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Abstract
The problem of scheduling a set of periodic tasks on a uniform multiprocessor system is considered in the present study.

Each processor in a uniform multiprocessor system is characterized by its speed or computation capacity, i.e., execution

of a job on a processor with speed s for t time units completes s × t units of execution. In the commonly-known parti-

tioned scheduling, each task is assigned to a processor and all of its jobs are required to be executed on that processor.

However, partitioning of periodic tasks requires solving the bin-packing problem, which is known to be intractable (NP-

hard in the strong sense). This paper presents a global scheduling algorithm that transforms a given periodic task system

into another using a “task-splitting” (as opposed to the “set-splitting”) technique. Each transformed periodic task system

is guaranteed to be scheduled successfully on any uniform multiprocessor using a partitioned scheduling algorithm. The

earliest deadline first (EDF) algorithm is chosen for scheduling tasks on each processor. It is proven that the proposed

algorithm results in the theoretical-maximum utilization bound on any uniform multiprocessor platform if the platform is

“reasonably powerful”. Therefore, the proposed algorithm is optimal in the sense of maximizing achievable utilization.

Since the task-splitting technique will incur context switches during runtime, we have also considered the ways of reduc-

ing the number of context switches, and suggest a method which can significantly reduce the number of context switches

in the schedules generated by the proposed algorithm.

Category: Real-Time Systems
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I. INTRODUCTION

In hard real-time systems, there are certain basic units

of work, known as jobs, which must be executed promptly.

In multiprocessor systems, there are multiple processors

on which the real-time jobs may be executed: all the

processors operate at the same speed in a homogeneous

multiprocessor, while different processors may operate at

different speeds in an inhomogeneous multiprocessor.

A hard real-time system is specified by an instance of

jobs with hard real-time requirements and the computing

platform upon which the jobs are to be executed. A real-

time job j = (a, e, d) is characterized by three parameters,

arrival time a, execution requirement e, and deadline d,

with the interpretation that this job must receive e time

units of execution over the interval [a, d). A real-time

instance J is a finite or infinite collection of jobs: J = {j1,

j2, ...,} Let τ = {T1, T2, ..., Tn} denote a periodic task

system. Each periodic task Ti is completely characterized

by a 4-tuple (ai, ei, di, pi) with the offset ai (which denotes

Received 07 July 2020; Revised 10 August 2020; Accepted 13 August 2020

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2020.14.3.121 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Computing Science and Engineering, Vol. 14, No. 3, September 2020, pp. 121-130

http://dx.doi.org/10.5626/JCSE.2020.14.3.121 122 Sang-Gil Lee and Cheol-Hoon Lee

the instant at which the first job generated by this task

becomes available), the execution requirement ei, the

relative deadline di, and the period pi. That is, Ti = (ai, ei,

di, pi) generates an infinite succession of jobs, each with

execution requirement ei, at each instant (ai + k · pi) for

all the integers k ≥ 0, and the job generated at the instant

(ai + k · pi) has a deadline at the instant (ai + k · pi + di).

Unless stated otherwise, we assume that di = pi. Periodic

task systems are called synchronous if the offsets of all

the tasks are identical (usually considered zero), else

asynchronous. While the execution time may be any non-

negative number, periods are assumed here to be non-

negative integers. We define the utilization U(Ti) by task

Ti to be the ratio of its execution requirement to its period:

ei /pi. Without loss of generality, we assume that

the tasks in τ are indexed according to non-increasing

utilization: U(Ti) ≥ U(Ti+1) for all, i, 1 ≤ i < n. For any

periodic task system τ, Usum(τ) will denote the cumulative

utilization of all tasks in  and

Umax(τ) will denote the largest utilization of any task in

. We assume that each job is

independent in the sense that it does not interact in any

manner (accessing shared data, exchanging messages,

etc.) with other jobs of the same or another task. 

In this paper, we have considered the problem of

scheduling periodic task systems upon a uniform multi-

processor platform comprising of m processors. Each

processor is characterized by a single parameter denoting

its speed or computation capacity. Therefore, a job that

executes on a processor of computation capacity s for t

time units completes s × t units of execution (Note that

homogeneous multiprocessors are a special case of uniform

multiprocessors, in which the computation capacities of

all the processors are equal). We use the notation π = [s1,

s2, ..., sm] to represent the uniform multiprocessor platform

with m processors in which the processors have compu-

tation capacities s1, s2, ..., sm  respectively. Without loss of

generality, we assume that these speeds are indexed in a

non-increasing order:  for all j, . For any

such uniform multiprocessor platform π,  will

denote the aggregate computation capacities such that

.

