
Copyright  2020.  The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677   eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 14, No. 3, September 2020, pp. 102-111

GPGPU Functional Units Power Gating for Leakage Energy
Reduction
Xin Wang

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

wangx44@vcu.edu

Wei Zhang*

Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA

wei.zhang@louisville.edu

Abstract
The execution units of GPUs (graphics processing units) have been observed to produce many idle cycles that could be a

tremendous waste of energy consumption which meanwhile provides a hint to build a more energy-efficient system to

operate GPUs if idle cycles can be appropriately taken care of. However, power-gating without foresight can be danger-

ous since inaccurate decisions on power-gating will introduce unaffordable overhead on both energy consumption and

performance. In this paper, we examine the length of execution units’ idle cycles for several representative GPGPU

applications and evaluate the distribution of the idleness durations. We then propose the energy-saving strategies with

focus on discovering potential execution units’ power-gating opportunities. The idle durations are recorded in the run-

time for various computing units in streaming multiprocessors (SMs) including integer units and floating units in stream-

ing processors (SPs) and special function units (SFUs). By analyzing the observed idleness, we propose to enhance the

energy efficiency through two execution units’ power-gating policies, the immediate power-gating (IPG) and idle detect

power-gating (ID-PG). Furthermore, we examine the policies with various parameter settings to offer insights on possi-

ble gains and losses of the power-gating techniques. Besides, by noticing that integer units are the most popular comput-

ing units for many applications, we introduce the power-aware SP(s) to increase the throughput of integer instructions. It

was observed that the power-aware SP can provide performance enhancement as well as the leakage energy reduction for

several applications. The experimental results show that both the policies can result in satisfactory leakage energy saving

on execution units. The IPG can reduce the execution unit’s leakage energy by 84.3% when the break-even time is set to

5 cycles. Even if the break-even time goes up to 20 cycles, the ID-PG can save 67.1% of the total execution units’ leak-

age energy. Moreover, involving power-aware SP(s) can improve the performance by up to 14.4% and 2.7% on average.

Category: Embedded Systems

Keywords: GPGPUs; Energy-efficiency; Execution units; Power-gating

Received 12 July 2020; Revised 26 July 2020; Accepted 07 August 2020

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2020.14.3.102 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



GPGPU Functional Units Power Gating for Leakage Energy Reduction

Xin Wang and Wei Zhang 103 http://jcse.kiise.org

I. INTRODUCTION

Graphics processing units (GPUs) has become popular

accelerators for the data-parallel general-purpose appli-

cations such as compute-intensive scientific computing

programs [1–3]. The software layer such as NVIDIA

CUDA [4] and AMD OpendCL [5] can utilize the GPU’s

hardware effectively to accelerate the applications

tremendously. There are a wide range of existing

parallelizable applications formerly running on CPUs

that can be tailored to GPUs for significant performance

benefit. The CUDA programming language allows the

programmer to define the paralleled portion of an appli-

cation as several kernels, each consisting of thousands of

threads executing in parallel [4]. One GPGPU application

usually contains multiple CUDA kernels packed with a

group of thread blocks, and is called concurrent thread

array (CTA). A vector, matrix or volume computation

domain can be defined as one-dimensional, two-dimen-

sional or three-dimensional thread blocks. The sub-level

of the thread block is a warp which is the basic execution

unit. A warp contains 32 threads with consecutive thread

IDs and is executed in a single instruction multiple-

threads (SIMT) style. The 32 threads in the same warp

execute the same instruction and work on different data

fragments. For each warp, only one PC is handled and

thus a single instruction is fetched and decoded. Due to

the fact that threads in the same warp are fed with

different data for processing, they can access different

memory addresses and follow different control flow paths.

A GPGPU can overlap long latency through massive

thread level parallelism and therefore allows significant

performance improvement for the applications running

on it.

Although the GPGPU is powerful in boosting the

performance, the energy efficiency becomes an inevitable

concern. In GPGPUs, thousands of threads or more run

concurrently in a single instruction multiple data (SIMD)

pattern. The massive concurrency is supported by a large

number of computation units and a huge size of the

register files, while both the hardware resources consume

a considerable portion of the GPU’s total energy. To host

more concurrent threads, these hardware resources keep

on increasing. Consequently, both dynamic and leakage

energy of GPGPUs are on the rise and further performance

improvement is compromised. The worst part is that the

hardware resources are only demanded for peak perfor-

mance requirement, although many applications cannot

take full advantage of them. Subsequently, a great portion

of components are left idle without any function leading

to energy wastage [6–13].

