
Copyright 2020. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 14, No. 1, March 2020, pp. 19-25

MIORPA: Middleware System for Open-Source Robotic Process
Automation
Myeong-Ha Hwang, Ui-Kyun Na, Seungjun Lee, ByungJoo Cho, Yeri Kim, DongHyuk Lee, and

JiKang Shin*

Digital Solution Laboratory, Korea Electric Power Research Institute (KEPRI), Daejeon, Korea

{mh.hwang, uikyun.na, seungjoon.lee, byungjoo_cho, yeri.kim, leedh8036, jk.shin}@kepco.co.kr

Abstract
Introduction of robotic process automation (RPA) in simple repetitive task automation initiated its research and develop-

ment in various fields. The high demand for RPA has expanded the global market. However, the disadvantages include

the high cost of commercial RPA products and limited functional expansion. Therefore, it is necessary to design open-

source RPA to minimize the cost and manage the execution of multiple RPA jobs. We propose a middleware system

called MIORPA to control open-source RPA robots. The proposed middleware system provides a job-scheduling algo-

rithm for assignment of tasks to multiple RPA robots in multiple middleware environments. Further, MIORPA provides

watchdog-based RPA robot status monitoring, and the status of the RPA robot can be identified and managed in real time.

Therefore, when a large number of users request RPA, the work is distributed and processed efficiently. Thus, this study

contributes towards research into the control of RPA robots.

Category: Smart and Intelligent Computing

Keywords: Robotic process automation; Middleware; Job scheduling; Watchdog

I. INTRODUCTION

Robotic process automation (RPA) is a software-based

technology that helps automate repetitive tasks based on

a pre-defined workflow [1]. RPA helps automate low-

value manual tasks and allows people to focus on high-

value creative tasks such as identifying differentiated

business values. Therefore, many companies have recently

adopted RPA to strengthen their competitiveness. In

South Korea, various industrial sectors including the

financial sector have introduced RPA as well [2].

The high demand for RPA has led to an increase in its

global market share and companies specializing in RPA

implementation, such as UiPath, Automation Anywhere,

and Blue Prism. However, the disadvantages of commercial

RPA products include high cost of implementation and

limited functional expandability. Therefore, it is necessary

to design an open-source RPA to help minimize costs.

Furthermore, the main principle of RPA is to imitate

the manipulation of keyboard and mouse by a user. When

RPA performs a task, the personal computer does not

need to be operated by a user, and a single RPA robot can

only perform a single task. Therefore, to efficiently

perform task automation using multiple RPA robots, a

middleware that schedules and manages the execution of

RPA jobs is necessary.

In this study, we propose a middleware system called

MIORPA for handling multiple open-source-based RPA

Received 31 January 2020; Accepted 05 March 2020

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2020.14.1.19 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 14, No. 1, March 2020, pp. 19-25

http://dx.doi.org/10.5626/JCSE.2020.14.1.19 20 Myeong-Ha Hwang et al.

robots. This system uses a job scheduling algorithm to

assign tasks to multiple RPA robots in multiple middleware

environments and monitor the status of RPA robot in real

time. Therefore, when a large number of users request

RPA tasks, the middleware decentralizes and expedites

the tasks, which contributes to continued research on

RPA robots.

II. RELATED WORK

A. Robotic Process Automation

Companies focus on business process outsourcing (BPO)

and enterprise resource planning (ERP) to minimize

costs. However, RPA improves the quality of work and

job satisfaction as it reduces the burden of repetitive work

and facilitates multiple applications [3]. Further, the recent

revision in the Labor Standards Act of Korea has led to a

decrease in labor time and increased RPA introduction to

automate simple repetitive tasks for enhanced work

efficiency [2].

RPA can be divided into three automation categories:

(1) basic, for rule-based processing; (2) intelligent, for

processing information based on accumulated data and

machine learning technology; and (3) cognitive, which

makes complex decisions based on deep learning and

predictive analysis [4]. Current RPA technology is in the

basic automation stage. Therefore, middleware is essential

for assigning and managing RPA robot tasks. In addition,

commercialized RPA products are associated with high

implementation costs and limited functional expandability.

Therefore, there is need for an open-source RPA that can

be used without additional business expenses and a

middleware program to handle it.

B. Middleware

Middleware is a software program that serves appli-

cations in addition to those served by the operating

system [5]. Finkemeyer et al. [6] proposed middleware

for robotic and process control applications (MiRPA),

which enables real-time communication between publishers

and subscribers as well as between clients and servers.

Thus, middleware provides a standardized interface and

maintains data consistency by processing distributed tasks

simultaneously. It also facilitates workload distribution.

