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Abstract
Many modern portable devices, especially smartphones, are equipped with positioning functionality. The rapid growth in

the use of such devices has allowed for the accumulation of a vast amount of positioning data. Combined with deep

learning methods, these data may be used for many novel applications. Herein, a trajectory pattern tree generation

method via deep learning is proposed. The convolutional neural network (CNN) and recurrent neural network (RNN)

model of deep learning were applied for trajectory generation and prediction. Several volunteers provided their raw posi-

tioning data. The trajectory generation and prediction are for individual mobility patterns and were performed for every

volunteer. We present the results obtained from seven volunteers. The preciseness of prediction can be measured both for

CNN and RNN. Consequently, we can predict an individual’s location with 32.98% accuracy, and predict the top-five up

to 69.22% for unit area size of 0.030 km2.

Category: Information Retrieval / Web

Keywords: Next location prediction; Mobility model; Deep learning; Convolution neural network; Recurrent
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I. INTRODUCTION

Technological advances have enabled the near-ubiquitous

presence of the global positioning system (GPS) in

personal hand-held devices, including smartphones and

smartwatches. This implies that enterprises can acquire

consumers’ positioning and mobility data. Mobility data

are raw data comprising latitude and longitude information

and time. Therefore, such geopositioning datasets are

utilized in functions such as recommendations of nearby

restaurants, navigation, and sports.

Location-based service (LBS) provides various services

and information based on locations of objects. LBS includes

navigation, location search, location-based advertisements,

infotainment, senior or disabled person care, disaster

situation control, finance, logistics, shopping, game,

public transportation services, and so on. The availability

of positional and mobility data also invites social and

engineering analysis of the trajectory patterns. Especially,

predicting the next location of objects based on trajectory

history can improve the classes of LBS and the quality of

LBS.
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As discussed in Section II-A, several related kinds of

research have been reported in the area of location

prediction with the mining of mobility data, analysis of

mobility data, and trajectory pattern generation. Most of

the reported studies demonstrate the generation of the

mobility pattern tree based on the visited locations and

the frequency of visit and subsequently predict the future

possible location of the visit of the objects. In addition,

mobility patterns can be represented in a Markov chain

with probabilistic approaches. Deep learning-based research

exists for extracting mobility patterns.

However, the previous trajectory pattern prediction

focused on the whole trajectory pattern of mobile objects,

and could not predict the next location of objects in real-

time.

In this study, we generate a model that can predict the

next location in real-time using deep learning technology.

Particularly, we will use convolutional neural networks

(CNNs) and recurrent neural networks (RNNs) that are

classification models in deep learning. CNNs and RNNs

demonstrate good classification performance and they are

generally used in many other fields.

In the case of the next location prediction from the raw

geopositioning dataset, the two notable properties are the

order of location transition and transition to the adjacent

location. CNN and RNN are such models that can cope

with these two properties.

CNN can be used as a learning model because it learns

data in association with adjacent information.

In our case, as location prediction with adjacent location

information is of clear benefit, we have introduced the

CNN. Another candidate of the learning model is the

RNN. RNNs are typically used for sequential data with

dynamic input and prediction. In our case, sequential-

data-oriented processing is another benefit because a

mobility pattern is generated sequentially over time.

Although deep learning models such as the CNN or RNN

require a long time for the training process, prediction

with CNN and RNN requires less processing time.

Therefore, our model can demonstrate real-time service

for users. Previous methods using the trajectory pattern

tree for the next location prediction can also provide

services in real-time [1]. In the new trajectory, the pattern

is absent in the tree structure, hence no predictions can be

performed. However, probabilistic prediction models rather

than static structure models such as the deep learning

model can cope with such situations whereby prediction

cannot be performed by the static structure model. In the

current work, we aim to create a more flexible and error-

tolerant model compared to previous works.

It is necessary to build individual mobility models for

each volunteer and to predict for each volunteer, as the LBS

is essentially individual-oriented. Even though individuals

can move within a group, they possess their favorite

locations and their characteristics of mobility. Thus, we

focused on individual prediction in this research. In

addition, we will prepare the methods to measure the

accuracy of the next location prediction and measure the

accuracy of trajectory prediction and trajectory pattern

generated by a trajectory prediction model.

Section II discusses the classification models of deep

learning as a core background of our approach, and the

related works in detail. In Section III, we present the

algorithm to predict the next location and to generate a

trajectory pattern. Section IV describes the method of

accuracy measurement for the predicted trajectory. In

Section V, the positioning data collection, experimental

environment, and detailed structure of network models

are discussed. Section VI presents the result of trajectory

prediction and trajectory pattern generation with deep

learning models. Section VII presents conclusions and

discusses the possible related topics for future research.