In this paper, we study the idleness patterns of GPGPU

execution units and attempt to uncover the inherent

opportunities for power-gating in energy-efficiency enhan-

cement without involving any re-schedule techniques.

Researches in [9, 14] depend on re-scheduling instructions

to reconstruct the instruction sequences and intentionally

generate long idle durations. Unlike active utilization of

the re-schedule techniques as reported in the previous

studies, this work focuses on analyzing the existing

idleness of the execution units with respect to the default

instruction sequences. According to the inherent idleness,

we explore appropriate power-gating strategies to save

GPGPU leakage energy. The aim of this paper is to guide

the future GPU energy studies regarding the execution

units’ power-gating. Instead of involving additional

microarchitectures for complex rescheduling logic, only

basic counters are required for the proposed method

which is applicable with low hardware overhead. Besides

the power-gating strategies, the idleness pattern also

inspires us to increase the number of integer units in a

streaming multiprocessor (SM).

In short, this paper makes the following contributions.

First, the distribution and the length of execution units

idle cycles are recorded and analyzed. To be specific, the

idle durations of integer units, floating point units, and

special function units (SFUs) have been recorded during

run-time for analysis. According to the observed idleness

pattern, the execution unit power-gating strategies have

demonstrated ability to maximize leakage energy reduction.

Second, we propose two simple execution units’ power-

gating policies—immediate power-gating (IPG) and idle

detect power-gating (ID-PG)—and evaluate their effecti-

veness on the leakage energy saving, respectively. Both

policies operate the execution units’ power-gating at a

fine granularity. Third, we further evaluate the two policies

with various parameter settings. Based on the experimental

results, we make two suggestions to maximize the leakage

energy saving and avoid the side-effect of the power-

gating: (1) when the power-gating overhead is unaffordable,

an idle detect time is set up to avoid short-term idleness,

and (2) when the power-gating overhead is acceptable,

the execution units are put into power-gated mode

immediately to save as much leakage energy as possible.

Finally, we propose to enhance the performance as

well as the energy efficiency by increasing the number of

integer units per SM.

The rest of this paper is organized as follows. Section

II presents the background of this work. The related work

is discussed in Section III. Section IV describes the

motivation behind this work. Section V introduces the

implementation details of our technique. The experimental

results are presented in Section VI. Finally, Section VII

concludes the paper.

II. BACKGROUND

In this section, we introduce the baseline GPU archi-

tecture and describe the CUDA programming model. We

further explain how the hardware and software lead to

underutilization of high hardware resources. It is believed



Journal of Computing Science and Engineering, Vol. 14, No. 3, September 2020, pp. 102-111

http://dx.doi.org/10.5626/JCSE.2020.14.3.102 104 Xin Wang and Wei Zhang

that the power-gating techniques can utilize the under-

utilization of the hardware resources to mitigate the growing

energy consumption problem on GPUs.

A. Baseline GPU Architecture

We evaluate our work over the baseline GPU archi-

tecture that is shown in Fig. 1. The baseline architecture

is similar with NVIDIA GTX480 GPUs [15] which consists

of 15 GPU cores called streaming multiprocessors. Each

SM has its own private L1 data caches, read-only texture

caches, constant caches, and software-managed shared

memories (i.e., scratch-pad memories). According to the

configuration controlled by the software (Table 1), the L1

cache and the shared memory can be set to 16 kB L1

cache and 48 kB shared memory or 48 kB L1 cache and

16 kB shared memory. A single SM core consists of 32

single instruction multiple data execution units, 16 load/

store units, and 4 SFUs. A unified L2 cache is shared by

all the SMs via an on-chip network and is partitioned into

6 tiles. In an SM, there are two warp schedulers and two

instruction dispatch units, which allow issuance of two

independent instructions from two different warps at a

single cycle. The two independent instructions can then

be simultaneously executed by two streaming processors

(SPs) each containing 16 execution lanes called the SIMT

lanes. Since the execution units operate at double clock

frequency of the SMs, it is hypothesized that 32 threads

can co-run on a single SP. As shown in Fig. 1, the SP can

address both integer and floating-point instructions owing

to the fact that it is featured with an integer unit and a

floating-point unit. The SFUs are typically responsible

for complex calculations such as sin, cosine, reciprocal,

and square root. However, they can also execute integer

and floating-point instructions in case of the unavailability

of both the SPs in the SM.

Fig. 1. Baseline GPU architecture.