Job scheduling—a type of middleware system—is a

computer application that controls the execution of

waiting jobs [7]. Job scheduling can be categorized into

workload, resources, and requirements [8]. When classi-

fying job scheduling under these categories, it is clear

that research and development of a scheduling algorithm

to control the execution of a large number of RPA robots

for various types of jobs in multiple middleware systems

is lacking.

A watchdog is a type of middleware that uses electronic

timers to detect and repair computer malfunction. In the

event of a hardware defect or software program error, the

timer generates a timeout signal. This timeout signal then

triggers several corrective actions [9]. Dias et al. [10]

developed a watchdog for detecting misbehavior nodes at

vehicular delay-tolerant networks (VDTNs), while Ma et

al. [11] have actively developed a watchdog for collision

detection in smart cities. By developing watchdogs that

detect the status of multiple RPA robots, it is possible to

perform tasks rapidly and efficiently to address the needs

of users.

III. MIORPA: MIDDLEWARE SYSTEM FOR OPEN-
SOURCE ROBOTIC PROCESS AUTOMATION

A. System Architecture

The RPA system designed by our research team was

developed for ERP. Fig. 1 shows the system architecture

of MIORPA. The user inputs the necessary information

using the web server and requests delegation execution

(Fig. 1(a)). The web server transfers the information to

the database after receiving the request for delegation

execution. It saves the necessary attachments using the

security file transfer protocol (SFTP), which is used in

MIORPA (Fig. 1(b), 1(c)).

Job scheduling and watchdog functions are implemented

in MIORPA to handle multiple RPA robots in multiple

middleware environments to efficiently handle the dele-

gation execution requested by multiple users (Fig. 1(d)).

During delegation, the status of RPA robots, such as waiting,

execution, shutdown, or error, is updated in real time in

the database. The updated RPA status is communicated to

the user via a web server for the user to monitor the status

in real time. The RPA robot was developed using AutoIt

[12].

B. Database Construction

The database schema of MIORPA is shown in Fig. 2.

The Submit_Result table stores information about jobs

requested by users and conveys the status of the job to the

users (Fig. 2(a)). It contains parameters such as the number

(ID), request time (GEN_TIME), job name (TITLE),

middleware job assignment (ALLOT), job classification

information (SUBMIT_CD, SUBMIT_CD_NAME), auth-

orization number (APPROVE_NUM), user number and

name (USER_EMPNO, USER_NAME), CPU-based job

status (STATUS_CD, STATUS_NAME), and RPA robot-

based job status (JOB_STATUS_CD, JOB_STATUS_NAME,

JOB_STATUS_DETAIL) pertaining to the requested job.

The CPU-based job status (STATUS_CD, STATUS_NAME)

is used to determine the status of each RPA robot in real

time while monitoring the list of CPU processes in each

MIORPA: Middleware System for Open-Source Robotic Process Automation

Myeong-Ha Hwang et al. 21 http://jcse.kiise.org

middleware environment. The RPA robot-based job status

(JOB_STATUS_CD, JOB_STATUS_NAME, JOB_STATUS_

DETAIL) is used to convey the execution status of the

RPA robot to the user.

The Queue table stores the executable and root

information of the RPA robot (Fig. 2(b)). It consists of the

job approval number (APPROVE_NUM), the root where

the RPA robot executable is located (EXE_ROOT), and

the RPA robot executable filename (EXE).

The Scheduling table assigns jobs requested by the users

to several middleware programs (Fig. 2(c)). It consists of

the name (NAME) and state (STATUS_CD) of each

middleware. In particular, the order of middleware (NUM)

is used to assign the corresponding tasks.

As shown in Fig. 2(d), ‘N’ number of middleware tables

were generated. The work requests were distributed to each

middleware table according to the MIORPA scheduling

algorithm, thereby generating the data in the tables. The

middleware table consists of the job approval number

(APPROVE_NUM), request time (GEN_TIME), job

classification information (SUBMIT_CD, SUBMIT_CD_

NAME), user number and name (USER_EMPNO, USER_

NAME), and CPU-based job status (STATUS_CD,

STATUS_NAME).

Finally, the Job_RnD_Food_Submit table allows each

open-source RPA robot to execute ERP tasks (Fig. 2(e)).

The table consists of the job number (ID), request time

(GEN_TIME), and request change time (LAST_MODY_

TIME) as well as the remaining data for the ERP task.

C. Job Scheduling Function

The job scheduling function of MIORPA can be classified

into two sub-functions, as shown in Algorithm 1. The

first sub-function assigns multiple jobs to each middleware:

when the Job Scheduling algorithm is first executed,

Fig. 1. System architecture of MIORPA.

Fig. 2. Schematic diagram of the MIORPA database.

