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Abstract
Time predictability is crucial for hard real-time and safety-critical systems. In an integrated CPU-GPU (graphic process-

ing units) architecture, the shared last-level cache (LLC) can cause a large number of interferences between CPU and

GPU LLC accesses with diverse patterns and characteristics, which can significantly impact the performance and time

predictability of both CPUs and GPUs. In this paper, we explore cache partitioning, locking, and a combination of them

to make the LLC time-predictable for integrated CPU-GPUs while achieving high performance. By evaluating these

LLC management approaches, we can provide real-time system developers recommendations on the most effective time-

predictable LLC designs for heterogeneous CPU-GPU multicore processors.
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I. INTRODUCTION

Graphic processing units (GPUs), originally designed for

graphic computations, have become a popular computing

platform to accelerate high-performance and data-parallel

applications. The massively parallel processing capability

and enhanced energy efficiency of GPUs can potentially

benefit parallel real-time applications such as autonomous

navigation and medical data processing. All these appli-

cations have stringent deadlines and require high system

throughput, thereby rendering GPUs as ideal computing

engines. Prior work [1] has shown that GPUs can benefit

real-time applications by reducing the response time by

three times or more.

GPUs for desktops and servers are typically on different

dies from the CPU. In such a discrete architecture, the

memory hierarchies of the CPU and the GPU are private

and separated, and communication between them is

orchestrated by the application by copying the data

between the CPU and the GPU via the PCIe bus. To

remove the performance and energy overheads of copying

data back and forth, a trend towards the heterogeneous

computing architecture that integrates the CPU and the

GPU on the same die has emerged. Recent examples

include Intel’s Sandy Bridge, AMD’s accelerated processing

unit (APU), NVIDIA’s Denver, etc. The integrated CPU-
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GPU systems are particularly attractive for real-time

systems as they can provide high throughput and efficient

data sharing, and have stringent constraints on energy

consumption, form factor, and cost.

To safely accelerate hard real-time applications by

using the integrated CPU-GPUs, designers must be able

to estimate the worst-case execution time (WCET) of the

tasks running on CPU and GPU cores. The WCET

provides a basis for schedulability analysis to ensure that

the hard deadlines are met. However, many performance-

oriented architectural features of modern microprocessors

make it very hard, if not impossible, to accurately and

safely derive the WCET, especially for the heterogeneous

multicore processors consisting of both CPU and GPU

cores. While the WCET analysis for caches in the context

of single-core processors has been thoroughly studied in

the recent decades, the architectural design shifting to

multicores and heterogeneous CPU-GPU multicores

makes it much harder and more complicated to compute

the WCET tightly due to the tremendous amount of inter-

ferences between the homogeneous and/or heterogeneous

cores.

In the past two decades, researchers have studied time-

predictable architectural designs [2, 3] to mitigate the

complexity of WCET analysis and enable hard real-time

computing on high-performance processors. For example,

Suhendra and Mitra [4] and Paolieri et al. [5] studied

time-predictable shared caches on homogeneous multicores

with only CPUs. However, varying from homogeneous

multicores, the CPU and GPU cores on the heterogeneous

CPU-GPU processors have significant different cache

access patterns, demands, and performance characteristics.

In general, GPUs tend to consume more LLC (last-level

cache) resources than CPUs due to their massive threads

and higher data accessing activity, leading to significant

degradation in the performance CPU. In addition, in

contrast to CPU data accesses, GPU data accesses may

typically exhibit much less temporal and/or spatial locality,

yet the GPU cache access latency may be largely hidden,

taking advantage of the high thread-level parallelism of

GPU kernels. Consequently, the traditional time-predictable

caches designed for CPUs may not be suitable for the

heterogeneous CPU-GPU processors.