Table 1. Simulated GPU architecture configuration

CPU 15 SMs, 700 MHz

SM configuration 16 thread blocks/SM, 32 threads/warp

2 warp schedulers, 1024 ROB entries, 32 SIMD width, 5-stage pipeline

Register file 128 kB per SM

32 banks, dual-ported (1 read port and 1 write port) for each bank

4 kB register per bank, 256-bit wide entry, 128 entries per bank

L1 cache 16 kB, 4-way set-associative, line size 128 byte, 128 MSHR entries

L2 cache 768 kB, 8-way set-associative, line size 128 byte

Shared memory 48 kB, 32 banks, 1 cycle latency



GPGPU Functional Units Power Gating for Leakage Energy Reduction

Xin Wang and Wei Zhang 105 http://jcse.kiise.org

B. CUDA Programming Model

To parallelize the application and tailor it for running

on GPUs, the CUDA programming model allows the

programmer to define C functions as several kernels.

Each kernel consists of thousands of concurrent threads

[4]. Each thread in a kernel can be identified with a

unique thread ID which is accessible through the built-in

threadIdx variable. Every unit of 32 threads with con-

secutive thread IDs is grouped as a warp. A warp is a

basic unit of the concurrency and all the threads within it

execute simultaneously in an SIMT way. Officially, the

maximum number of concurrent threads in an SM is

restricted by the NVIDIA. Specifically, for Fermi archi-

tecture, an SM can host 1,536 active threads (48 active

warps) to the maximum. Moreover, the number of thread

blocks is limited to 8 per SM. To support the execution

environment and conserve execution data, each thread

takes a piece of hardware resources such as register files

and the shared memory. Consequently, the capacity of

hardware resources of an SM also limits the number of

concurrent threads per SM (i.e., occupancy). An SM can

accommodate more than 1,536 lightweight threads which

are supported with few hardware resources. However,

except for touching the full capacity of an SM set by

NVIDA, redundant hardware resources may well stay

idle, resulting in a great waste of energy. On the other

hand, if an SM is running with threads that heavily rely

on hardware resources, low underutilization of the

hardware resources could still be possible. For example,

an SM can only serve one thread block that consumes

two-thirds of the total register files. In this case, the rest

one-third register files which are insufficient to support

another thread block needs to stay idle. Besides, the way

of GPUs handling branches also leads to significant

underutilization of the hardware resources (i.e., execution

units) and harms the energy efficiency. CPUs are capable

of dealing with complex branch prediction logic, while

GPUs avoid branch prediction and simplify the logic to

accomplish overwhelming multithreading. To this end, an

active mask vector is introduced to identify the divergence

of execution paths. The active mask vector expresses

whether the branch instruction is taken or not for the

threads in a warp. The threads are then directed to

different paths accordingly. To be specific, the threads

will be executed and retired if the corresponding bits are

set in the active mask vector, while other threads with

reset bits will discard the execution. Threads with taken

and not-taken paths are executed independently and

sequentially and will be joined at the convergence point

automatically. Due to the divergence, threads in a warp

run alternately and the execution lanes cannot be always

fully occupied. Consequently, the presence of idle execution

lanes harms the energy efficiency.

III. RELATED WORK

GPGPUs are becoming promising platforms for acco-

mmodating parallelizable compute-intensive applications.

Indeed, the support of a massive number of execution

units and abundant bandwidth enable GPGPUs to provide

an extremely high throughput by concurrently executing

thousands of threads; however, the energy efficiency can

become an urgent concern if the GPGPUs attempt to

further improve the performance. Moreover, a huge amount

of execution units is responsible for a considerable portion

of the total energy consumption and they unfortunately

produce many idle cycles resulting in energy wasting.

Many researchers have studied GPGPU’s energy-efficiency

[6, 7, 9, 11, 14, 16–20]. Numerous researches discovered

underutilization of various GPU components such as

register files and execution units and proposed power

gating the idle resources for energy saving. Several

studies [6, 7, 16] propose to shut down unused fragments

or put them into the low power modes to reduce leakage

energy consumption of GPU register files. The authors of

[17] implements the power-gating at the SM level

granularity. They monitor the activity of entire SMs and

shut down the unoccupied SMs to improve energy-

efficiency. Some other solutions operate the power-gating

at a much finer granularity [9, 14]. They explore the

idleness of the execution units and design strategies to

apply power-gating down to per SIMT lane and minimize

the leakage energy wasting. By comparison, this paper

studies the inherent idleness of the integer and floating-

point units of SP as well as the SFU. To reduce GPU

leakage energy dissipation, we have studied two different

policies operating the power-gating adaptively and

efficiently on different execution units.