II. RELATED WORKS

Previous investigations on this subject focused on the

tree generation of trajectory patterns by data mining

techniques to predict the next location or trajectory

pattern generation by establishing a Markov chain from

the probabilistic approach.

Predicting the next location of objects with mobility

sequence tree generation by pattern mining the objects’

mobility is a typical approach in this area [1-3]. An

incremental approach exists where initially, the mobility

tree is expanded continuously by pattern mining [4],

followed by continuous pattern mining. Generating a

trajectory with pattern mining is based on an a priori

algorithm. Transitions from the start location to end

location can form linked lists. For all the previous

locations, highly visited transitions can be generated by

removing less frequently visited transitions. Therefore,

trees can be generated with highly visited transitions. With

the generated tree, the most frequently visited location

could be predicted.

The LBS can also be utilized to generate mobility

patterns [5]. Such methods, including mobility pattern

tree generation and next location prediction, are typically

combinations of the probabilistic approach and data mining,

as shown in [6, 7]. Some researchers have generated graphs

representing the mining results of frequent past trajectories

to predict the next location based on the graph [8, 9].

The trajectory pattern itself can be utilized for the

mining trajectory without trees, graphs, or probability

models [10].

Location prediction in combination with frequent

trajectory and mobility rule can be achieved [11]. For

example, the measure of the frequency of location visits

can be defined as shown in [12].

From the view of location prediction, various methods

and situations can be assumed such as a disaster. Mobility

prediction in case of disaster using particle filter has been
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demonstrated [13]. Contrary to our research, this research

deals with group mobility. A similar mobility pattern

between two users can be used to predict the location of

the user using collaborative filtering as shown in [14].

Moreover, research results exist about group mobility as

shown in [15] and [16]. The results were of general

prediction for the wider area and massive group mobility.

Markov chain based results can be found in [17-19]

which represents the human mobility model in a form of

Markov chain to show continuous human mobility pattern.

A Markov chain-based approach allows prediction of the

next location based on human mobility pattern, as

previously demonstrated [20]. The hidden Markov model

(HMM)-based prediction shown in [17] utilizes a transition

matrix with seven locations and nine combinations of pairs

of previous locations and employment of 20 locations

[18]. As discussed, the trajectory pattern tree, Markov

chain, and data mining are major tools for past research.

However, the big data analytics approach is now

required as the volume of mobility data increases daily. A

current candidate for big data processing is deep learning

[21]. Deep learning is a branch of machine learning,

especially with neural networks. Research regarding

trajectory pattern generation using a deep autoencoder

has been reported [22]. Further, trajectory pattern prediction

with network structures has been investigated [23, 24]. A

reported work demonstrates the generation of a matrix of

mobility flow [25]. This work utilizes CNN to predict

group mobility in urban areas such as the central part of

New York. A study used exogenous variables at present

and past time and tried to predict the variable at a given

time [26]. On the contrary, a study removed present time

data of prediction time and added convolution layer to

their model for prediction, thereby resulting in time-

shifted training of actual data [27]. Other works based on

deep learning [28] pertain to mobility prediction under

disaster situations. The time, location, and disaster

information are used for the prediction. In our research,

we used continuous geolocation data apart from the

above research results which show the time-shifted results

for prediction of continuous trajectory or predicted discon-

tinuous trajectory.

The purpose of our research is to predict individual

locations in typical and general situations. We will solve

these problems using the general deep learning classi-

fication model such as CNN and RNN. With the smallest

preprocessing of data, the CNN and RNN based prediction

of the objects’ trajectories will be presented.

III. BACKGROUNDS

A. Mobility Data and Trajectory Pattern

Mobility data are data containing the location or

positioning information of objects. For example, GPS

data contains the latitude, longitude, and time information.

Positioning devices such as a GPS receiver or smartphones

can collect mobility data. Several positioning mechanisms

exist such as GPS, GLONASS, WPS (Wi-Fi-based posi-

tioning system), and Bluetooth-based positioning systems.

The trajectory is defined as shown in Definition 1 [6].

DEFINITION 1. A Trajectory or Spatio-Temporal

Sequence is a Sequence of Triples

 (1)

where (x
i
, y

i
) are points in R2 and t

i
 < t

i+1, (0 ≤ i ≤ n).

In this research, <x
i
, y

i
> denotes geoposition (location)

and t
i
 denotes time.