Journal of Computing Science and Engineering, Vol. 14, No. 1, March 2020, pp. 19-25

http://dx.doi.org/10.5626/JCSE.2020.14.1.19 22 Myeong-Ha Hwang et al.

many jobs are allocated by dividing the middleware

number by N. The new jobs are entered into the database

at regular intervals.

The second sub-function is used to evaluate the remaining

jobs in the database table linked to each middleware at

regular time intervals. If there is no change in the database

table, it labels the middleware as a failure and assigns the

jobs to other middleware.

D. Watchdog Function

The MIORPA watchdog function is implemented via

three algorithms: Job Load Timer, Waited Job Load, and

Watchdog. The Job Load Timer and Waited Job Load

algorithms are shown as Algorithms 2 and 3, respectively,

which are used to assign newly added jobs to the watchdog

queue at specific time intervals.

The Watchdog algorithm is used to handle multiple RPA

robots within each middleware environment. It monitors

the status and updates the database according to the

presence or absence of the corresponding RPA robot

executable file from the list of executable files in the

CPU process. The states of each RPA robot are defined as

Algorithm 1. Job Scheduling

Algorithm 2. Job Load Timer

Algorithm 3. Waited Job Load

MIORPA: Middleware System for Open-Source Robotic Process Automation

Myeong-Ha Hwang et al. 23 http://jcse.kiise.org

waiting (0), running (1), finished (2), and error (3). If an

RPA robot terminates a job normally after execution, the

next RPA robot waits for 10s before performing the next

job to avoid conflicts. The Watchdog algorithm is shown

in Algorithm 4.

IV. EXPERIMENTS AND RESULTS

MIORPA experiments were performed using five

middleware programs on a Windows 10 Pro operating

system with Intel Xeon CPU E3-1226 v3 with a 3.30

GHz Processor and 32 GB RAM. For the Job Scheduling

algorithm, we distributed a large amount of jobs to

multiple middleware programs. The three methods (FIFO

algorithm, the FIFO algorithm with database optimization,

and MIORPA) were compared, and the results are illustrated

in Fig. 3.

The FIFO algorithm allocates jobs to the middleware

with the smallest number of remaining jobs. However,

the disadvantage is that the algorithm is expected to use

as many database connections as there are middleware.

Therefore, when the FIFO algorithm is used, the job

allocation time can be reduced by implementing query

optimization to optimize the database connections.

However, if the algorithm is utilized for a large enterprise,

it is necessary to prepare for large workloads. Application

of Algorithm 1 resulted in a significant reduction in the

job allocation time compared with the FIFO algorithm

and the FIFO + database optimization methods.

An example of watchdog implementation is shown in

Fig. 4. When running watchdog for the first time (Fig. 4(a)),

the RPA robots executed in the middleware are inserted

into the queue, and the RPA robot located in the head is

highlighted. The program evaluates whether the RPA

robot is running on the CPU of the middleware at 3-

second intervals and executes the appropriate RPA robot

after at least 10 seconds (Fig. 4(b)). When the RPA robot

is running, the database is updated with “Processing” as

shown in Fig. 4(c). Once the RPA robot execution is

completed, the program executes Dequeue, updates the

program with “Completed” and updates the next RPA

Algorithm 4. Watchdog

Fig. 3. Comparison of execution time for the scheduling
functions.

Journal of Computing Science and Engineering, Vol. 14, No. 1, March 2020, pp. 19-25

http://dx.doi.org/10.5626/JCSE.2020.14.1.19 24 Myeong-Ha Hwang et al.

robot as the head of the queue (Fig. 4(d)). Thus, the

process is completed by repeating the steps shown in Fig.

4. Eventually, new jobs and RPA robots stored in the

database are allocated to the queue.

V. CONCLUSION

In this study, we introduced MIORPA, a middleware

system for handling a large number of open-source RPA

robots. It includes a job-scheduling algorithm that efficiently

distributes jobs and a watchdog function that processes

jobs using a queue based on the CPU processing status of

each middleware program. The results show that MIORPA

facilitated efficient processing of ERP jobs by assigning

and processing jobs to multiple RPA robots in multiple

middleware environments.

In the future, job scheduling will be optimized via deep

learning to develop a universal job scheduling algorithm

that can be used not only for RPA robots, but also for

other applications. Further, we will develop a user-friendly

middleware system by investigating the watchdog function

for system stabilization using various use-case simulations.

AKNOWLEDGMENTS

This work was funded by the Korea Electric Power

Corporation (KEPCO).

REFERENCES

1. W. M. van der Aalst, M. Bichler, and A. Heinzl, “Robotic

process automation,” Business & Information Systems

Engineering, vol. 60, pp. 269-272, 2018.

2. S. Y. Yang and D. W. Park, “Case study on the application

of robotic process automation technology to public

institutions,” The Journal of Korean Institute of Communications

and Information Sciences, vol. 43, no. 9, pp. 1517-1524, 2018.

