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Abstract
Current heterogeneous CPU-GPU architectures integrate general-purpose CPUs and highly thread-level parallelized

GPUs (graphic processing units) in the same die. The contention in shared resources between CPU and GPU, such as the

last level cache (LLC), interconnection network, and DRAM, may degrade both CPU and GPU performance. Our exper-

imental results show that GPU applications tend to have much more power than CPU applications to compete for the

shared resources in the LLC and on-chip network, and therefore make CPU suffer from more performance loss. To

reduce the GPU’s negative impact on CPU performance, we propose a simple yet effective method based on probability

to control the LLC replacement policy for reducing the CPU’s inter-core conflict misses caused by GPU without signifi-

cantly impacting GPU performance. In addition, we develop two strategies to combine the probability-based method for

the LLC and an existing technique called virtual channel partition (VCP) for the interconnection network to further

improve the CPU performance. The first strategy statically uses an empirically pre-determined probability value associ-

ated with VCP, which can improve the CPU performance by 26% on average, but degrades GPU performance by 5%.

The second strategy uses a sampling method to monitor the network congestion and dynamically adjust the probability

value used, which can improve the CPU performance by 24%, and only have 1% or 2% performance overhead on GPU

applications.

Category: Compilers / Programming Languages

Keywords: Heterogeneous architectures; Last level cache; Inter-application interferences

I. INTRODUCTION

Following their popularity in graphics processing and

high-performance computing (HPC), graphics processing

units (GPUs) have been increasingly used for general-

purpose computing on GPUs (GPGPUs). Modern GPUs

consist of thousands of simple cores (shader cores) with

extremely high-bandwidth external memory systems,

which offer tremendous advantages in terms of high

throughput and energy efficiency. Each core of the GPU

is based on a single instruction multiple data (SIMD)

architecture, which can efficiently support the parallel

processing of multiple data.

Traditionally, a GPU works with a CPU in a host-device

mode, where the CPU executes the host code and launches

the GPU kernels to execute the parallel parts of the

computation. OpenCL [1] and CUDA [2] are programming

models that work on such a host-device mode architecture.

However, this architecture has some limitations because

it has high communication overheads due to the separate
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address space that requires explicit data movement between

the CPU and the GPU [3]. Fig. 1(a) shows a discrete

CPU-GPU system with separate DRAM. Before CUDA

6, the memory spaces are distinct both logically (separate

memory address spaces) and physically (both the CPU

and the GPU have their private DRAM). With CUDA 6,

NVIDIA introduced unified virtual memory (UVM), in

which the system automatically migrates data between

the host and the device so that it looks like they share the

memory logically. In contrast, the CPU and the GPU can

also be placed on the same die and share the same

DRAM, and/or the last level cache (LLC), as well as the

interconnection network. As shown in Fig. 1(b), the

integrated CPU-GPU architecture (also called unified or

fused architecture) can avoid the data transfer between

the distinct DRAM addresses. Some of the recent real-life

examples of integrated CPU-GPU architectures include

Intel’s Sandy Bridge and Ivy Bridge, AMD’s accelerated

processing units (APU), and NVIDIA’s Denver [4].

In the integrated CPU-GPU heterogeneous architecture,

CPU and GPU applications compete for shared resources

in LLC, interconnection network (or Network-on-Chip

[NoC]), and DRAM. In the shared LLC, conflict misses

between CPU and GPU applications (also called inter-

core conflict misses) may slow down both CPU and GPU

applications, with a particularly large impact on latency-

sensitive CPU applications. In the interconnection network,

virtual channels in the router are shared between CPU

and GPU, which may block each other when the CPU

and GPU packets flow in the virtual channels between

different ports of the router. Similarly, the memory

channels in the DRAM controller are shared, making the

CPU and GPU memory requests interleaved in the request

buffer. The DRAM scheduling policy may unfavorably

prioritize GPU requests over CPU requests, as indicated

in the prior study [5]. These shared resources contentions

across LLC, NoC, and DRAM may degrade both CPU and

GPU performance of the integrated CPU-GPU architecture.

To assess how CPU and GPU applications interfere with

each other and influence the performance in the integrated

architecture, we run different combinations of CPU and

GPU applications concurrently to get the performance

results and compare them to the base performance when

they execute alone respectively. We break down the

performance results into network latency, DRAM latency,

and others, which are shown in Fig. 2 (see Section VII for

the evaluation methodology). We observe that the GPU

performance degradation is small, while the CPU suffers

significant performance loss. This observation is consistent

with the results of previous work [3]. One reason is that

CPU applications are more latency-sensitive, while GPU

Fig. 1. CPU-GPU heterogeneous architectures: (a) a discrete
architecture and (b) an integrated architecture.