Fig. 1 shows how Definition 1 can be visualized

concerning the change in location as a function of

timestamp. The locations are changed according to the

timestamp. The trajectory contains the positioning and

location information, for example, restaurant, home,

school, etc. The trajectory represents the mobility of

objects in the form of location data or positioning data

sequences like Fig. 2.

The trajectory pattern is a pattern that can be observed

from the typical or repetitive trajectory of multiple objects.

The trajectory pattern can be generated by various methods

that can subsequently generate different trajectory patterns

from the same trajectory set.

T <x0, y0, t0>, ..., <x
n
, y

n
, t

n
>=

Fig. 1. The three-dimensional (3D) positioning data.

Fig. 2. The two-dimensional (2D) positioning data.
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B. Classification Model of Deep Learning

Deep learning originates from neural networks in the

artificial intelligence field. Multiple stacks of neural

networks comprised of deep layers of networks and

learning on this network are called deep learning. It is

used primarily in image classification, speech recognition,

and natural language processing because it can excellently

perform in the fields that require classification. Deep

learning models can be classified according to their

usage. A classification model classifies the input data

according to the pre-trained results based on the input

data for training. A generative model generates new data

based on trained data. To predict the object’s next

location, a classification model is useful to establish a

trajectory pattern because we wish to predict the object’s

next location about the new input data using a model that

is trained by the previous data. For the deep learning

classification model, several models exist. The distinguished

models are class-deep belief networks [29], feedforward

neural networks [30], CNNs [31], and RNNs [32]. The

previous research [22] described in Section II-A utilizes

the generative model as a deep autoencoder for trajectory

pattern mining.

However, we will utilize the CNN and RNN in this

research. As shown in [31] and [32], CNNs and RNNs

are excellent models that are widely used in both research

and real-world applications; they are used for image

classification and sequential data processing. We will

process the trajectory data according to the properties of

these models for model training and prediction.

1) Convolution Neural Network

CNN is a model for deep learning that classifies input

data through training. For example, CNN can classify

images such as the classification of a cat from a dog or

classification of numbers from manuscripts. With input

data which is not used to train, the CNN classifies such

input data based on the trained information. The CNN is

used widely compared to other deep learning models as it

performs better than other models, and is used primarily

for ImageNet, which is an image classification contest.

CNN filters the characteristics of neighboring data

especially in big data such as images; thus, a small

amount of data with characteristics can be fed to the fully

connected neural network (FNN), which is a core part of

CNN. The classification process of CNN is also good for

mobility data processing towards trajectory classification.

Particularly, the segmentation of geographical areas for

mobility pattern processing is suitable for CNN. Our

mobility trajectory is preprocessed such that the trajectory

can be represented in a two-dimensional matrix form

reflecting the mobility on the map. Therefore, the trajectory

over time remains in the preprocessed data, and the

trajectory is a set of adjacent locations of mobility. Such

adjacency of location and the relationship with adjacency

renders the CNN as a good candidate to be applied.

The CNN structure is shown in Fig. 3. The convolution

layer, pooling layer, and feedforward neural network are

combined to structure the CNN. Once the training data

are fed to the CNN, repetitive layers of the convolution

layer and pooling layer decrease the data size. On the

convolution layer of the CNN, various filters are applied

to predict the connectivity of the adjacent data and

subsequently passed to the next layer. Input data are

reduced by max-pooling and feeds the data to the next

layer. The decreased data are subsequently fed to the

neural networks. The error function can be utilized to the

interlayer parameter, W (weight) and b (bias). After the

training, the trained CNN can classify images with

adjusted parameters. The CNN adjusts the parameters

between layers from the input data, which constitutes

training the input data. It classifies another input data

based on the trained model and adjusted parameters.

Therefore, CNN requires data for the training and classi-

fication of other data.

The prediction procedure of CNN trained by data is as

follows:

- The new input data are reduced by the convolution

layer and pooling layer, similar to the training

procedure, and inputted to the FNN.

- Bypassing the output layer of the FNN, the data are

classified to the maximum likelihood label with the

softmax function.

- Labels can represent prediction.

Fig. 3. Convolutional neural networks.
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In this research, we have used the trajectory data as

inputs for the CNN training and established the predicted

locations and trajectory patterns with the new mobility

data.

2) Recurrent Neural Network

The RNN is suitable for sequential data processing

such as mobility trajectory identification and serves as a

classification model. Thus, RNN is another candidate for

our research because the mobility trajectory exists on the

time domain, and time adjacent movements compose the

sequential pattern. Both the past trajectory and current

movement can be used for trajectory prediction.

The RNN structure is shown in Fig. 4. In Fig. 4, past

data x and current data s can be fed as inputs to the

current state, i.e., memory exists in the RNN. Among

various RNN models, we have chosen the long short-

term memory (LSTM) model [32]. LSTM has a long-

term memory compared to the basic RNN.