Online scheduling algorithms make scheduling decisions

at each time instant based upon the characteristics of the

jobs that have arrived thus far, without any knowledge of

jobs that may arrive in the future. Several online

uniprocessor scheduling algorithms, such as the earliest-

deadline-first (EDF) scheduling algorithm [1-4] and the

least-laxity-first (LLF) algorithm [5, 6] are known to be

optimal in the sense that if a set of jobs can be scheduled

such that all jobs will be completed by their deadlines, so

can these algorithms. However, for multiprocessor systems,

no online scheduling algorithm can be optimal: this was

shown for the simplest (homogeneous) multiprocessor

model by Dertuozos and Mok [7], and Hong and Leung

[8], and the technique in [7, 8] can be directly extended

to the more general uniform machine model. An

important advance in the study of online scheduling upon

multiprocessors was made by Phillips et al. [9], who

explored the use of resource-augmentation techniques for

online scheduling of real-time jobs. They showed that if a

real-time instance is feasible on m identical processors,

then the same instance will be scheduled to meet all the

deadlines by EDF on m processors in which the individual

processors are  times as fast as in the original system.

Given the specifications of a uniform multiprocessor

platform , Funk et al. [7] generalized the techniques in

[9] to obtain a condition upon the specifications of any

other uniform multiprocessor platform π1 such that, if π1

satisfies this condition, then any hard real-time task system

feasible on π0 will meet all the deadlines when scheduled

on π1 using EDF. 

In this paper, we have considered the problem of

scheduling periodic task systems on uniform multiprocessor

platforms which permit job preemptions and migrations

(i.e., a job executing on a processor may be interrupted

and resumed later on the same or a different processor

with no cost or penalty) and disallowing a job to be

executed on more than one processor at any time.

It has been proven by Leung and Whitehead [11] that

the partitioned and global approaches to static-priority

scheduling on homogeneous multiprocessors are incom-

parable, implying that neither of the approached static-

priority multiprocessor scheduling is strictly better than

the other. In [12, 13], the rate-monotonic (RM) scheduling

of periodic task systems on homogeneous multiprocessor

platforms was studied. A utilization bound was derived

such that any periodic task system with aggregate

utilization no larger than this bound is guaranteed to be

successfully scheduled by RM on a homogeneous multi-

processor platform. Baruah et al. [14] generalized the

result for EDF scheduling on uniform multiprocessor

platforms. The authors of [15] proved that the problem of

optimally scheduling periodic tasks on a homogeneous

multiprocessor could be solved in polynomial time using

the PFair scheduling algorithm. Under PFair, each periodic

task is executed at an (approximately) uniform rate

(corresponding to its utilization factor) by breaking it into

a series of quantum-length subtasks.

In this paper, we present a global scheduling algorithm

that transforms a given periodic task system into another

using a “task-splitting” technique. Each transformed

periodic task system is guaranteed to be successfully

scheduled on any uniform multiprocessor using a parti-

tioned scheduling algorithm. The EDF algorithm is of our

choice for scheduling tasks on each processor. It is

proven that, for any uniform multiprocessor platform π,

the proposed algorithm achieves the utilization bound of

, which is theoretically maximum, if the platform

is “reasonably powerful”. Therefore, the proposed algorithm

U Ti( )
def

=

τ Usum τ( )(
def

= Σi 1=

n
U Ti( ))

τ Umax τ( )(
def

= Σi 1=
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U Ti( ))

sj sj 1+≥ 1 j m<≤
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Ssum π( )
def

= Σi 1=

j
si

2 1

m

----–( )

π0

Ssum π( )



Real-Time Scheduling for Periodic Tasks on Uniform Multiprocessors

Sang-Gil Lee and Cheol-Hoon Lee 123 http://jcse.kiise.org

is optimal in terms of achievable utilization. Since task-

splitting will incur context switches during runtime, it is

important to reduce the number of such context switches.

Consequently, we have considered the way to reduce the

number of context switches, and suggest a method which

can greatly reduce the number of context switches on the

schedules generated by the algorithm.