IV. MOTIVATION

A. Execution Units Energy Consumption

The execution units in GPUs are responsible for 20.1%

of the total energy consumption [21]. The energy con-

sumption of execution units in NVIDIA GTX480 GPUs

is broken down in [9] and the results show that leakage

energy accounts for around 50% of the total energy

consumed in integer execution units, and more than 90%

in floating-point units. In this work, we focus on evaluating

the execution units’ leakage energy consumption. The

experimental results show that the integer units consume

only negligible leakage energy (around 0.1% of the total

GPU’s energy) and 9.5% of the total GPU’s energy is

contributed to the leakage energy consumed by floating-

point units. Furthermore, the leakage energy of SFUs

accounts for 2.2% of the total GPU’s energy. Overall, the

leakage energy consumption for all the executions units

(integer units, floating-points units, and SFUs) is 11.6%



Journal of Computing Science and Engineering, Vol. 14, No. 3, September 2020, pp. 102-111

http://dx.doi.org/10.5626/JCSE.2020.14.3.102 106 Xin Wang and Wei Zhang

of the total GPU’s energy consumption. Therefore, it is

hypothesized that intellectual strategies will lead to

positive impact on the overall GPU energy efficiency if

they can effectively reduce the leakage energy spent on

execution units, especially the floating-point units.

B. Execution Units Underutilization

We examine the underutilization of three execution

units (integer units, floating-point units, and SFUs) in 10

GPGPU benchmarks. The experimental results show a

great waste of execution resources. As shown in Fig. 2,

the integer units stay idle during around 61% of the total

execution time and the floating-point units are unused in

92% of execution cycles. SFUs are free in 75% of the

execution period. The remarkable leakage energy

consumption and the low utilization of execution units

convince us to power-gate spared execution units

intelligently and help GPUs to relieve the serious energy

dissipation issue.

V. POWER-GATING STRATEGIES

Power-gating technique has been widely demonstrated

to be effective for the leakage energy reduction. In this

work, we use the traditional power-gating strategies to

save execution units’ leakage energy on GPGPUs. We

operate the power-gating at a fine granularity and shut

down the integer unit and floating-point unit per SIMT

lane individually. The four SFUs in an SM can also be

power-gated separately. tbreak_even, twakeup, and tidle_detect are

the three parameters related to the execution units’ power-

gating technique. The tbreak_even represents the number of

cycles in the power-gated mode. The leakage energy

saving during tbreak_even is equal to the energy overhead of

turning off and on the execution units. As long as the

power-gated mode lasts longer than tbreak_even, the leakage

energy reduction is attained; otherwise, the energy

overhead of the power-gating exceeds the insufficient

saving and negatively affects the energy efficiency

instead. The twakeup is the number of cycles spent on

waking up the execution units. These extra cycles can

lead to negative performance impact. Both tbreak_even and

twakeup can be calculated by using the formulas in [17] and

vary with parameters of circuit components. The typical

value for tbreak_even lie between 9 to 19 cycles and twakeup is

from 3 to 9 cycles [22]. In this paper, the evaluation starts

with tbreak_even of 10 cycles and twakeup of 3 cycles and

continues with other tbreak_even (5 and 20 cycles).

The power-gating decisions are made according to the

threshold tidle_detect. We can tune the  tidle_detect to achieve the

balance between the leakage energy reduction and

performance loss. A large tidle_detect filters the short idleness

of execution units to avoid performance degradation, but

consequently misses opportunities of saving ever more

leakage energy. We first evaluate with tidle_detect of 0 cycles

called immediate power-gating (IPG) in this paper. The

IPG places the execution units into power-gated mode

immediately as soon as they are not occupied. The IPG is

capable of maximizing the leakage energy reduction if

most of the idleness is longer than tbreak_even; otherwise, the

IPG could hurt both energy efficiency and performance if

great extent of short-term idleness shows up. Due to the

various idleness patterns, the optimal tidle_detect can be

varied for different execution units. In order to achieve

further leakage energy saving, we examine the variation

in energy reduction with different tidle_detect (2 and 5

cycles), called as idle detect power-gating (ID-PG) in this

paper. Based on how busy a certain type of execution unit

is, the length distribution of the execution unit idleness is

different and tidle_detect varies accordingly.

Consequently, the power-gating strategies studied in

this paper can be completely supported by several simple

counters by avoiding complex microarchitecture and

logic, and the hardware overhead is negligible. Moreover,

the performance overhead that is mostly caused by the

wake-up latency twakeup is negligible as well. An issued

instruction is not going to be executed immediately.

