criticality modes: M = {M1, ..., Mn},

A set of assurance levels: L = {L1, ..., Lm}.

THEOREM 1. A set of tasks cannot be feasible under

any scheduling algorithm if the set of tasks includes

decomposed tasks and the property of criticality mode is

an ICM. 

Proof. The scheduling algorithm for MCS must

guarantee tasks to run in a criticality mode as assurance

level of tasks. L1
 tasks must run in M1. A high assurance

level task can be decomposed to two tasks whose

assurance level will be lower than original assurance. If

criticality mode is switched from lower level to high level

then the scheduling algorithm guarantees high assurance

level tasks to run and may drop lower assurance level

tasks. However, original assurance level of lower assurance

level tasks is high assurance level. Hence, the scheduling

algorithm cannot guarantee high assurance level tasks to

run in high level criticality mode, where:

A set of criticality modes: M = {M1, ..., Mn}

A set of assurance levels: L = {L1, ..., Lm}

For instance, according to ISO26262, four assurance

levels include A, B, C, and D. In ICM, a scheduling

algorithm on MCS guarantees A, B, C, and D assurance

level tasks to run in A, B, C, and D criticality modes,

respectively. A D assurance level task can be decomposed

to two B assurance level tasks, and a B assurance level task

can be decomposed to A assurance level task. Scheduling

algorithms on MCS do not guarantee scheduling of tasks

lower than criticality mode. If criticality is switched from

A to B, the scheduling algorithm guarantees B assurance

level tasks to run and drop A assurance level tasks.

B. Priority Assignment and Response Time
Analysis

We assume that MCS is an ICM, 

L = {L1, ..., Ln},

, 

, 

and Ln is the highest criticality mode.

Response time analysis for DM2C:

THEOREM 2. DM2C is optimal in fixed-priority

scheduling for MCS.

Proof. The DM is an optimal method in fixed-priority

scheduling if the system is not an MCS. If the highest

criticality tasks are not schedulable with DM, then they

are not schedulable with any scheduling algorithm. The

algorithm removes only tasks with lower criticality than

those in the current criticality mode. Hence, the remaining

tasks have lower criticality compared with the current

criticality mode. At each stage of the criticality mode, the

assigned priority for remaining tasks in DM is still

optimal. If tasks are not schedulable, the lower-criticality

tasks are removed again. Hence, it is still optimal. This

logic is repeated until all the priorities are completely

assigned to all tasks.

V. SCHEDUABILITY ANALYSIS IN MCS

DEFINITION 3. , ti = (Ti, Ci, Li, Di) where t is a set

of tasks, Ti is the period, Ci is the WCET, Li is the

criticality level, and Di is the deadline. The WCET is

Li L∈

Mi M∈

L∈ Mi M∈

t Ti, Ci, L, Di( )=

Algorithm 1. DM2C priority assignment

Ci Ln( ) Ci Lm( ) Ci L2( ) Ci L1( )≥ ≥ ≥

Ri L( ) Ci L( ) Ri L( )

Tj

------------ Cj L( )
j hp i( )∈

∑+=

ti t∈
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based on the measurement of a single task. The test

conditions are more stringent to ensure the reliability of a

higher SIL. The WCET is derived from a normal

distribution after the test performed in the single worst

condition.

DEFINITION 4. A set of safety scenarios is s = {s1, ...,

sn}, where s1 is normal operation.

DEFINITION 5. A set of tasks must be run in safety

scenario si as follows:

, 

Schedulability analysis during the design phase:

K = number of tasks in s1,

The scheduling policy was designed using RM

schedulability analysis under a normal operation scenario,

and the WCET was derived from the test. The

conservative WCET is set as a safety scenario. Although

the system runs in normal operation, a few tasks will not

run. For example, when a passive redundancy strategy is

used for safety, the task runs only in a few high-criticality

modes. In the ORTA for MCSs, the WCET is updated to

AET if the AET over the WCET is detected by an

execution budget or deadline monitoring during runtime.

The system runs accurately if the ORTA is passed even

though the AET is over the WCET, as this guarantees that

all tasks are still schedulable under all safety scenarios. If

si s∈ si tk tk t tk must run in scenariosi∧∈{ }=

Ci

Ti

----- k 2
1 k⁄

1–( )≤
i 1= t

i
s
1

∈∧

n

∑

Table 1. Execution time in normal operation

Range Total (sec) Min (µs) Max (µs) Avg (µs) Ratio (%)