The integrated CPU-GPU architecture that was consi-

dered in this paper is depicted in Fig. 1. In the integrated

CPU-GPU architecture, both CPU and GPU cores have

their own private L1 (and L2 caches for CPUs) and share

the LLC, memory controllers, and on-chip interconnection

network. While there can be interferences in all these

three shared resources, this paper focuses on exploring

time-predictable LLC designs, which is the first step

towards building a fully time-predictable integrated

CPU-GPU processor for hard real-time computing. To

reduce the complexity of WCET analysis and support

compositional timing analysis, it is crucial to eliminate

the inter-core interferences in the shared LLC on hetero-

geneous multicores. Considering the diverse characteristics

of CPU and GPU architectures and programs, we explore

several LLC management techniques to improve time

predictability while achieving as high performance as

possible, including cache partitioning, locking, and a

combination of them to achieve caching time predictability

for both CPUs and GPUs. Cache partitioning is done to

separate CPU and GPU cache blocks to minimize the

interferences. The LLC space is partitioned into two parts

to serve CPU and GPU threads separately, thus both CPU

and GPU cores have their private LLC logically, thereby

making it possible to avoid the interferences between

CPU and GPU data accesses. Consequently, the cache

partitioning enables the stable availability of shared LLC

space for CPU and GPU cores guaranteeing that the

WCET analysis can be done on the CPU or GPU cache

partition independently, which can leverage existing

cache timing analysis techniques [5-7]. Cache locking is

another method to achieve time predictability for cache

memories [8]. With cache locking, selected data are

allowed to be locked into the cache, which cannot be

evicted unless they are unlocked. While both cache parti-

tioning and cache locking have been studied extensively

for CPUs, their effectiveness on GPUs and performance

impact on the integrated CPU-GPU remain unknown.

Our study aims at addressing these issues.

In this paper, we explore possible design choices for a

time-predictable and high-performance LLC on the

integrated CPU-GPU architecture. While all these design

options can improve the time predictability of the LLC,

we also quantitatively compare their impact on the per-

formance for both CPU and GPU programs. This study

can provide interesting LLC design options and guidelines

for real-time application programmers to accelerate their

programs on integrated CPU-GPU processors.

The rest of this paper is organized as follows. Section

II reviews previous work and Section III shows the

motivation behind the design of this paper. Section IV

introduces shared LLC management mechanisms that

were implemented and describes cache partitioning and

Fig. 1. Heterogeneous CPU-GPU multicore architecture.
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locking algorithms for heterogeneous CPU-GPU multicore

processors. Section V presents the methodology and

hardware details and Section VI provides the experimental

results. Finally, we conclude this work in Section VII.

II. RELATED WORK

The shared LLC in heterogeneous CPU-GPU multicore

processors leads to a conflict between CPU and GPU

applications. GPU cores are more powerful to capture

LLC space than CPU cores due to the high frequency of

data accesses, thus CPU blocks are always evicted by

GPU blocks thereby resulting in unfair LLC sharing and

significant performance loss of CPU application. Cache

partition and locking are two solutions to overcome this

problem.

Researchers have studied the resource sharing problems

for multicore processors. Partitioning of the algorithms

has been used to monitor the cache accesses to identify

proper partitions for maximizing performance [9] or

fairness [10] for multicore processors. Qureshi and Patt

[11] extended the work in [9, 10] to develop a utility-

based cache partitioning (UCP) that obtains the infor-

mation about the utility of cache resource by runtime

monitoring. These proposals predict the number of cache

misses of each application with various partitioning

percentages, which then choose the best partition that

results in the least amount of cache misses. Moreto et al.

[12] considered the memory level parallelism (MLP) of

each cache access to improve throughput. Kedar et al.

[13] presented a novel cache architecture termed SPACE

(semi-partitioned cache) that makes it possible to main-

tain the predictability of the execution time of the parallel

threads while reducing the overall energy consumption of

the system.

For heterogeneous multicore processors with GPUs,

Lee and Kim [14] introduced a core-sampling mechanism

called TLP-aware cache management policy to detect the

manner in which caching affects the performance of

general-purpose GPU (GPGPU) applications. Mekkat et

al. [15] proposed heterogeneous LLC management (HeLM)

that considered the advantage of the GPU’s tolerance for

memory access latency. Woo and Lee [16] and Yang et al.