Instead, several cycles are taken into account to request

operands of the instruction from the register file and

collect them in the operand collector. The instruction is

not forwarded to the execution unit until all the operands

are ready in the operand collector. By noticing the time

gap between the issue and execution stage, the SIMT

lanes that will be used to execute the instruction can be

woken up in advance right after the instruction has been

issued. Getting operand ready can typically take up to 10

cycles, which is longer than twakeup. Therefore, twakeup
successes to overlap itself with the period of fetching and

collecting operands and thus is not expected to have a

negative impact on performance. Moreover, since there

are no warps and instructions rescheduling in our methods,

the performance is not influenced by any rescheduling

policy. Overall, both hardware and performance overheads

of the power-gating strategies are negligible, which is

also confirmed in our experiments.Fig. 2. The underutilization rate of execution units.



GPGPU Functional Units Power Gating for Leakage Energy Reduction

Xin Wang and Wei Zhang 107 http://jcse.kiise.org

VI. METHODOLOGY & EXPERIMENTAL RESULTS

We use GPGPU-Sim v3.2.2 [23] to evaluate the

execution units’ power-gating schemes. GPGPU-Sim is a

cycle-accurate GPU performance simulator that focuses

on general-purpose computation on GPUs. GPUWattch

[21] is used to measure the energy consumption and is

integrated with GPGPU-Sim. As shown in Fig. 1, the

baseline GPU architecture is modeled based on NVIDIA

GTX480 GPUs [15]. There are 15 SMs and each SM

consists of two SPs and four SFUs. An SP contains 16

CUDA cores and each core serves an SIMT lane. The

CUDA core is able to execute both integer instructions

and floating-point instructions. We evaluate the power-

gating strategies with 10 benchmarks from Rodinia

benchmarks suit [24]. Table 2 lists all the benchmarks.

Four benchmarks include both integer and floating-point

instructions (gaussian, lud, backprop, and hotspot).

Other six benchmarks contain only integer instructions

(bfs, b+tree, cfd, dwt2d, kmean, and pathfinder).

We have evaluated the leakage energy reduction of

execution units’ power-gating strategies proposed in this

paper and compared them with the baseline Ideal (ideal

leakage energy saving). We assume that the Ideal
strategy recognizes the length of all idleness and can

make perfect decisions based upon this knowledge. The

Ideal only shuts down the execution units with the

idleness longer than tbreak_even and makes the power-gating

action at the beginning of the idleness rather than waiting

till tidle_detect elapses. The leakage energy saving achieved

by Ideal represents the best case that any power-gating

strategies can ever attain.

A. Leakage Energy Reduction for Different
Types of Execution Units

Fig. 3 shows that the leakage energy of integer units

can be reduced up to 93% and 24.9% on average, when

tbreak_even = 10 and tidle_detect = 0. For benchmarks such as

bfs, pathfinder, backprop, and hotspot, the

setting of tidle_detect = 0 leads to more leakage energy

dissipation from integer units, thereby hurting the energy

efficiency. This is because numerous short-term idleness

generates inevitable energy overheads.

The portion of the idleness over 10 cycles for integer

units is shown in Fig. 4. Compared to other benchmarks,

bfs, pathfinder, and hotspot show a smaller portion

of idleness lying above 10 cycles (9.0%, 2.9%, and

11.5%, respectively). For backprop, its idleness mostly

lies at the FPU, and not at the integer units or SFU. As a

result, bfs, pathfinder, backprop, and hotspot
fail to contribute towards energy efficiency due to the

lack of long-term idleness. Moreover, the execution units

have to be frequently switched on and off, thereby

resulting in the overwhelming energy overhead and

impacting the energy efficiency negatively, particularly

for the integer units. This can be seen in Fig. 3, where the

integer unit’s leakage energy reduction is -28%, -22%, -

44%, and -22% for bfs, pathfinder, backprop,

and hotspot, respectively.

As compared to the integer units, the power-gating

works much better on reducing the leakage energy of

floating-point units and SFUs (83.9% and 49.5% leakage

energy saving for floating-point units and SFUs are

reduced, respectively). Since 93% of the idleness of SFUs

is shorter than 10 cycles for backprop, the very high

occurrence of short-term idle periods causes the increase

of SFU leakage energy consumption for backprop.

B. Leakage Energy Reduction for Different
tidle_detect

We next evaluate the power-gating strategies with

Fig. 3. Leakage energy reduction for different types of execution
units (tbreak_even = 10, tidle_detect = 0).

Table 2. GPU benchmarks

Benchmark
Instruction 

type

bfs, b+tree, cfd, dwt2d, kmean, pathfinder INT

gaussian, lud, backprop, hotspot INT & FP

Fig. 4. The portion of the idleness below 5, 10, and 20 cycles for
integer units (tbreak_even = 10, tidle_detect = 0).