For an n independent non-real-time task system,

Gonzalez and Sahni [16] suggested an O(n) time algorithm

to obtain an optimal finish time preemptive schedule on

m uniform processors. This algorithm can be applied to a

real-time task system by splitting every task into subtasks

with the common deadline of unit time. This would lead

to an unacceptably large number of migrations—as many

as  migrations every time unit—and is hence not a

realistic approach to real-time scheduling of periodic task

systems. As can be seen later, most  of the tasks

are split in our algorithm thereby resulting in much fewer

migrations.

The rest of this paper is organized as follows. In Section

II, we review some results concerning EDF scheduling

on multiprocessor platforms. Subsequently, the task-

splitting technique is presented. In Section III, we present

a global scheduling algorithm that transforms a given

periodic task system into another using the task-splitting

technique. It is proven that each transformed periodic

task system is guaranteed to be successfully scheduled

upon any uniform multiprocessor using EDF if the

utilization of the system is not greater than . In

Section IV, we suggest a method that can significantly

reduce the number of context switches on the schedules

generated by the proposed algorithm. The paper concludes

with Section V.

II. BACKGROUND

We first briefly review results on EDF scheduling on

multiprocessor platforms. Then, we describe the task-

splitting technique which is essential for our proposed

approach.

Under EDF scheduling, jobs are assigned priorities

that are inversely proportional to their deadlines, i.e., the

earlier the deadline, the higher the priority. EDF is known

to be optimal on uniprocessors; that is, if any periodic task

system can be correctly scheduled on a given preemptive

uniprocessor by any scheduling algorithm, the EDF will

correctly schedule this task system on that processor.

Unfortunately, EDF is not optimal on multiprocessors

considering the same logic. There are, nevertheless,

significant advantages to use EDF for scheduling jobs on

multiprocessors, if possible. Accordingly, the EDF

scheduling of periodic task systems on multiprocessor

platforms has recently attracted considerable attention

(e.g., [17], [18], [19], [10]).

For multiprocessor scheduling using the partitioned

approach, it has been shown that the utilization bound

cannot exceed  on m identical processors using

fixed-priority scheduling; if the largest utilization 

by any task in τ is known; hence, a somewhat better

bound of  was proven by Lopez et al. [17], where

. Goossens et al. [18] proved that the

periodic task system τ is scheduled to meet all the

deadlines by EDF on m identical processors, provided

. Using this result, Baruah [19]

proposed a fixed-priority scheduling algorithm to be used

for the global scheduling of periodic task systems with a

schedulable utilization equal to  on m identical

multiprocessors. The author also proved that no fixed-

priority scheduling algorithm can have a schedulable

utilization greater than  upon m identical

processors. Given the specifications of a uniform multi-

processor platform π0, Funk et al. [7] derived a sufficient

condition upon the specifications of any other uniform

multiprocessor platform π1 such that, if π1 satisfies this

condition, then any hard real-time task system feasible on

π0 will meet all the deadlines when scheduled on π1 using

EDF. As a corollary to their results, we can obtain the

result of [9] concerning EDF-scheduling on homogeneous

multiprocessors: if a set of jobs is feasible on a homogeneous

m-processor platform, then the same set of jobs will be

scheduled to meet all the deadlines by EDF on a homo-

geneous m-processor platform in which the individual

processors are  times as fast as in the original

system.

The above results deal with utilization-based conditions

for determining whether a given system τ of periodic

tasks is successfully scheduled on any specified multi-

processor system using the EDF scheduling algorithm. In

this paper, we assume that jobs are scheduled according

to the EDF+ policy which is the same as EDF, except that,

among jobs whose deadlines are the same, the one with

the latest arrival time has the highest priority (LIFO

policy); in case both deadline and arrival times are equal,

the job with the lowest index has the highest priority.

This EDF+ priority ordering is essential in our approach

because it provides a total priority order. For a given

periodic task system, we can get a much better utilization

bound under the EDF+ scheduling policy by transforming

it into another periodic task system. A periodic task

system τ1 can be transformed into τ2 without compromising

with the feasibility as formalized by the following

definition:

DEFINITION 1 (transformable). For a given multi-

processor platform π, if a periodic task system τ1 is

transformable into τ2 (denoted as τ2) and if τ2 can

be correctly scheduled by EDF+ on π, then τ1 will also be

correctly scheduled on π.