IV. PREDICTION OF OBJECT’S TRAJECTORY
AND CREATION OF TRAJECTORY PATTERN

A. Preprocessing Mobility Data

As the dataset was inappropriate for training in its raw

form, certain preprocessing was required. The trajectory

data was unstructured and could not use the directory for

the deep learning model because they contain no data

format in their initial form. Therefore, they are required

to be preprocessed before applying the trajectory data to

use for the deep learning model.

As using three-dimensional data increases the data

volume significantly, an area partitioning method was

used to reduce the data. To reduce the data volume, the

first-hand approach is area partitioning. The map was

partitioned and labeled as shown in Fig. 5; subsequently,

the movement trajectory was represented as sequences of

label changes. The trajectory that is a sequence of labels

can be applied as the training data.

Training with part of the trajectory instead of the whole

trajectory was performed to understand the mobility based

on our models. Consequently, it was required to partition

the whole trajectory into multiple sets. In detail, a sequence

of movements from the starting point composes one

partition. Each data was labeled as the next location. The

trajectory length affects mobility data preprocessing.

Naturally, a large number of visits compose a longer

trajectory and larger input data.

EXAMPLE 1. Suppose we have the following set of

labels representing movements.

[1, 2, 3, 4, 5, 6]

Table 1 shows an example of the preprocessing of

mobility data. Once trajectory [1, 2, 3, 4, 5, 6] is obtained,

the mobility data can be preprocessed to contain one

trajectory and the next location as labels. In this case, [1,

2, 3, 4, 5, 6] can be preprocessed as Table 1 entries. For

example, [1, 0, 0, 0, 0, 0] is the first trajectory of the

object’s trajectory, and it will move to area label 2.

Therefore, the number of preprocessed data from one

mobile data will be preprocessed as much as the length of

the mobile data. The preprocessing procedure is formalized

as shown in Algorithm 1.

- Path is the input variable representing trajectory path.

- Line 1: ProcessedPath is defined as the variable of N

× N matrix, where N is the square root of the possible

longest number of trajectory or the number of

maximum prediction. For example, N is 3 once we

obtain a trajectory length of 9. Initially, they are

Fig. 4. Recurrent neural networks.

Fig. 5. Area partitioning and labeling.
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filled with zeros.

- Line 2: Repetition will be performed to line 8, until

the length of Path.

- Line 3: Generate ProcessedPath with Path until the

length of Path to line 5.

- Line 6: The generated ProcessedPath is appended to

ProcessedPathSet.

- Line 7: The next Path will be appended to the Label

set.

- Line 9: ProcessedPathSet and Label will be returned.

Thus, the preprocessing Algorithm 1 prepares the matrix

variable of ProcessedPathSet and a set of Label’s for

further processing can be padded as zero (0) to satisfy the

size restriction of the input matrix. On the contrary, in the

case of an RNN and a short trajectory, no padding is

required as the RNN is not concerned with the input

length.

However, in CNN, the input data is limited to the same

size for each matrix, thus the maximum length must be

restricted. The same restriction is also applied to the

RNN model with the restriction of the maximum length.

In the case of a CNN and a short trajectory, the non-

existing values can be padded as zero (0) to satisfy the

size restriction of the input matrix. On the contrary, in

case of an RNN and a short trajectory, no padding is

required as the RNN is not concerned with the input

length.

B. Prediction of Object’s Trajectory and
Creation of Trajectory Pattern

Based on the mobility data input, the optimized next

location will be predicted by the trained model. Algorithm

2 shows the procedure of the next location prediction. For

the trajectory input, the model predicts the next location.

The predicted location will be appended to the rear of the

first input trajectory. Additionally, the prediction can be

repeated as desired. The repetition of the next location

eventually generates the trajectory pattern that contains

both the observed location and predicted location.

- Line 1: Append Path to existing trajectory PredictedPath.

- Line 2: Repetitions will be made n times where n is

the desired number of prediction.

- Line 3: Using the prediction function of the CNN,

predict the next location for Path.

- Line 4: Append label of the predicted path to the

existing trajectory PredictedPath. PredictedPath can

be reused for the next iteration.

The mechanism of this algorithm is depicted in Fig. 6.

The inputs and outputs of the prediction by CNN are

included in Fig. 6, where the values of the input and

output are actual values observed during the experiment.

The trajectory of [1, 2, 3, 4, 5] was used for the input of

the CNN, where the reserved space was filled with zeros

for the predicted locations. Therefore, the label of the

current location is 6. The actions will be repeated by

Algorithm 2 for the desired times.