Journal of Computing Science and Engineering, Vol. 14, No. 3, September 2020, pp. 102-111

http://dx.doi.org/10.5626/JCSE.2020.14.3.102 108 Xin Wang and Wei Zhang

different idle detect time (tidle_detect = 0, 2, and 5 cycles).

Fig. 5(a) depicts that increasing tidle_detect can improve the

integer unit’s leakage energy saving, as more and more

short-term idle intervals are filtered by longer tidle_detect and

the energy overhead is compromised. Increase in tidle_detect
from 0 to 5 cycles, the average leakage energy reduction

boosts from 24.9% to 37.2%. The breakdown of idleness

for integer units is shown in Fig. 6(a). When tidle_detect
increases from 0 to 2 cycles, the 2-cycle threshold can

avoid power-gating for 1-cycle idleness. The overhead

can be remarkably removed owing to the fact that 23% of

total idle durations on average is only 1 cycle. With a

further increase in tidle_detect to 5 cycles, even more short-

term idleness with intervals of 2, 3 or 4 cycles can be

filtered. As shown in Fig. 6(a), 34% of total idleness on

average is 2, 3 or 4 cycles and therefore the energy

overhead can be further reduced.

Fig. 5(b) and 5(c) show that operating the power-

gating with shorter tidle_detect can lead to better energy-

efficiency for floating-point units and SFUs. Fig. 6(b)

and 6(c) explain that only limited number of short idle

intervals can be gated by tidle_detect when it becomes longer.

Specifically, setting tidle_detect to 5 cycles can only remove

the power-gating overhead from 2.5% (1 cycle) and 6.5%

(2–4 cycles) of the total idleness for floating-point units.

And, for SFUs, 26% more idleness can be found in total

(9% of 1 cycle idleness and 17% of 2–4 cycles idleness).

Fig. 5. Execution units leakage energy reduction rate for
different idle detect time (tidle_detect = 0, 2: and 5). (a) integer unit,
(b) floating-point unit, and (c) SFUs.

Fig. 6. Idleness breakdown of (a) integer unit, (b) floating-point
unit, and (c) SFUs.



GPGPU Functional Units Power Gating for Leakage Energy Reduction

Xin Wang and Wei Zhang 109 http://jcse.kiise.org

Once the longer tidle_detect is unable to dig more enough

short-term idleness to optimize the power-gating strategies,

it leads to wastage of additional cycles on waiting the

power-gating decision rather than power-gates immediately

to enhance the energy efficiency.

C. Sensitivity Analysis of tbreak_even

As shown in Fig. 7, the longer idle detect time becomes

the optimal choice for all the execution units, when

tbreak_even goes up from 5 cycles to 20 cycles. Especially,

the power-gating technique leads to maximum reduction

in the leakage energy of floating-point units when 5

cycles idle detect time is chosen instead of 0 cycle. With

an increase in tbreak_even , the energy budget of power-gating

execution units increases. In this case, the energy

overhead reduction by avoiding short-term idle periods

exceeds the energy cost of long-term idle periods spent

on additional cycles to reach the idle detect time.

As aforementioned in Section IV, only 0.1% and 2.2%

of the total GPU energy is consumed by the integer units

and SFUs. On the other hand, the leakage energy of

floating-point units contribute to 9.5% of the total GPU

energy. Obviously, the power-gating strategies working

on floating-point units offer the most effective way for

productive leakage energy saving. Fortunately, based on

the results shown in Fig. 7(b), the evaluated power-gating

schemes hold the potential to approach a satisfactory

leakage energy saving of floating-point units. The average

leakage energy reduction is very close to that of the ideal

case. However, increase in the break-even time weakens

the power of the power-gating and pulls the leakage

energy saving against the best case. Not surprisingly, the

overall leakage energy saving of all the execution units

follow a trend similar with the floating-point leakage energy

reduction as represented in Fig. 7(d). As compared to the

ideal case (85.5%, 82.4%, and 79.3%), 84.3%, 77.5%,

and 63.1% reduction of execution unit’s leakage energy

can be reached for the break-even time of 5, 10, and 20

cycles, respectively.

D. Add Simple SP(s) for Enhancement of Both
Performance and Energy Efficiency

According to the experimental results presented in Fig. 2,

the integer units are the overall demanding resources.

Therefore, increasing the number of integer units in an

SM can relieve the pressure of integer computation and

potentially improve the performance. Moreover, by adding

simple SPs which are dedicated to integer computations,

Fig. 7. Leakage energy reduction with different tbreak_even: (a) integer unit, (b) floating-point unit, (c) SFUs, and (d) overall leakage energy
reduction of all execution units.