[17] proposed to exploit the GPU or CPU respectively to

prefetch data for boosting the performance of the integrated

CPU-GPU architectures. Wang et al. [18] demonstrated a

latency sensitivity-based cache partitioning (LSP) frame-

work, which leverages a lightweight runtime mechanism

to quantify the latency-sensitivity and a navel cost function

to guide the LLC partitioning. However, all these prior

studies focused on improving the average-case perfor-

mance and not time predictability. These methods typically

rely on runtime profiling information to improve the

efficiency of cache partitioning or adapt the partitioning

space based on the runtime program behavior, which

generally is harmful to time predictability and make

WCET analysis even harder.

There exist studies on static and dynamic cache locking

to improve time predictability or performance [8, 19-23].

However, to the best of our knowledge, none of these

studies accounted for the unique features of heterogeneous

multicore processors. Thus, their impacts on GPUs or the

integrated CPU-GPUs are still unknown. Also, cache

partition and locking mechanisms have never been used

together in the context of the heterogeneous CPU-GPU

multicore processors, which will be explored in this paper.

Researchers recently have also studied real-time sche-

duling to exploit GPUs for real-time systems [24-28]. All

these efforts, however, assume that the WCET of the

GPU kernel is known. Therefore, our work on improving

time predictability (and WCET analyzability) is comple-

mentary to existing efforts and can benefit these studies.

This paper is based on an extension of a conference

paper [29]. In this paper, we consider the benchmark

behavior to investigate various impacts of CPU and GPU

cache locking on cache miss rates and performance.

Moreover, we further study the hardware-based static

way partitioning to understand how different partitioning

affects the performance of both CPU and GPU.

III. MOTIVATION

While the integrated CPU-GPU architecture can benefit

the performance by enabling efficient data sharing on-

chip and reducing the overhead of communicating data

between CPU and GPU cores, the highly shared resources

may have a negative impact on the overall performance

in case there are too many interferences on the shared

resources. An important shared on-chip resource is the

LLC, most of which is likely to be used by GPU core due

to the diverse cache access demands, leading to limited

LLC space for CPU cores and thus more CPU cache

misses and worse CPU performance. On the other hand,

GPU applications can generally exploit thread-level

parallelism to hide cache miss latency, making them less

sensitive to the reduction in the LLC space. Moreover,

since the performance of the CPU application is now

dependent on the GPU application and vice versa due to

the shared LLC, the complexity of WCET analysis for

both CPU and GPU will be increased enormously.

To develop a better understanding of the impact of the

concurrent running of CPU and GPU applications on the

performance of the CPU and the GPU, respectively, we

utilize the MacSim simulator [30] to measure their

performance in terms of the total number of execution

cycles on both CPU and GPU (more details of our

experiments can be seen in Section V). Fig. 2 shows the

performance degradation of both CPU and GPU appli-
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cations, respectively, when they are co-running simul-

taneously, which is normalized to the performance of

running the CPU or GPU application alone (i.e., the CPU

or the GPU uses the LLC privately without sharing). As

we can see in Fig. 2, when running CPU and GPU

applications simultaneously, CPU applications result in

larger performance degradation. On average, the CPU

performance decreases significantly by 37.4% when co-

running with GPU applications. However, for GPU, the

average performance degradation is only 14.7%. This is

because CPU applications are often more sensitive to the

cache size, and the variety of data access densities of

GPU applications can lead to different amounts of LLC

space available for CPU applications. However, it should

be noted that the performance impact of LLC sharing on

GPU applications is smaller owing to their ability to hide

memory latency through high thread-level parallelism

(more details can be seen in Section VI).

Although both cache partitioning and locking can

improve time predictability, they may also affect the

performance of both CPU and GPU applications. In

cache partitioning, both CPU and GPU applications will

be assigned with a fixed portion of cache space, which

may be quite different from the actual cache space they

can occupy in a shared LLC. In particular, since GPU

applications typically have many more threads and access

much more data during a given time interval, cache

partitioning may guarantee the CPU applications with a

fixed amount of cache space, while GPU applications

may actually result in less LLC space to use considering

the fixed partition. For cache locking, since the locked

cache space cannot be reused, the effective reusable

cache space for both CPU and GPU applications may be

greatly reduced unless the cache data are unlocked or the

locked data are frequently reused to decrease the pressure

on the cache space. In summary, both cache partitioning

and locking may have an impact on the performance of

CPU and GPU applications, though CPU performance is

likely to be affected more. Combining both partitioning

and locking can result in more complex interactions

between the reusable cache space and the reuse of locked

data for both CPU and GPU applications, whose perfor-

mance implication will be examined in this work.