Apart from the next location prediction of CNN, the

prediction by the RNN uses the structural prediction

process. Fig. 7 depicts the prediction mechanism by the

RNN. The RNN’s next location prediction is performed

with the current location and past location.

V. ACCURACY MEASUREMENT OF PREDICTED
TRAJECTORY PATTERN

For the measurement of the accuracy of prediction in

Algorithm 1 PreProcessing

Algorithm 2 PredictedPath

Table 1. Example of mobility data preprocessing

Trajectory Predict

(1, 0, 0, 0, 0, 0) 2

(1, 2, 0, 0, 0, 0) 3

(1, 2, 3, 0, 0, 0) 4

(1, 2, 3, 4, 0, 0) 5

(1, 2, 3, 4, 5, 0) 6

(1, 2, 3, 4, 5, 6) 0
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our research, two methods were selected to measure the

accuracy of three distinguished cases of location prediction.

- CASE 1: Actual location and predicted location are

the same.

- CASE 2: Predicted location is not the same as the

actual location but the same as the adjacent location

of the actual location.

- CASE 3: Predicted location is not related to the

actual location.

Considering various cases, the accuracy measure,

which covers only CASE 1, is insufficient to present the

model performance. An additional method is required to

represent the prediction performance that also includes

CASE 2 and CASE 3. To include such cases of location

prediction, a measure called Top-k is introduced as a

generalized method for evaluating the performance of the

classification model [31]. Top-k, where k is a predefined

constant, verifies if the actual data is present in a set of

predicted data, and the set of predicted data is selected

according to the highest prediction probability where the

cardinality of the set is k, i.e., Top-k verifies if the

predicted data with the k topmost prediction probability

matches the actual data. Thus, Top-k demonstrates a

wider prediction performance of the model instead of the

accuracy only. We set k as five and, along with the

accuracy, measured the performance of prediction by

verifying if the five predicted locations can contain the

actual location in trajectory.

VI. PREPARATION OF EXPERIMENT

Concerning the frequent location of the volunteers, we

trained the model for the mobility data of one whole day.

Seven volunteers carried their own positioning devices

for the individual positioning data collection.

The area was limited to the size of 3.61 km in vertical

length and 4.82 km in horizontal length. We partitioned

the location area as 24 by 24 rectangles. Each partitioned

location area was in the range of 150.42 m (vertical) ×

200.83 m (horizontal). A total of 576 partitions were

generated and the label for each partition was assigned.

Based on the presence of a specific area where volunteers

were typically located; we chose that area. Virtually,

every possible size can be used for partitioning the area,

and we estimated that less than 200 m is of sufficient

resolution for our purpose.

The data used in this research are primarily the

positioning data. The positioning data are also called as

the geolocation data. To collect the positioning dataset,

devices such as a GPS receiver or smartphone with

applications of such functionality are required. In our

research, we used smartphones with the application known

as “Sports Tracker”. The volunteers carried their smart-

phones with functioning Sports Tracker application. Each

volunteer’s dataset contains the mobility state of walking,

running, public transportation, etc.; therefore, the dataset

contains nearly every possible status of mobility. The

Sports Tracker collects one or two positioning data in one

second when it senses high mobility; otherwise, it collects

one positioning datum in three seconds at the maximum.

The frequency of positioning data collection affects the

learning process of the mobility trajectory. However, our

method is not affected by positioning frequency as we

treat mobility as changes in position regardless of time

span. The total sum of the collected positioning data is

1.5 GB. Even though we assumed continuous collection

of positioning data, it cannot be accomplished, owing to

various reasons such as insufficient battery level of the

smartphone, personal life protection, forgetting the acti-

vation of “Sports Tracker”, urban canyon, and underground

transportation. We used such non-continuous dataset as it

is, because it is reasonable to use the data collected in a

real situation. Services based on our research might

encounter a similar situation of data shortage, which is

almost inevitable. We assume that the experimental result

will indicate better performance once we obtain the ideal

24-hour daily dataset. For the mobility model of seven

volunteers, each model was trained by each volunteer’s

data, independently. In other words, each volunteer had

Fig. 6. Prediction in convolutional neural networks.

Fig. 7. Prediction in recurrent neural networks.
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an individually trained dedicated model. The positioning

dataset from only one individual is sufficient to verify the

location prediction by deep learning if the dataset is

continuous and contains sufficient data. It is important to

possess sufficient data to train deep learning models. In

our case of supervised learning, the difference between

real data and predicted data is the key for learning.