For example, consider a multiprocessor platform

 and the following two-periodic task systems:

n m×( )

m 1–( )

Ssum π( )

m 1+

2
------------
⎝ ⎠
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Umax τ( )

βm 1+

β 1+
---------------( )

β 1 Umax τ( )⁄=

Usum τ( ) m m 1–( )Umax τ( )–≤
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2 1

m
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τ1

π
→

π 1,1[ ]=
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and 

.

If we assign  and  to one processor and the other

two tasks (  and ) to another processor, and run EDF+

on each processor, then τ2 can be feasibly scheduled as

shown in Fig. 1(a). Comparing τ1 and τ2, we see that

 and . Only T3 is split into  and . Note

that  and  do not execute simultaneously at any time

instant, and they all execute for 2  time units over each

interval  for

all integer . Thus, by mapping T1, T2, and T3 into ,

 and , respectively, τ1 can also be feasibly

scheduled on π as shown in Fig. 1(b). Therefore, τ2.

Intuitively, as shown in the above example, we can

transform periodic task systems by “splitting” some

task(s) as formalized by the following definition:

DEFINITION 2 (splitting). A task  is said

to be “split” into j tasks , , if

the following properties satisfy for all k:

,

, and

 

where each task Tik
 is assigned to the processor. sik .

LEMMA 1 ( τ2). For any periodic task system τ1,

let τ2 be the resulting periodic task system by splitting

some task(s) in τ1. Then τ2 for any multiprocessor

platform π.

Proof. For a given multiprocessor platform π, let us

suppose that τ2 is feasibly scheduled on π by EDF+ Let

task  in τ1 be split into j tasks

, , where each split task Tik
 is

assigned to the processor sik , respectively. Then, each

task Tik
 executes for exactly dik time units to complete

 units of execution. Therefore, by P3, no two

of the j tasks Tik
's split from the task Ti execute

simultaneously at any instant in time on the schedule, and

they execute a total of ei time units over each interval

 for all integer . Thus, by

mapping Ti into the j tasks Tik
's, Ti can also be feasibly

scheduled on π. Therefore, τ1 τ2.

As shown in the above example, a periodic task system

that cannot be feasibly scheduled by EDF can be feasibly

scheduled after being transformed into another task

system. Therefore, a much better utilization bound for

EDF can be obtained using the task-splitting technique.

In the rest of this paper, we assume that input periodic

task systems are synchronous and every task has its

relative deadline equal to its period. We also assume that

the uniform multiprocessor platform is “reasonably

powerful” in the sense that the i-th fastest processor can

solely execute the i-th heaviest task (i.e., the task with the

i-th largest utilization) without missing any deadline. In

other words, the processors are assumed to satisfy the

following condition:

Condition 1:  .

If periodic task systems satisfy this condition, we can

get the utilization bound of , which is the theoretical

maximum, for any uniform multiprocessor platform π.

The complete algorithm is described in the following

section.

III. THE ALGORITHM

The optimality of EDF on uniprocessors suggest a

correlation between bin-packing and partitioned scheduling

since a periodic task system τ can be partitioned onto a

uniform multiprocessor platform π if and only if the tasks

can be divided into disjoint subsets τ1, τ2, ..., τm such that

. Task partitioning on homogeneous multi-

processors corresponds to the bin-packing problem with

all the bins of the same size. Johnson [20] proved that this

problem is NP-complete in the strong sense. In this

section, however, we show that any periodic task system

with the total utilization no greater than the theoretical

maximum (i.e., ) is transformable into a periodic

task system which can be partitioned onto a uniform

multiprocessor platform π.

τ1 T1,T2,T2{ }=

0,1.6,2,2( ), 0,0.6,1,1( ), 0,1,2,2( ){ }≡

τ2 T1

′
,T2
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′
,T4

′
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→
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Ti ai, ei, di, pi( )=

Tik
aik
, eik

, dik
, pik

( )= 1 k j≤ ≤

eik
sik dik

×=( )

ai l pi, ai l pi⋅ di+ +⋅+ )[ l 0≥
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π

si U Ti( ),≥ i, 1 i m≤ ≤∀

Ssum π( )