IV. TIME-PREDICTABLE LLC DESIGN OPTIONS

To manage the LLC for better time predictability, we

implement and evaluate five time-predictable LLC designs

including partitioning, locking CPU blocks, locking both

CPU and GPU blocks, and two combinations of partitioning

and locking schemes. For cache partitioning, we use

hardware-based static way partitioning that allocates a

specified number of ways in a single cache set to CPU and

GPU applications, respectively. For cache locking, we

use a reuse counter-based mechanism that dynamically

selects cache blocks to be locked according to the reuse

frequency.

Cache partitioning. We use the hardware-based static

way partitioning to partition the LLC space for CPU and

GPU. The static partitioning chooses a preset percentage

(50% by default, but it can be varied). The 50% value

means that half of the ways in a cache set are exclusively

reserved for CPU applications whereas the remaining

ways are for GPU use. The allocation of a cache way

follows the logic specified in Algorithm 1. The ownership

of cache ways is decided at runtime. Specifically, if an

unused cache block is first used to load a CPU block,

then only CPU application can access and replace this

block afterward. Similarly, a cache block which is first

used by a GPU core is then exclusive for the GPU

application. Within each partitioning, the least recently

used (LRU) cache replacement policy is applied, which

will sacrifice the LRU cache block to accommodate the

new data.

Fig. 2. Performance loss for co-running CPU application (a) and GPU application (b).
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Locking CPU and GPU blocks. To support the cache

locking mechanism evaluated in this work, a counter is

associated with each cache way to record the frequency

of accesses to the current way. A cache block is locked

once the re-access time is greater than a threshold which

is predetermined before the execution of applications.

Since the cache block is inevitable after being locked, the

LRU policy is tailored to search the LRU cache block

only among the unlocked ones. In case that all the cache

blocks in a set are locked, the new data bypasses the LLC

and heads to the upper-level cache directly. The pseudo-

code of cache locking is detailed in Algorithm 2.

Locking CPU blocks only. Instead of locking both

CPU and GPU blocks, in this design, only cache space

holding the data of CPU application can be locked

according to the reused frequency while cache space

owned by GPU application is free to be reused. Locking a

cache block can negatively influence the performance of

the remaining memory blocks that are mapped to the

same set, since the reusable cache capacity is reduced.

Therefore, the cache locking algorithm should ensure that

the overhead and benefit of locking are balanced.

Locking both CPU and GPU gets a high probability of a

few unlocked cache space for other memory blocks. As a

result, the benefit of locking is limited and the overhead

rises. Since CPU applications are more sensitive to cache

misses and GPU applications tend to access the LLC

more intensively, we choose to lock CPU blocks only to

prevent frequently used CPU blocks being replaced and

also leave more cache space for CPU data as no GPU

blocks are locked in this scheme. This is not expected to

significantly impact GPU performance because of its

capability to tolerate the cache miss latency through

thread-level parallelism. It should be noted that we did

not study a GPU only locking scheme because this will

essentially leave few, if any, space for CPU applications,

which can greatly affect the CPU performance.

Partitioning and locking CPU and GPU blocks. While

cache locking guarantees that the locked CPU cache

blocks cannot be evicted by GPU blocks, they can still be

replaced by GPU blocks before being locked. To address

this issue, we propose to combine cache partitioning and

locking by partitioning the LLC into two equal parts and

locking highly reused cache blocks within each partition.

While partitioning guarantees a deterministic cache space

for both CPU and GPU, cache locking can avoid early

evicting of frequently used CPU and/or GPU data and

thus can potentially enhance performance further. On the

other hand, compared to pure cache partitioning, parti-

tioning and locking will reduce the cache space that can

be reused within both CPU and GPU partitions, which may

result in a negative impact on the performance. Therefore,

the overall performance of this LLC management method

will depend on the interaction of both factors.