However, we used the datasets from seven volunteers as

the sets were intermittently collected and contained a

relatively smaller number of data than expected, which is

typical in an actual situation. In such situations, we can

compare datasets from different volunteers and analyze

the result from each dataset in terms of accuracy and Top-

k, to determine if the deficient dataset is suitable for

prediction. It is interesting that even with a smaller

number of positioning data for training, the prediction

sometimes achieved better performance compared to a

larger number of training sets.

Compared to the previous methods, 576 locations were

used in our research and such several data renders our

model more general for prediction. Our deep learning

model-based approach demonstrates prediction in terms

of a large number of locations, non-restrictive location

coverage, and flexibility of location size, all of which can

be accomplished by a simple setup of partition size of a

given area.

On the networks for deep learning, the architectures

for three CNN models and three RNN models were

proposed, and every model was pre-tested. From the pre-

test experiment, the accuracy and top-5 were measured

using the weekday data of volunteer 3 with input size 576

and output size 576. Table 2 shows the model name, the

architecture of each model, accuracy, and the top-5. CNN1

and RNN2 demonstrate the best performance in their

groups. Thus, CNN1 and RNN2 will be our architecture

henceforth, and more experiments will be carried out

based on these two models.

- Learning rate: 0.01

- Activation function: tanh (hyperbolic tangent)

- Mini-batch size: 100

- Gradient descent optimization: ADAM (adaptive

moment estimation) optimizer

The experiment was performed separately for weekdays

and weekends. The result can be visualized in maps. On

the machine having a GPU of GTX980 on Ubuntu 15.04,

Python and Theano were used for the actual experiment.

Regarding the prediction speed of our model, 0.10

second was required to predict data size one for both

CNN and RNN. For the prediction of 24,419 data size, it

took 1.38 seconds. We concluded that the time required

for prediction was short enough for the actual imple-

mentation of location prediction service. It enables real-

time service for prediction. The execution time and the

prediction size are not linearly proportional because of

data transfer time from the main memory to GPU memory.

To use GPU, data must be transferred from main memory

to GPU memory preceding to GPU’s processing which

spends most of the execution time in case of a small

number of prediction size.

VII. RESULTS

A. One Step Prediction

The detailed results are summarized in Tables 3, 4, and

Fig. 8. For seven volunteers, the details of the data and

results are for only one next location prediction.

The one-step prediction does not simply predict the

eight neighboring cells. Non-continuity could be present

in the positioning data collection. However, it is also

possible in our method to predict the location even when

a gap exists in the mobile trajectory. Therefore, even a

random guess of the one-step prediction does not satisfy

the probability of prediction as 0.125.

Table 3 shows the ID of the volunteers, the number of

train sets, the number of test sets, the accuracy of

prediction, and the top-5 of the prediction. Apart from the

accuracy, the misprediction ratio ignores the near

prediction but pertains only to the correct prediction

compared to the actual trajectory. Similarly, Table 4

shows the details of the training data and the prediction

result for movements on weekends. The result for

Volunteer 5 could not be observed because the volunteer

had no movement on weekends.

The case of weekdays for Volunteer 1 demonstrates the

CNN accuracy of 34.05% and the top-5 of 83.07%. For

Table 2. Accuracy of predicted trajectory on model architecture

Model Architecture Accuracy Top-5

CNN1 Cov(5×5) - MaxPool(2v2) - Cov(5×5) - MaxPool(2v2) - FFN(576) 22.17 64.54

CNN2 Cov(5×5) - Cov(3×3) - MaxPool(2×2) - FFN(576) 16.70 40.13

CNN3 Cov(5×5) - Cov(5×5) - MaxPool(2×2) - FFN(576) 18.93 51.60

RNN1 LSTM(24×24) - LSTM(300) - FFN(576) 20.05 48.95

RNN2 LSTM(24×24) - LSTM(24×24) - FFN(576) 20.05 50.00

RNN3 LSTM(24×24) - LSTM(24×24) - FFN(576) 20.05 48.95
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Fig. 8. Comparison of accuracy and top-5 for CNN and RNN: accuracy for weekday data (a) and weekend data (b); top-5 for weekday data
(c) and weekend data (d).