Journal of Computing Science and Engineering, Vol. 14, No. 3, September 2020, pp. 102-111

http://dx.doi.org/10.5626/JCSE.2020.14.3.102 110 Xin Wang and Wei Zhang

more normal SPs can yield floating-point computation.

For the applications including both integer and floating-

point computation, the waiting line of floating-point units

might be cut down and the performance could be boosted.

The energy overhead of introducing more integer units

can be negligible as only 0.1% of the total GPU energy is

consumed by the integer units. In this paper, we evaluate

the performance when one or two simple SPs are added

for every two normal SPs in an SM. Fig. 8 shows the

results of normalized execution cycles with simple SP(s).

For the applications working on integer computation only,

there is only slight performance improvement. However,

bfs and pathfinder enjoy a little benefit on the

performance (1.8% and 5.2% improvement, respectively)

due to their extreme demand of integer units. As shown

in Fig. 2, integer units are unoccupied during only 24.5%

and 10.6% of the total execution time for bfs and

pathfinder, respectively. For applications including

both integer and floating-point computation, extra integer

units can be more helpful in boosting performance as the

simple SPs can free the normal SPs for floating-point

computation and the floating-point instructions that are

stalled for lack of normal SPs can acquire the resources

earlier. For example, extra integer units eventually

achieve 5.6% and 14.4% performance improvement for

backprop and hotspot that rely on both integer and

floating-point units.

VII. CONCLUSION

The execution units’ power-gating strategies evaluated

in this paper are demonstrated to achieve considerable

saving on leakage energy dissipation and improve the

GPU energy-efficiency. No additional microarchitecture

with complex control logic is required and both hardware

and performance overheads are negligible due to the

simplicity. By evaluating the different parameter settings

of the power-gating strategies, we find that an idle detect

time should be involved to identify and filter short-term

idleness. On the other hand, the execution units can be

put in the power-gated mode as long as they are

unoccupied to maximize the leakage energy saving, if the

overhead is affordable. For break-even time down to 5

cycles, the IPG can lead to 84.3% leakage energy

reduction in execution units, which is almost the same

with the ideal case (85.5%). For break-even time up to 20

cycles, the ID-PG can reduce the leakage energy of

execution units by 63.1%.

REFERENCES

1. K. Fatahalian and M. Houston, “A closer look at GPUs,”

Communications of the ACM, vol. 51, no. 10, pp. 50-57,

2008.

2. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K.

Skadron, “A performance study of general-purpose applications

on graphics processors using CUDA,” Journal of Parallel

and Distributed Computing, vol. 68, no. 10, pp. 1370-1380,

2008.

3. P. Karnick, “GPGPU: general purpose computing on graphics

hardware,” 2006; http://citeseerx.ist.psu.edu/viewdoc/download;

jsessionid=FE53DC39B11BC62568A5EB6C45B8AA7A?doi

=10.1.1.184.5653&rep=rep1&type=pdf.

4. NVIDIA, “NVIDIA CUDA compute united device architecture:

programming guide,” 2008; http://developer.download.nvidia.

com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_

Guide_2.0.pdf.

5. A. Munshi, “The openCL specification,” in Proceedings of

2009 IEEE Hot Chips 21 Symposium (HCS), 2009, Stanford,

CA, pp. 1-314.

6. X. Wang and W. Zhang, “Drowsy register files for reducing

GPU leakage energy,” in Proceedings of 2017 IEEE 23rd

International Conference on Parallel and Distributed

Systems (ICPADS), Shenzhen, China, 2017, pp. 632-639.

7. X. Wang and W. Zhang, “OWAR: operand-width-aware

register packing for energy-efficient GPGPUs,” Virginia

Commonwealth University, Richmond, VA, 2017.

8. M. Rhu and M. Erez, “Maximizing SIMD resource utilization

in GPGPUs with SIMD lane permutation,” in Proceedings of

the 40th Annual International Symposium on Computer

Architecture, Tel-Aviv, Israel, 2013, pp. 356-367.

9. M. Abdel-Majeed and M. Annavaram, “Warped register file:

a power efficient register file for GPGPUs,” in Proceedings

of 19th IEEE International Symposium on High Performance

Computer Architecture (HPCA), Shenzhen, China, 2013, pp.

412-423.

10. J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp

subdivision for integrated branch and memory divergence

tolerance,” in Proceedings of the 37th Annual International

Symposium on Computer Architecture, Saint-Malo, France,

2010, pp. 235-246.