Partitioning and locking CPU blocks only. Similar

to the locking CPU cache block only, in this method, we

partition the LLC for CPU and GPU, and employ cache

locking scheme in the CPU partition only. Thus, in the

GPU partition, the data are not locked, thereby potentially

leaving more flexibility for GPU data.

V. EVALUATION METHODOLOGY

We have implemented all the above-mentioned time-

predictable LLC designs and evaluated them using the

Algorithm 1 Cache Partitioning: allocate a cache block

from the partition.

Algorithm 2 Cache Locking: find a replacement cache

block from the unlocked blocks.
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MacSim [30]. MacSim is a heterogeneous architectural

timing model simulator, which conducts trace-driven

cycle-level simulation. MacSim thoroughly models

micro-architectural behaviors, including detailed pipeline

stages, multi-threading, and memory systems [31], and the

traces of GPU applications are generated by GPUOcelot

[32]. The overview of the MacSim simulator is shown in

Fig. 3.

The heterogeneous processor we studied consists of 4

CPU cores and 6 GPU cores. The CPU core modeled is a

highly pipelined 4 wide superscalar out-of-order processor

with a 256 entry ROB and a gshare branch predictor,

loosely based on Intel’s Sandy Bridge [33]. The GPU

cores are similar to the cores used in NVIDIA’s Fermi

[34]. In this architecture, the GPU consists of a scalable

number of streaming multiprocessors (SMs), each of

which contains several scalar processors (SP) and special

function units (SFUs), a multi-threaded instruction fetch

and issue unit, a read-only constant cache, and a read/

write scratch pad memory called Shared Memory [31].

The important parameters for our heterogeneous archi-

tecture are listed in Table 1. By default, the LLC is

configured as 256 kB and 16-way set-associative.

Table 2 describes the CPU and GPU benchmarks used

in our evaluation. The CPU benchmarks are selected

from SPEC CPU 2006 [35] and SPLASH-2 benchmarks,

and GPU benchmarks are selected from Rodinia [36]. We

generate 10 groups of benchmarks to run simultaneously,

each of which consists of one CPU and one GPU appli-

cation, as shown in Table 3. Because GPU application

always terminates earlier than CPU application, we

repeat GPU application until CPU application finishes so

that both CPU and GPU applications keep running during

the entire simulation. Since cache partitioning and

locking can eliminate the inter-core cache interferences

between CPU and GPU, it makes WCET analysis less

complicated and possible. Thus, in this paper, we focus

on evaluating the simulated performance in terms of the

number of execution cycles for both CPU and GPU.

Developing a WCET analyzer for the integrated CPU-

GPU processor needs to deal with challenges other than

the LLC such as branch divergence on GPUs, the

interferences in shared DRAM and on-chip network, etc.,

which are out of the scope of this paper.

We comparatively evaluate the following six LLC

designs:

• No partitioning and locking (i.e., shared LLC);

• Locking CPU and GPU blocks (i.e., Locking Both);

• Locking CPU blocks only (i.e., Locking CPU);

Fig. 3. The simulation framework. Adapted from [31].

Table 1. Simulated heterogeneous processor configuration

Description

CPU 32 kB L1I cache, 8-way set-associative, line size 64 byte

16 kB L1D cache, 8-way set-associative, line size 64 byte, 3 cycles latency

256 kB L2 cache, 8-way set-associative, line size 64 byte, 8 cycles latency

4 cores, 3 GHz

GPU 6 cores, 1.5 GHz

4 kB L1I cache, 8-way set-associative, line size 64 byte, 2 cycles latency 

32 kB L1D cache, 8-way set-associative, line size 64 byte

no L2 cache

LLC 1 GHz, 30 cycles latency, 4 banks, 1 cycle latency

256 kB, 16-way set-associative, line size 64 byte

Memory dual channels, 1.6 GHz

Table 2. CPU and GPU benchmarks

CPU benchmarks SPEC CPU 2006: bzip2, perlbench, milc

SPLASH-2: water-nsquared, fmm

GPU benchmarks Rodinia: bfs, b+tree, pathfinder, backprop

Table 3. Groups of co-running CPU and GPU benchmarks

Group No. CPU benchmarks GPU benchmarks

1 bzip2 bfs

2 bzip2 b+tree

3 milc pathfinder

4 fmm bfs

5 fmm b+tree

6 fmm backprop

7 water-nsquared bfs

8 water-nsquared backprop

9 perlbench pathfinder

10 perlbench b+tree
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• LLC partitioning;

• LLC partitioning and locking CPU blocks (i.e.,

Partitioning&Locking CPU); and

• LLC partitioning and locking CPU and GPU blocks

(i.e., Partitioning&Locking).