Table 3. Accuracy of predicted trajectory in weekdays

Volunteer ID Data size (day)
CNN RNN

Accuracy Top-5 Accuracy Top-5

Volunteer 1 24,419 (452) 34.05 83.07 23.35 60.60

Volunteer 2 19,117 (372) 34.34 81.25 34.16 81.08

volunteer 3 11,885 (141) 22.17 64.54 20.05 48.95

Volunteer 4 2,701 (117) 29.31 79.04 27.60 71.60

Volunteer 5 4,511 (177) 24.50 63.30 21.44 51.56

Volunteer 6 878 (143) 24.34 68.18 20.00 60.63

Volunteer 7 1,786 (99) 18.77 49.30 18.67 53.67

Table 4. Accuracy of predicted trajectory on weekends

Volunteer ID Data size (day)
CNN RNN

Accuracy Top-5 Accuracy Top-5

Volunteer 1 6,239 (166) 31.49 76.28 25.25 57.75

Volunteer 2 4,669 (150) 33.40 84.48 34.11 81.00

volunteer 3 2,174 (52) 11.03 36.78 12.75 45.50

Volunteer 4 937 (25) 27.18 75.40 20.00 58.00

Volunteer 5 61 (38) 30.77 69.23 10.00 90.00

Volunteer 6 354 (43) 12.68 29.58 14.29 34.29

Volunteer 7 6,239 (166) 31.49 76.28 25.25 57.75
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the RNN, an accuracy of 23.35% and top-5 of 60.60% are

demonstrated. Both the CNN and RNN results are

credible as this experiment was performed with sufficient

data.

Table 3 shows that the top-5 of the next one location

prediction of the weekday’s movement is in the range of

49%–83%. Table 4 also shows that the top-5 of the next

one location prediction of the weekend’s movement is in

the range of 29%–84%, while the lowest accuracy is not

credible owing to the small number of train sets. The

RNN-based prediction was in the top-5 with 51%–81%

during the weekdays and top-5 with 34%–90% in the

weekend.

A noticeable tendency is that a higher number of train

set implies a higher accuracy. It implies that proper

training can be performed based on a sufficient number

of samples. Tables 3 and 4 can be compared in this

regard. The accuracy is similar while the top-5 is vastly

different although they have a similar number of train

sets and test sets. This implies the arbitrary nature of

human mobility. Volunteer 6 exhibits more randomness

in terms of mobility.

Fig. 8 shows the comparison accuracy and top-5 by the

CNN and RNN. In Fig. 8(a), the weekday case indicates a

higher accuracy of the CNN-based prediction compared to

the RNN-based prediction. The weekend case in Fig. 8(b)

shows that a similar accuracy pattern can be found for

both CNN- and RNN-based predictions. In general, the

CNN-based prediction demonstrates a higher accuracy

than the RNN-based prediction. In terms of the top-5,

Fig. 8(c) and 8(d) show a better top-5 by the CNN-based

prediction compared to the RNN-based prediction except

for Volunteers 3, 6, and 7.

In summary, CNN is proposed as a better model for

trajectory prediction than the RNN with the top-5 of

49%–83%.

B. Multiple Step Prediction

The results in the previous subsection indicate better

accuracy of the CNN in general compared to the RNN for

the next location prediction. Subsequently, the result of

the long-term prediction is interesting. Based on the basic

results in Section VII-A, we conducted the prediction of

trajectory pattern with multiple depths of up to five, only

with the CNN. Volunteers 1 and 2 were chosen owing to

their high one-step prediction top-5 and large number of

train data, while Volunteer 3 was chosen to compare the

effect of the number of train data on the multiple depth

prediction.

As shown in Fig. 9 and Table 5, the top-5 of prediction

exhibited a decrease, as expected, according to the degree

of prediction.

However, the top-5 of prediction with multiple depths

depends completely on the nature of the volunteers.

Regardless of the number of data for training, Volunteers

1, 2, and 3 exhibited different accuracies of prediction. We

may conclude this phenomenon as follows: The mobility

of Volunteer 2 is stable both on the weekday’s data and

weekend’s data. The mobility of Volunteer 1 tends to

wander. The mobility of Volunteer 3 is rather stable on

the weekend’s data but active on the weekday’s data.

For the five depth predictions, some of the results are

visualized on the map. Figs. 10–13 show the results of the

depth prediction of Volunteers 1 and  3 on weekdays. Each

subfigure shows the map and trajectories over 24 × 24

grid partitions. In each subfigure, the number 1 dot

Fig. 9. Accuracy of predicted trajectory with multiple prediction
depth.

Table 5. Accuracy of predicted trajectory with multiple degrees of prediction

Volunteer ID Degree 1 2 3 4 5

Volunteer 1 Weekday 83.70 81.57 78.26 75.64 73.06

Weekend 76.28 73.91 69.81 66.41 64.04

Volunteer 2 Weekday 81.57 81.19 81.17 81.14 80.70

Weekend 84.48 84.42 84.32 84.23 84.13

Volunteer 3 Weekday 64.54 62.20 60.34 58.56 56.67

Weekend 36.78 36.09 35.94 35.86 35.81
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represents the starting point of the actual trajectory, the

last number dot represents the endpoint of the actual

trajectory (current position), and the other number dot

represents the past visited location. Figs. 10 and 11 are

for Volunteer 1 and Figs. 4 and 6 are for Volunteer 3.