ΣTi τi∈ U Tj( ) si≤

Ssum π( )
Fig. 1. Example schedules: (a) EDF schedule of τ2, and (b) the
corresponding schedule for τ1 by mapping T1, T2, and T3 into T’1,
T’2 and T’3+T’4, respectively.
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To completely describe our proposed algorithm for

scheduling periodic task systems on a uniform multi-

processor platform, we must specify two separate algorithms:

(1) the pre-assignment algorithm that determines to

which processor each task should be assigned, without

splitting, and (2) the task-splitting algorithm that splits

each remaining task and assigns the split tasks to the

processors. We consider first-fit-decreasing (FFD) as the

task pre-assignment heuristic which sorts the tasks and

assigns them to processors in a weakly-decreasing order

of utilization. A task can be assigned to the processor si if

its utilization is not greater than , where Ui is the

total utilization of tasks already assigned to the processor;

in this case, we say the task fits on the processor.

Algorithm 1 shows the FFD task pre-assignment algorithm

in which each task is assigned to the fastest processor

upon which it will fit. The variable gap( j) denotes the

remaining capacity available on the process or si and rem

denotes the set of tasks that cannot be assigned to any

processor. According to the FFD task pre-assignment

algorithm, each task Ti is assigned to the processor sj,

where j is the smallest-indexed processor with gap( j) at

least as large as U(Ti), the utilization of Ti. If FFD

attempts to assign the task Ti to a processor and all the

processors’ gaps are smaller than U(Ti), then Ti goes into

the set rem. Each of these unassigned tasks is split and

assigned to multiple processors by the task-splitting

algorithm described later. The run-time computational

complexity of FFD task pre-assignment is  (for

sorting the tasks in non-increasing order of utilization) +

 (for sorting the processors in non-increasing

order of capacities) +  (for doing the actual

assignment of tasks to processors), for an overall compu-

tational complexity of  assuming that the

number of processors does not exceed the number of tasks.

If every task is assigned by the FFD pre-assignment

algorithm (i.e., if the resulting rem is empty), there is no

need to split any task. In this case, the periodic task

system can be feasibly scheduled by EDF without any

transformation. When the resulting rem is not empty,

each task in rem should be split and assigned to multiple

processors. However, there is a limit on the number of

tasks in rem (i.e., ||rem||) as shown in the following

lemma:

LEMMA 2. If , then ||rem|| < m.

Proof. Suppose that ||rem|| ≥ m. According to the FFD

pre-assignment algorithm, , ,

. That is,  > . Let Ua

be the sum of the utilizations of all the tasks assigned by

the FFD pre-assignment algorithm. Then,

                   

        

This is a contradiction. Thus, the lemma follows.

LEMMA 3. If , then 

, .

Proof. Let Ua be the sum of the utilizations of all the

tasks assigned by FFD. Also, let umax be .

Then, we get

. (1)

According to Condition 1, m heaviest tasks are guaranteed

to be assigned. Thus,

. (2)

From Eqs. (1) and (2), we get 

.

Therefore, the lemma follows.

Let  be the utilization of the -th heaviest task.

Then, , since m heaviest tasks are guaranteed to

be assigned. Therefore, the following corollary holds.

COROLLARY 1. .

Since the remaining capacity of each processor is less

than the utilization of any task in rem, we get the

following corollary from Lemma 3.

Algorithm 1. The FFD pre-assignment algorithm

si Ui–( )

O nlogn( )

O mlogm( )

O n m×( )

O n logn m+( )⋅( )

Usum τ( ) Ssum τ( )≤

gap j( ) U Ti( )< 1 j m≤ ≤

Ti rem∈ ΣTi rem∈ U Ti( ) Σ1 j m≤ ≤ gap j( )

Usum τ( ) Ua  Σ
Ti rem∈

+= U Ti( )

 Ua  Σ
1 j m≤ ≤

+> gap j( )

Ssum π( )=

Usum τ( ) Ssum π( )≤

U Ti( )
Ssum π( )
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----------------≤ i∀ ,Ti rem∈
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Usum τ( ) Ua umax+≥

Ua m umax×≥
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Usum τ( )
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-----------------

Ssum π( )

m 1+
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COROLLARY 2. If , then

.

LEMMA 4. If ||rem|| > 0, then

.

Proof. Let . Then, by Corollary 1, ,

. Therefore, for each processor sj, there must

be at least one task Tk assigned to it with ,

since, if not, Ti should have been assigned before those

assigned to sj. Let Uj be the sum of the utilizations of all

the tasks assigned to sj. Then,

       

.