VI. EXPERIMENTAL RESULTS

We first study the cache sensitivity of different CPU

and GPU applications. We vary the size of LLC from

64 kB to 1024 kB with fixed 16-way associativity and

measure LLC miss rates as well as the performance for

CPU and GPU applications. The evaluation involves 10

combinations of CPU and GPU applications.

A. Cache Sensitivity

As can be seen in Fig. 4, for CPU applications, bzip2,

perlbench, and fmm are sensitive to the cache size

while milc and water-nsquared are not cache-

sensitive. For GPU applications as depicted in Fig. 5,

b+tree, pathfinder, and backprop are cache-

sensitive while bfs is not.

B. Evaluation of CPU Applications

Fig. 6 depicts the cache miss rates and performance of

CPU applications with six different LLC designs, including

the default one without any locking or partitioning. For

most of the CPU applications, partitioning outperforms

the other five LLC schemes. In the shared LLC (i.e., no

partitioning&no locking), the availability of LLC space is

less than 50% for most of the CPU applications, since

GPU applications consume more LLC space than CPU

applications due to the higher density of data accesses,

leading to higher CPU cache miss rates and worse perfor-

mance for CPU applications. The partitioning scheme

splits the LLC equally for CPU and GPU applications.

This has the advantage of performance isolation, which

signifies that the performance of a CPU application is not

affected by the concurrent GPU application. For example,

in the benchmark group perlbench&b+tree, CPU

application perlbench can consume 50% cache space

when the partitioning scheme is applied. However, it can

only effectively use lower than 10% cache space when

using other schemes without partitioning. The portion of

the cache space that is actually used by CPU and GPU

applications is depicted in Fig. 7. As we can see, while

partitioning can guarantee 50% of cache space for CPU

applications, all other approaches result in a significantly

unequal amount of cache space allocation. In such LLC

designs, as expected, GPU applications use more than

90% of cache space, while CPU applications can only use

less than 10% of cache space, potentially resulting in

higher CPU miss rates and worse performance. Therefore,

the cache partitioning scheme is the most effective approach

for improving the performance of cache-sensitive CPU

applications such as bzip2, fmm, and perlbench. On

average, cache partitioning improves CPU performance

by 7.76% over the baseline shared LLC (no partitioning&no

locking) and reduces CPU LLC miss rate by 16.37%.

Cache partitioning is applied in the other two schemes,

partitioning with locking CPU blocks and partitioning

with locking CPU and GPU blocks, which also improve

CPU performance and decrease CPU LLC miss rate.

However, these two approaches perform a little worse

than cache partitioning. In these two approaches, the LLC

space is reduced by both partitioning and locking and the

remaining LLC space is not enough for new memory

blocks thereby resulting in lower cache miss rate and

worse performance of CPU applications.

Compared to the baseline scheme, we find that locking

CPU blocks results in slightly better performance. For

CPU applications in all the benchmark groups, locking

CPU blocks outperforms the method of locking both

CPU and GPU blocks. On average, locking CPU blocks

improves performance by only 0.35% over the baseline

scheme, thereby decreasing the CPU LLC miss rate by

0.48%. Although locking only CPU blocks can slightly

improve CPU performance, locking both CPU and GPU

blocks increases the LLC miss rate and degrades CPU

performance as aggressively locking cache blocks of both

CPU and GPU data reduces the reusable cache capacity

sharply, resulting in more cache misses for the remaining

Fig. 4. The cache-sensitivity of different CPU applications.

Fig. 5. The cache-sensitivity of different GPU applications.
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memory blocks that are not locked. On average, locking

both CPU and GPU blocks increases the LLC miss rate

by 3.04% and decreases the CPU performance by 1.02%

as compared to the baseline shared LLC.