Task_IohwLowSide_CORE0:0 179.875 58.287 685.636 282.300 2.82

OsTask_10ms_BSW_CORE0:0 673.740 0.018 2,502.000 137.575 10.57

OsTask_10ms_ASW_CORE0:0 51.335 0.018 335.502 80.566 0.81

OsTask_25ms_BSW_CORE0:0 1,894.000 0.018 3,804.000 314.944 29.74

IdleTask_OsCore_CORE0:0 1,383.000 0.022 4,598.000 304.066 21.71

Task_IohwHighSide_CORE0:0 88.051 41.200 316.640 138.189 1.38

OsTask_IohwServer_CORE0:0 887.573 0.018 889.138 149.756 13.93

OsTask_IohwSbc_CORE0:0 394.048 0.042 862.762 151.208 6.18

OsTask_5ms_BSW_CORE0:0 407.850 0.018 1,111.000 320.044 6.40

OsTask_5ms_ASW_CORE0:0 319.518 0.018 986.213 100.254 5.01

OsTask_20ms_BSW_CORE0:0 33.700 0.018 576.338 105.780 0.53

Task_100ms_ASILB_CORE0:0 5.847 0.018 650.951 53.141 0.09

Task_100ms_ASILA_CORE0:0 6.046 0.018 655.253 54.856 0.09

OsTask_100ms_ASW_CORE0:0 6.094 0.018 670.996 55.049 0.10

OsTask_NvmServer_CORE0:0 18.206 85.727 455.760 285.738 0.29

OsTask_IohwIso_CORE0:0 18.178 0.049 376.989 142.712 0.29

OsTask_200ms_ASW_CORE0:0 3.677 0.018 635.218 115.383 0.06

IdleTask_OsCore_CORE1:1 4,787.000 0.022 6,128.000 466.643 75.12

OsTask_10ms_ASW_CORE1:1 1,278.000 0.018 954.458 125.382 20.06

OsTask_10ms_BSW_CORE1:1 40.069 0.018 982.471 62.885 0.63

OsTask_20ms_ASW_CORE1:1 9.918 0.022 92.667 31.131 0.16

OsTask_100ms_ASW_CORE1:1 249.198 0.024 1,088.000 163.184 3.91

Task_100ms_ASILA_CORE1:1 3.600 0.018 254.142 56.507 0.06

OsTask_200ms_ASW_CORE1:1 2.649 0.018 253.762 83.149 0.04

Task_500ms_ASILB_CORE1:1 1.129 0.018 253.565 88.618 0.02

Total = total running time, Min = minimum execution time, Max = maximum execution time, Avg = average execution time, Ratio = running ratio of

each task.
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ORTA fails in a specific scenario, a reaction strategy can

be developed or the system can be directly operated in a

schedulable safety scenario. ORTA can be used in the

production, verification, and validation phases to ensure

incremental safety of the system by determining the

optimal schedulable scenario and WCET. The AETs of

tasks vary in each scenario, and the WCET of each task is

derived from the AET in the verification and validation

phases. Mixed-criticality systems are typically safety-

criticality systems that require reliable execution of

specific tasks rather than execution of multiple tasks.

Further, actual scheduling is more complex since the

AET differs in each operation scenario, as shown in

Tables 1 and 2, which present measurements under three

operational scenarios with the initial software version

for sample A. For a more practical approach, we consider

the operation and safety scenarios to set more precise

WCETs.

Table 2. Execution time in a plug-out high-power connector during runtime

Range Total (ms) Min (µs) Max (µs) Avg (µs) Ratio (%)

IdleTask_OsCore_CORE0:0 65,010.000 0.022 4,598.000 307.086 18.67

task_IohwHighSide_CORE0:0 4.598.000 53.431 302.711 132.095 1.32

OsTask_IohwServer_CORE0:0 47,742.000 0.042 821.440 147.733 13.71

OsTask_IohwSbc_CORE0:0 20,475.000 0.042 543.333 143.692 5.88

OsTask_5ms_BSW_CORE0:0 18,783.000 0.018 1,051.000 269.782 5.40

OsTask_10ms_BSW_CORE0:0 36,929.000 0.018 2,928.000 144.831 10.61

OsTask_5ms_ASW_CORE0:0 16,770.000 0.018 979.093 92.381 4.82

OsTask_25ms_BSW_CORE0:0 121,454.000 0.018 3,871.000 325.687 34.89

Task_IohwLowSide_CORE0:0 9,654.000 58.464 665.951 277.324 2.77

OsTask_10ms_ASW_CORE0:0 2,222.000 0.018 329.836 63.839 0.64

OsTask_20ms_BSW_CORE0:0 1,312.000 0.018 575.458 75.353 0.38

OsTask_NvmServer_CORE0:0 1,424.000 0.042 608.293 409.193 0.41

OsTask_IohwIso_CORE0:0 859.504 0.049 213.442 123.456 0.25

OsTask_100ms_ASW_CORE0:0 235.431 0.018 668.796 66.356 0.07

Task_100ms_ASILB_CORE0:0 224.857 0.018 668.511 63.162 0.06

Task_100ms_ASILA_CORE0:0 213.366 0.018 668.631 59.934 0.06

OsTask_200ms_ASW_CORE0:0 224.431 0.018 650.373 112.779 0.06

OsTask_10ms_ASW_CORE1:1 70,569.000 0.036 781.093 126.701 20.27

IdleTask_OsCore_CORE1:1 263,999.000 0.022 6,164.000 471.044 75.83

OsTask_10ms_BSW_CORE1:1 2,305.000 0.018 965.067 66.208 0.66

OsTask_20ms_ASW_CORE1:1 509.797 0.022 92.307 29.290 0.15

Task_100ms_ASILA_CORE1:1 186.407 0.018 269.805 53.550 0.05

OsTask_100ms_ASW_CORE1:1 10,336.000 0.024 490.727 123.714 2.97

OsTask_200ms_ASW_CORE1:1 164.948 0.018 273.107 94.743 0.05

Task_500ms_ASILB_CORE1:1 60.003 0.018 253.831 86.211 0.02

Total = total running time, Min = minimum execution time, Max = maximum execution time, Avg = average execution time, Ratio = running ratio of

each task.

Algorithm 2. Online response time analysis (ORTA)
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VI. CONCLUSIONS

We presented the divergence of theory and practice for

a closer automotive industry perspective. In addition, we

proposed a priority assignment algorithm assuming ICM

MCS for offline phases and a schedulability analysis for

both online and offline phases assuming ECM MCS. The

offline algorithm can be used in the verification and

validation phases to automatically determine the WCET,

and thereby reduce the test efforts.
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