Therefore, the lemma follows.

We are now ready to describe the task-splitting algorithm.

The algorithm sorts the tasks in rem and splits them in

weakly-decreasing order of utilization. It also sorts the

processors in non-increasing order of remaining capacities.

Algorithm 2 shows the task-splitting algorithm in which

each task is split into smaller ones such that each of

which (except the last one) is with the utilization equal to

the remaining capacity of the corresponding processor

and is assigned to the processor. The variable left(i)

denotes the amount of remaining utilization of  after

splitting. After splitting, the offset increases accordingly

for the next split task (see Line 9 of the algorithm) to

guarantee that no two split tasks execute simultaneously

at any instance of time on the schedule. Note that, to

reduce the number of context switches, the offset of the

last split task is shifted right to the end of integer

boundaries (see Line 13 of the algorithm). The run-time

computational complexity of the algorithm is O(k log k)

(for sorting the tasks in rem in non-increasing order of

utilization) + O(m log m) (for sorting the processors in

non-increasing order of remaining capacities) + O(k × m)

(for doing the actual splitting of tasks), for the overall

computational complexity of O(m2) since k < m by

Lemma 2.

Each task in rem is split into more than two tasks since

its utilization is greater than the remaining capacity of

any processor. Then, by the mechanism to make new

tasks (see the inner loop of the algorithm), it is obvious

that all the properties in Definition 2 are embraced. Let

task  be split into j tasks , . Then, by the

algorithm, they are assigned to j processors ,

, one-by-one, in non-increasing order of the

remaining capacities. Let  the next task be split into

 tasks , . Then, in the same way, they are

assigned to  processors , . Based on

the algorithm,  or . Therefore, we can get the

following corollary:

COROLLARY 3. At most two split tasks can be assigned

to each processor.

According to Lemma 4, less than half of the capacity is

used for the execution of split tasks on each processor.

Let task  be split into j tasks , , and assigned

to j processors , , respectively. If every

split task is feasibly scheduled on each processor, each 

executes exactly during  as stated in the

proof of Lemma 1. Then, no one executes across integer

boundaries, nor do any two splits from the same task

execute simultaneously at any instant of time. This is

formally described and proved in the following lemma.

Usum τ( ) Ssum π( )≤

gap j( )
Ssum π( )

m 1+
-----------------, j∀ , 1 j m≤ ≤<

gap j( )
sj

2
---, j∀ , 1 j m≤ ≤<
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Algorithm 2. The task-splitting algorithm
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LEMMA 5. Let task  be split into j tasks , ,

then the followings satisfy:

          ,

, and

          .

Proof. E1 and E2 are obvious from the algorithm. We

prove only E3 here. The assumption that E3 does not

hold means that . Let tasks 's, , be

assigned to processors 's, , respectively.

Then,

.

Let . Then, we get

. (3)

By Corollary 1, , , . This contradicts

Eq. (3). Therefore, the lemma follows.

Let Ti be the set of tasks (including split tasks)

assigned to the processor si. According to the algorithm,

the processor index (the variable p) is incremented if and

only if the remaining capacity of the current processor

becomes zero. Therefore, if , then

, . Obviously, if , then

, . Therefore, if , the

task set Ti on each processor si can be feasibly scheduled

by EDF+, as proven in the following theorem.

THEOREM 1. If , then the task set Ti

on each processor si can be feasibly scheduled by EDF+.

Proof. By Corollary 3, there are at most two split tasks

in Ti. For each split task , modify it to

. Then, the resulting task set  is

synchronous and every task has its deadline parameter

equal to its period. (Note that we assume each task of

input periodic task system (τ) satisfies these properties.)

Since , EDF can feasibly schedule . Let

the schedule by EDF be EDF. . In the schedule

EDF. , each split task  executes for eik
time units during every time interval  for all the

integers , without being preempted during execution

(Note that the periods of input tasks are integers). The

deadline of each non-split task, say To, which executes in

every time interval ( j, j+1], is an integer l ( ). Now,

we can obtain a new schedule  from EDF.  by

shifting the execution duration of each split task  to

 during every time interval [ j, j+1) for

all the integer . There is no change in the total

amount of execution units for To over the time interval

[ j, j+1) on the new schedule. Consequently, To still meets

its deadline on the new schedule. Therefore, the schedule

 is also feasible since no task misses its deadline on it.