Cache partitioning has also been combined with locking

in the other two schemes, i.e., partitioning with locking

CPU blocks, and partitioning with locking CPU and GPU

blocks, both of which improve CPU performance and

decrease CPU LLC miss rate. However, these two

approaches perform a little worse than cache partitioning

alone. The reason is that when locking is used in addition

to partitioning, the locked data reduces the reusable LLC

space within CPU and/or GPU LLC partition. This leads

to higher CPU cache miss rates and worse performance

for CPU applications.

While partitioning performs better than other LLC

Fig. 6. Comparison of cache miss rates and performance of CPU applications with six LLC designs (LLC configuration: 256 kB, 16-way set-
associative). (a) Cache miss rate. (b) Execution cycles.

Fig. 7. Percentage of actual LLC space used by CPU and GPU
applications at runtime perlbench&b+tree.
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designs for most of the CPU applications, one exception

we observe is with the group of the CPU application

bzip2 and the GPU application bfs. Locking CPU

actually is the best option for improving the performance

of bzip2 when running with bfs. The reason is that

bfs only needs a small share of LLC, thereby leaving

most of the LLC to bzip2. Therefore, bzip2 can get

more LLC space to either lock more data that are

frequently used or serve upcoming memory blocks. Since

the spare LLC space for CPU application is more than

half of the whole LLC when using CPU cache locking,

partitioning the LLC into two equal parts reduces the

availability of cache space for bzip2. As a result, the

locking CPU scheme outperforms the cache partitioning

scheme in this case.

However, the benefit of locking CPU blocks can be

highly affected by not only the CPU benchmark behavior,

but also the co-running GPU benchmark behavior. When

replacing bfs with b+tree as the concurrent GPU

application, we observe that the LLC miss rate of bzip2
increases significantly and its performance also degrades

dramatically. This happens because bzip2 is sensitive to

cache space and it is desirable to allocate more LLC

space to it. Unfortunately, b+tree captures a much

larger portion of the LLC, leaving less LLC space for

bzip2. Even with CPU cache locking, most of the CPU

data is still evicted by GPU data before they can be

reused and locked. Fig. 8 demonstrates that nearly 67%

of LLC space belongs to bzip2 when executing

concurrently with bfs, which unfortunately is reduced to

less than 5% when running with b+tree.

Fig. 9 shows the number of reuses for the locked data

when bzip2 is co-running with bzip2&bfs or bzip2&
b+tree. We observe that the locked cache blocks in

bzip2 are reused over 3,000 times when bzip2 is

running with bfs, while this number becomes only 7

when bzip2 is running with b+tree. These results

explain why bzip2 achieves better performance with

bfs but becomes worse with b+tree with CPU locking.

In Fig. 6, we also notice that for the benchmark groups

fmm&backprop and water-nsquared&backprop,

the partition and locking scheme has lower cache miss

rates but worst performance. Although the LLC is

partitioned into two parts for CPU and GPU application,

the performance of CPU applications can still be

negatively impacted by GPU applications due to the

shared DRAM and NoC, especially if too many GPU

requests flood those shared resources. For both fmm&
backprop and water-nsquared&backprop, the

cache miss rates of GPU benchmark backprop are very

high, leading to a significant number of requests sent to

the DRAM and NoC. As a result, the CPU miss latency is

increased due to the prolonged waiting time, resulting in

worse CPU performance. In our future work, we plan to

address the time predictability issue for the shared DRAM

and NoC in an integrated manner, which is out of the

scope of this paper though.