Figs. 12 and 13 show the graphical result of the location

prediction of Volunteer 1. As shown in Fig. 9, the overall

prediction is fairly inaccurate owing to the misprediction

Fig. 10. Depth prediction of Volunteer 1 on weekday: (a, c, e)
actual trajectory of depth 1, 2, and 3; (b, d, f ) predicted trajectory
of depth 1, 2, and 3.

Fig. 11. Depth prediction of Volunteer 1 on weekday: (a, c)
actual trajectory of depth 4 and 5; (b, d) predicted trajectory of
depth 4 and 5.

Fig. 12. Depth prediction of Volunteer 3 on weekday: (a, c, e)
actual trajectory of depth 1, 2, and 3; (b, d, f ) predicted trajectory
of depth 1, 2, and 3.

Fig. 13. Depth prediction of Volunteer 3 on weekday: (a, c)
actual trajectory of depth 4 and 5; (b, d) predicted trajectory of
depth 4 and 5.
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in the first step, as depicted in the depth one case of Fig.

10. However, it is interesting that the trend of prediction

is reasonable. The similar phenomena can be found for

the prediction of Volunteer 3’s location, as shown in Figs.

12 and 13.

Figs. 10 and 11 show non-continuous mobility. This is

due to the problem of the positioning data collection

because of the underground transportation, urban canyon,

etc. In such an environment, the positioning data cannot

be collected normally. However, prediction can be made

regardless of the continuity of the positioning data.

VII. CONCLUSIONS

Based on the assumption of the trends of individual

human mobility, we developed a method of human

location prediction using a classification model.

We generated the trajectory pattern of the objects’

trajectory and predicted the next location of objects using

the CNN and RNN, which are classification models of

deep learning. Instead of handling the map data of the

positioning data, the trajectory information was used for

training.

We verified the objects’ trajectory generation and

predicted the trajectory pattern. Additionally, the method

of measuring the accuracy of model was provided and the

model accuracy was measured. The essence of our

research is that trajectory-based information can generate

trajectory patterns using deep learning. However, the

randomness of human mobility led to a relatively low

accuracy of trajectory prediction. Also, the lack of human

mobility data caused drawbacks in model training.

In our experiment, not all the volunteers gathered

sufficient mobility data to train the model in a single day.

In other words, the prediction of human location based on

the daily positioning dataset would yield a lower accuracy

of prediction. Further, some events caused significant

human mobility such as moving in and out, newly

constructed highway, and even Pokemon GO, thus

hindering prediction based on the past mobility data.

Even though we studied the human mobility data, studies

on freight traffic will be able to show much more accurate

results, as such mobility patterns may not include the

randomness of human mobility.

The largeness of positioning data requiring big data

processing could be reduced to the essential trajectory

data by excluding meaningless positioning data; thus, our

method results in less noise in the trajectory pattern.

Therefore, we reduced the processing time of big data

and the amount of data to be processed, implying that our

method could be implemented on portable devices with

typically low computational capability and smaller battery

consumption. The next location might be able to be

predicted in real-time with our method on portable

devices, thereby widening the application area of LBSs.

We only focused on a single, individual object for the

trajectory pattern and location prediction. One candidate

for future research would be the trajectory pattern and

location prediction of object groups. Additionally, the

application of other deep learning models for better

prediction will be another candidate.

Another combination of human mobility and human

personality exists. Even though we only considered the

individual’s trajectory pattern, other factors for an individual

exist such as age, gender, income, and personality. Among

these factors, the human mobility model, which can be

represented with the big five factors (BFF) personality

model, may be significantly related to human mobility.

For example, our result implies that Volunteer 1 is much

more active, or may exhibit a higher Openness than

Volunteer 3 in terms of the BFF. Volunteer 2 may exhibit

a higher Agreeableness than Volunteer 1 in terms of the

BFF. Otherwise, the effects of age, gender, marriage, or

family matters might be imposed on the volunteers’

mobility. The research that combines human personality

and other personal factors with the topic of this research

may result in the personality prediction from the mobility

prediction method, as shown in [33]. Additionally, we can

use another source data like from the SNS and identify

the purpose of movement and action at a location. It is

hypothesized that once this information is combined with

mobility patterns, a more precise prediction could be

accomplished.
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