Note that the priority-ordering policy on the schedule 

is the same as EDF+. Since the task priorities are totally

ordered under EDF+, EDF+ generates a unique schedule

for any given task set.  is the schedule for the task set

Ti under EDF+. Therefore, if , then the

task set Ti on each processor si is feasibly scheduled by

EDF
+.

The task set assigned to each processor by our

approach (the FFD task pre-assignment and the task-

splitting algorithms) can be feasibly scheduled on the

processor by the EDF+ algorithm. Also, by Lemma 5, it

was shown that no two split tasks of the same task

execute simultaneously at any instant of time. Therefore,

for a given uniform multiprocessor platform π, any

periodic task system τ can be feasibly scheduled on the

platform if and only if the total utilization  is not

greater than the total sum of processor capacities .

THEOREM 2. For a given uniform multiprocessor

platform π, any periodic task system τ can be feasibly

scheduled on the platform if and only if.

.

Proof. Let  be the resulting periodic task system by

splitting some task(s) in τ. Then, by Theorem 1 and

Lemma 5,  can be feasibly scheduled on any uniform

multiprocessor platform π if . Therefore,

by Lemma 1,  means that τ can also be feasibly

scheduled on π. Moreover,  is the theoretic

maximum bound for utilization on π. Therefore, the

theorem follows.

Theorem 2 confirms the optimality of the proposed

algorithm from the perspective of achievable utilization.

However, our task-splitting algorithm produces schedules

with a large number of context switches. In the next

section, we consider this issue and suggest a method that

can significantly reduce the number of context switches

on the schedules generated by the proposed algorithm.

IV. PRACTICAL CONSIDERATIONS

The proposed algorithm is proven to successfully schedule

a periodic task system on any uniform multiprocessor

platform, as long as , by using the task-

splitting technique. However, task-splitting incurs a large

number of context switches during runtime. We now

consider ways of reducing the number of context switches

and suggest a method that can significantly reduce the
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number of context switches on the schedules generated

by the proposed algorithm.

By the task-splitting algorithm in Algorithm 2, a task Ti

is split into j tasks , , each with the period of 1

(Note that even though the tasks resulting from splitting

always have a period of 1, input tasks have any integer

period). Let these tasks be assigned to processors 's.

Then, each split task  on processor  executes

exactly once during every time interval , for all

integer . Consequently, these j tasks 's to incur j

context switches on the schedule S generated by the

proposed algorithm, for every time interval , for

all integer . However, by packing two (or more) job

instances of each split task, we can reduce the number of

context switches. Let g = (g.s,g.e,g.t,g.p) be a job

instance of a split task Tg.t which executes for the time

interval [g.s,g.e) on processor sg.p. Then, two job

instances gi and gj, gi.s < gj.s, of the same task on the

same processor (i.e., gi.t = gj.t and gi.p = gj.p) can be

packed into a single job instance gk = (gi.s, gi.e + gi.e −

gj.s, gi.t, gi.p) if the following conditions are met:

C1: Every job instance of the same or different tasks

during the time interval [gi.e, gj.s) should still

meet its deadline after the packing.

C2: Each job instance gl delayed by the packing should

not overlap in time with any job instance of the

same task Tgl.t
 on different processors.

C3: Any job instance of the same task Tgi.t
 on different

processors should not overlap in time with the

packed job instance.

In this paper, we propose a packing algorithm which is

very simple, but significantly reduces the number of

context switches. The packing algorithm called Pack-

Forward is shown in Algorithm 3, where S is the

schedule generated by our scheduling algorithm and G is

the list of job instances of all split tasks. The algorithm

sorts the job instances in G in increasing order of start

times. From the first job instance, it tries to pack two job

instances of the same task on the same processor into a

single job instance. The function packable(S, gi, gj) is a

function that returns YES if gi and gj satisfy the above

three conditions on the schedule S, else returns NO. If the

two job instances are packable (see Line 7 in Algorithm

3), they are packed into a single job instance and adjust

the schedule S using the function pack(). For each

periodic task system τ = {T1, T2, ..., Tn}, let τ.H be the

hyperperiod of τ, i.e., τ.H = LCM(p1, p2, ..., pn), where

LCM stands for “Least Common Multiple”. We can only

consider the job instances for the time interval [0,τ.H).