C. Evaluation of GPU Applications

Fig. 10 provides the cache miss rates and performance

of GPU applications for the six LLC designs. As we can

see, neither the cache partitioning nor the locking scheme

performs better than the baseline design for the majority

of GPU applications. This is because in the default shared

LLC, GPU applications can always have much more than

half of the LLC due to their overwhelming data accesses,

and cache partitioning actually reduces the available LLC

space for the GPU applications. When locking GPU

blocks in the LLC, the remaining reusable cache space

becomes very limited because the GPU blocks tend to be

easily locked owning to their high data access density. In

fact, both partitioning and locking result in smaller cache

space for GPU applications compared to the baseline

shared LLC. On average, the GPU LLC miss rates in

partitioning and locking are increased by 5.65% and

5.89%, respectively, over the baseline. Combining parti-

tioning and locking aggravates this problem to a greater

extent, thereby raising the GPU cache miss rate by

19.14% on average. Nevertheless, the increase of miss

rates only has very limited impact on the performance of

GPU applications due to GPU’s massive threading capa-

bility to tolerate the cache miss latencies. On average,

cache partitioning reduces performance by only 0.43%

compared to the baseline, while partitioning and locking

reduces performance by 4.00%. The average GPU per-

formance degradation of locking CPU and GPU blocks
Fig. 9. Comparison of the reuse times of locked blocks for
bzip2 in bzip2&bfs and bzip2&b+tree.

Fig. 8. Comparison of actual LLC space used by bzip2 in
bzip2&bfs and bzip2&b+tree.
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(without partitioning) is 0.75%. Locking CPU only

achieves performance very close to that of the baseline,

because much less CPU data can be successfully reused

and locked by GPU applications due to the higher cache

access rates.

Although locking CPU and GPU blocks degrades the

performance for most of the GPU applications, it does

reduce the GPU miss rate and improve the performance

for the GPU benchmark pathfinder in the groups of

pathfinder&milc and pathfinder&perlbench.

The reason is that more frequently reused cache blocks

are properly locked for pathfinder, and after locking,

the remaining LLC space for GPU application is still

sufficient to serve the upcoming GPU data cache

accesses. For example, Table 4 lists the cache usage of

pathfinder when co-running with perlbench. We

find that 95.6% LLC space is used by pathfinder and

10.4% GPU blocks are locked, leading to 7,289 reuses of

the locked GPU blocks and better performance. On the

contrary, Table 5 lists the cache usage of b+tree when

co-running with perlbench. Typically, 99.4% of the

LLC space is used by b+tree and 88.6% GPU blocks

are locked, leading to 108,113 reused locked GPU blocks.

Although almost the entire LLC can be used by b+tree,

most of the GPU blocks are locked and according to the

cache sensitivity of b+tree reported in Fig. 5, the cache

Fig. 10. Comparison of cache miss rates and performance of GPU application with six different LLC designs (LLC configuration: 256 kB,
16-way set-associative). (a) Cache miss rate. (b) Execution cycles.
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miss rate of b+tree increases remarkably on the

remaining reusable cache space.

VII. CONCLUSION

While achieving high throughput is important for GPGPU

computing, it is crucial to ensure time predictability for

real-time GPU computing. In this paper, we have explored

five different time-predictable cache management schemes

for the LLC in the integrated CPU-GPU architecture. In

particular, we have studied cache partitioning, locking on

both CPU and GPU, locking CPU only, and their combi-

nations with partitioning. Our experimental results indicate

that cache locking, either locking the CPU alone or both

CPU and GPU, does not benefit CPU or GPU performance

for most of the benchmarks we have studied. By com-

parison, cache partitioning is more effective in boosting

the CPU’s performance while improving time predictability

at the same time. The GPU performance for most of the

applications is not very sensitive to these time-predictable

LLC designs, though locking both CPU and GPU data may

degrade the GPU performance noticeably. On average,

cache partitioning can improve the performance of CPU

applications by 7.76% with only 0.43% performance

degradation for GPU applications. Moreover, we study

the hardware-based static way partitioning to understand

how different partitioning affects the performance of both

CPU and GPU. We find that the partitioning percentage

that can achieve the most effective overall performance

must be appropriately chosen according to the cache-

sensitivity of both GPU and CPU applications.

In our future work, we also plan to exploit the data/

instruction access patterns of both CPU and GPU appli-

cations to make cache partition and locking more effective

for real-time integrated CPU-GPU architectures. Exploring

time-predictable LLC architecture with high performance

is our first step towards building a fully time-predictable

and high-performance heterogeneous CPU-GPU archi-

tecture for hard real-time data-parallel applications. Our

future work will investigate the time-predictable design

of other shared architectural components such as DRAM

and NoC, as well as their interactions with the time-

predictable LLCs, based on which a full WCET analyzer

will be developed.
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