3. S. Aguirre and A. Rodriguez, “Automation of a business

process using robotic process automation (RPA): a case

study,” in Applied Computer Sciences in Engineering. Cham:

Springer, 2017, pp. 65-71.

4. L. Willcocks, M. Lacity, and A. Craig, “The IT function and

robotic process automation,” London School of Economics

and Political Sciences, The Outsourcing Unit Research Paper

15/05, 2015.

5. P. A. Bernstein, “Middleware: a model for distributed system

services,” Communications of the ACM, vol. 39, no. 2, pp.

86-98, 1996.

6. B. Finkemeyer, T. Kroger, D. Kubus, M. Olschewsk, and F.

M. Wahl, “MiRPA: middleware for robotic process control

applications,” in Workshop on Measures and Procedures for

the Evaluation of Robot Architectures and Middleware at the

IEEE International Conference on Intelligent Robots and

Systems, San Diego, CA, 2007, pp. 76-90.

7. D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.

Sevcik, and P. Wong, “Theory and practice in parallel job

scheduling,” in Job Scheduling Strategies for Parallel

Processing. Heidelberg: Springer, 1997, pp. 1-34.

8. R. V. Lopes and D. Menasce, “A taxonomy of job scheduling

on distributed computing systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 27, no. 12, pp. 3412-

3428, 2016.

9. N. Murphy and M. Barr, “Watchdog timers,” Embedded

Systems Programming, vol. 14, no. 11, pp. 79-80, 2001.

10. J. A. Dias, J. J. Rodrigues, F. Xia, and C. X. Mavromoustakis,

“A cooperative watchdog system to detect misbehavior

nodes in vehicular delay-tolerant networks,” IEEE Transactions

on Industrial Electronics, vol. 62, no. 12, pp. 7929-7937,

2015.

11. M. Ma, S. M. Preum, and J. A. Stankovic, “Cityguard: a

watchdog for safety-aware conflict detection in smart cities,”

in Proceedings of the 2nd International Conference on

Internet-of-Things Design and Implementation, Pittsburg, PA,

2017, pp. 259-270.

12. AutoIt Consulting Ltd., “AutoIt v3,” https://www.autoitscript.

com/site/.

Fig. 4. An example of watchdog function of MIORPA: (a) pre-
execution state, (b) starting point of execution state, (c)
execution state, and (d) completion state.

MIORPA: Middleware System for Open-Source Robotic Process Automation

Myeong-Ha Hwang et al. 25 http://jcse.kiise.org

Myeong-Ha Hwang

Myeong-Ha Hwang received B.S. degree in Department of Information and Communication Engineering
from Chungnam National University (CNU), South Korea in 2015 and M.E. degree in Information and
Communication Network Technology from University of Science and Technology (UST), South Korea in 2018,
and currently works for Korea Electric Power Research Institute (KEPRI). His research area covers deep
learning, natural language processing, and robotic process automation.

Ui-Kyun Na

Ui-Kyun Na is received B.S. degree in Department of Information and Telecommunication Engineering from
Incheon National University (INU), South Korea in 2017 and M.E. degree in Information and
Telecommunication Engineering from Incheon National University (INU), South Korea in 2019. His current
research interests include energy management system, fog/edge computing, and robotic process
automation.

Seungjun Lee

Seungjun Lee received B.S. degree in Department of Statistic and Computer Science from Chosun University,
South Korea in 2019. His current research interests include robotic process automation and middleware.

ByungJoo Cho

ByungJoo Cho received a bachelor’s degree in Department of Computer Engineering and Economy
Commerce from Sejong University, South Korea in 2017. He is interested in data science, especially, data
analysis. Currently, He is working for Korea Electric Power Corporation (KEPCO) and studying robotic process
automation.

Yeri Kim

Yeri Kim received B.S. degree in Department of Information Systems from Sungshin Women’s University
(SSWU), South Korea in 2019. Her current research interests include web programming, design and
construction of database. She manages server and database in the robotic process automation (RPA) project.

DongHyuk Lee

DongHyuk Lee received B.S. degree in Department of Computer Science from Kookmin University (KMU),
South Korea in 2018. He is working for Korea Electric Power Corporation (KEPCO). His current research
interests include Software QA (quality assurance) and robotic process automation.

JiKang Shin

JiKang Shin received B.S. degree in Department of Computer Science and Electrical Engineering from
Handong University, South Korea in 2008, and M.E degree in Information and Communication Engineering
from Korea Advanced Institute of Science and Technology (KAIST), South Korea in 2010, and currently works
for Korea Electric Power Corporation Research Institute. His research area covers intelligent applications for
smart-grid and robotic process automation.