For example, consider the example schedule in Fig. 1. In

this example, τ.H = 2. The resulting schedule  after

packing with the algorithm PackForward is shown in

Fig. 2(b). Note that g1, ..., g4 in Fig. 2(a) are the job

instances of the split task T3. In this example, g3 and g4
are packed with g1 and g2, respectively. Comparing the

two schedules, we can see that the number of context

switches is reduced from 8 to 5 during each hyperperiod.

Note that every job on the packed schedule  still

follows the EDF+ priority ordering.

For each periodic task system τ = {T1, T2, ..., Tn}, let

. Then, no algorithm can produce a

feasible schedule with fewer context switches than τ.C

during each hyperperiod. Thus, in this paper, τ.C is used

as the theoretical lower bound on the optimal number of

context switches for each periodic task system τ. For the

above example, τ.C = 4. note that the optimal number of

context switches for this example periodic task system is

5. Let the estimation error be “optimal number of context

switches” −τ.C. For this example, the estimation error is

1. Let SN be the total number of job instances of split

Tik
1 k j≤ ≤

sik
Tik

sik
j,j 1+ )[

j 0≥ Tik

j,j 1+ )[

j 0≥

S′

Algorithm 3. A simple packing algorithm 

S′

τ.C Σi 1=

n
τ.H pi⁄( )=

Fig. 2. Example schedules: (a) the schedule S generated by our
scheduling algorithm for the example periodic task system in
Fig. 1 and (b) the resulting packed schedule .S′
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tasks in schedule S. In this paper, we have used the term

“packing efficiency” as a performance metric that is

defined as follows:

Packing efficiency = ,

where S and  are the schedules before and after

packing, respectively.

To evaluate the performance of the proposed scheduling

(along with the packing algorithm) concerning the number

of context switches generated, we have performed some

simulations. Periodic real-time task sets are generated

randomly such that the periods and utilization of tasks are

uniformly distributed in the ranges [1, 100] and [0.0, 1.0],

respectively. The computing capacities of all the

processors are equal to 1, i.e., , . Finally, the

computation requirements of the periodic tasks are

chosen such that . We have performed

simulations while varying the number of processors. Fig.

3 shows the packing efficiency of the suggested packing

algorithm with 16, 32, 64, and 128 tasks, where each data

is the average value after generating 100 random task

sets. Fig. 3 shows a very high packing efficiency when

the number of processors is small (higher than 80% with

4 or fewer processors). However, as the number of

processors increases, the efficiency deteriorates. This is

because, as the number of processors increases, two job

instances are less likely packable due to the conditions

C2 and C3. However, in all our simulations, the packing

efficiency is higher than 50% over the entire ranges of the

number of processors and tasks. Fig. 4 shows the context

switch overhead normalized concerning the theoretical

lower bounds. As can be seen in Fig. 4, the proposed

algorithm generates much fewer context switches as the

number of processors (tasks) decreases (increases). Espe-

cially, a large number of processors show a much larger

overhead. This is because, as the number of processors

increases, it is more likely that any two job instances are

not packable due to the conditions C2 and C3 and the

estimation error becomes much larger.

V. CONCLUSIONS

We have presented a new global scheduling algorithm

for scheduling periodic task systems on uniform multi-

processor platforms. This problem has been considered to

solve the (variable-size) bin-packing problem, which is

known to be intractable. However, we have proven that

this is not the case in the context of jobs, which can be

preempted at any time and resumed later, by presenting a

task-splitting technique. It has been proven that the

proposed algorithm successfully schedules any periodic

task system on reasonably powerful uniform multiprocessor

platforms if  by applying the EDF+

scheduling algorithm on each processor. The proposed

algorithm is optimal in the sense of maximizing achievable

utilization.

We have also considered the practical issue of reducing

the number of context switches and proposed a very

simple method that can significantly reduce the number

of context switches on the schedules generated by the

proposed algorithm. Nevertheless, the resulting schedule

may incur a large number of preemptions. It would be

interesting to investigate algorithms for solving the periodic

scheduling problem while minimizing the number of

preemptions. This is an issue for our future investigation.

One may also argue that, due to semantic reasons, a

task cannot be split arbitrarily into two tasks. The proposed

task-splitting approach will still work, albeit sub-optimally,

if we allow each processor to have a small slack (unused

cycles).
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