11. M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J.

Dally, E. Lindholm, and K. Skadron, “Energy-efficient

mechanisms for managing thread context in throughput

processors,” in Proceedings of 38th Annual International

Symposium on Computer Architecture (ISCA), San Hose,

CA, 2011, pp. 235-246.

12. W. W. Fun and T. M. Aamodt, “Thread block compaction

for efficient SIMT control flow,” in Proceedings of 17th

Fig. 8. Normalized execution cycles with simple SP(s).



GPGPU Functional Units Power Gating for Leakage Energy Reduction

Xin Wang and Wei Zhang 111 http://jcse.kiise.org

IEEE International Symposium on High Performance

Computer Architecture, San Antonio, TX, 2011, pp. 25-36.

13. W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt,

“Dynamic warp formation and scheduling for efficient GPU

control flow,” in Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

Chicago, IL, 2007, pp. 407-420.

14. Q. Xu and M. Annavaram, “PATS: pattern aware scheduling

and power gating for GPGPUs,” in Proceedings of the 23rd

International Conference on Parallel Architectures and

Compilation, Edmonton, Canada, 2014, pp. 225-236.

15. NVIDIA “NVIDIA’s next generation CUDA compute

architecture: Fermi,” 2009; https://www.nvidia.com/content/

PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

16. M. Abdel-Majeed, D. Wong, and M. Annavaram, “Warped

gates: gating aware scheduling and power gating for

GPGPUs,” in Proceedings of 46th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

Davis, CA, 2013, pp. 111-122.

17. P. H. Wang, C. L. Yang, Y. M. Chen, and Y. J. Cheng,

“Power gating strategies on GPUs,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 8, no. 3,

pp. 1-25, 2011.

18. S. Z. Gilani, N. S. Kim, and M. J. Schulte, “Power-efficient

computing for compute-intensive GPGPU applications,” in

Proceedings of IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA), Shenzhen,

China, 2013, pp. 330-341.

19. M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-

aware memory hierarchy for energy-efficient GPU archi-

tectures,” in Proceedings of 46th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

Davis, CA, 2013, pp. 86-98.

20. Y. Wang, S. Roy, and N. Ranganathan, “Run-time power-

gating in caches of GPUs for leakage energy savings,” in

Proceedings of Design, Automation & Test in Europe

Conference & Exhibition (DATE), Dresden, Germany, 2012,

pp. 300-303.

21. J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S.

Kim, T. M. Aamodt, and V. J. Reddi, “GPUWattch: enabling

energy optimizations in GPGPUs,” ACM SIGARCH Computer

Architecture News, vol. 41, no. 3, pp. 487-498, 2013.

22. Z. Hu, A. Buyuktosunoglu,V. Srinivasan, V. Zyuban, H.

Jacobson, and P. Bose, “Microarchitectural techniques for

power gating of execution units,” in Proceedings of the

International Symposium on Low Power Electronics and

Design, Newport Beach, CA, 2004, pp. 32-37.

23. A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.

Aamodt, “Analyzing CUDA workloads using a detailed

GPU simulator,” in Proceedings of IEEE International

Symposium on Performance Analysis of Systems and Software,

Boston, MA, 2009, pp. 163-174.

24. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H.

Lee, and K. Skadron, “Rodinia: a benchmark suite for

heterogeneous computing,” in Proceedings of IEEE

International Symposium on Workload Characterization

(IISWC), Austin, TX, 2009, pp. 44-54.

Xin Wang

Xin Wang received his B.S. degree in electronic engineering from Peking University, China, in 2008. He is
currently pursuing his Ph.D. degree in computer engineering at Virginia Commonwealth University, USA. His
research interests include GPU and heterogeneous CPU-GPU architectures.

Wei Zhang https://orcid.org/0000-0003-1343-2817

Wei Zhang is a professor and Chair of the Department of Computer Engineering and Computer Science at
the University of Louisville. He received his Ph.D. in Computer Science and Engineering from the
Pennsylvania State University in 2003. Dr. Zhang served as an assistant/associate professor in Electrical and
Computer Engineering at Southern Illinois University Carbondale (SIUC) from 2003 to 2010 and as an
associate and full professor at Virginia Commonwealth University from 2010 to 2019. His research interests
are in computer architecture, compiler, real-time computing, and hardware security. Dr. Zhang has led 8 NSF
projects as the PI and has published 160+ papers in refereed journals and conference proceedings. He
received the 2016 Engineer of the Year Award from the Richmond Joint Engineer Council, the 2009 SIUC
Excellence through Commitment Outstanding Scholar Award for the College of Engineering, and the 2007
IBM Real-time Innovation Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