Fig. 2. CPU and GPU application performance breakdown (X-axis; workloads). CPUbase and GPUbase are the performance when they
run alone. CPU-GPU is the CPU performance running with GPU and GPU-CPU is the GPU performance running with CPU. The
corresponding benchmarks can be seen in Table 1.
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applications can well-tolerate the memory latency by

exploiting massive thread-level parallelism (TLP). Another

important reason is GPU applications have much more

memory requests and tend to monopolize the resources in

the network and LLC. From Fig. 2 we can see that in

general, the CPU network latency increases dramatically,

which takes a large portion of the overall performance. In

the LLC, GPU applications are also more likely to evict

out the data of CPU applications. Table 1 illustrates that

the CPU LLC miss rates are affected much more than the

GPU LLC miss rates when CPU and GPU applications

run concurrently, as compared to the baseline miss rates

when they run alone.

The above results and analysis show the importance of

managing the shared LLC and network to reduce the

inter-application interferences on CPU applications from

GPU in the integrated architecture. Some researchers have

proposed different methods to solve this inter-application

interference problem. The reported studies include GPU

core management such as controlling GPU concurrency

to reduce shared resource contention [3] or shared resource

management such as managing shared LLC to allocate

more cache ways to the applications that are more

sensitive to the cache [6, 7], and partitioning the virtual

channel for CPU and GPU to reduce interferences in the

interconnection network [4]. For the management of the

shared resources, previous efforts focus on either the

LLC or the network only. To the best of our knowledge,

none of them has considered addressing the contention in

both LLC and interconnection network together. Our

study indicates focusing only on the LLC or the network

management alone may be suboptimal for the CPU

performance because the performance degradation may

be caused by the inter-application interferences from the

LLC, the network, or both.

In this paper, we explore a simple yet effective method

to reduce CPU-GPU interferences in the LLC, and combine

the LLC and interconnection network management in an

attempt to achieve the best CPU performance (as compared

to the baseline performance as CPU applications run

alone) with insignificant impact on GPU performance

(e.g., only 1% or 2% or less). The main contributions are

summarized as follows:

● We propose a new simple LLC replacement policy

for the CPU-GPU heterogeneous architecture based

on probability. It effectively reduces the CPU conflict

misses caused by GPU in the LLC by limiting the

GPU’s evicting power on CPU cache lines.
● We apply an existing technique of virtual channel

partition (VCP) [4, 8] for the on-chip network, and

study its interaction with the LLC management

technique. Our results show that reserving one virtual

channel for the CPU is sufficient to benefit CPU

performance with insignificant GPU performance

overhead.
● We propose to statically combine the probability

method on the LLC (with probability 0.001) with the

VCP, which can lead to the best CPU performance

(26% improvement). However, the GPU performance

is degraded by 5% on average.
● To reduce the GPU performance overhead, we can

statically choose a higher probability of 0.01 (the

higher the probability, the less GPU miss rate in

LLC, thus less bandwidth pressure on the network).

However, the optimal probability (either 0.001 or

0.01, determined empirically) is different for different

applications. We thus propose a sampling method to

monitor network congestion and dynamically determine

the best application-specific probability value. The

dynamic method used in conjunction with VCP can

improve CPU performance by 24%, with only 1% or

2% GPU performance overhead. 
● We change the DRAM scheduling policy to prioritize

CPU requests in the DRAM controller. The results

show that it has a limited improvement on CPU

performance. This finding is consistent with the

results shown in Fig. 2, which indicates that the

DRAM latency is not a large portion of the overall

performance.

The rest of the paper is organized as follows. Section II

gives the background of the integrated CPU-GPU hetero-

geneous architecture and its programming model. Section

III introduces the probability-based inter-core LLC

replacement control. Section IV describes the VCP, and

Section V presents two approaches to statically or

dynamically combine probability-based LLC control and

VCP. Section VI discusses the CPU request prioritization

in DRAM. The evaluation methodology is described in

Section VII and the experimental results are given in

Section VIII. We discuss the related work in Section IX

and finally, we make conclusions in Section X.

Table 1. LLC miss rate (%) increases when CPU and GPU
applications run concurrently

No. Benchmark (CPU : GPU) CPU
CPU-

GPU
GPU

GPU-

CPU

1 bzip2 : b+tree 43.16 71.55 32.99 34.37

2 fmm : bfs 30.14 56.64 22.20 23.40

3 milc : b+tree 44.16 77.32 32.87 33.70

4 fmm : lud 30.14 47.92 4.46 7.29

5 water-nsquared : pathfinder 94.90 99.54 93.41 93.25

6 bzip2 : lud 43.16 47.65 4.45 4.54

7 water-nsquared : bfs 94.90 99.37 22.43 23.34

8 fmm : pathfinder 30.14 88.85 95.00 94.88

9 perlbench : gaussian 21.88 28.78 0.22 0.29
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II. BACKGROUPD

We first briefly describe the architecture evaluated in

this work, which is shown in Fig. 3. It has 4 CPU cores

and 6 GPU cores. Both CPUs and GPUs have their

private L1 caches, and each core of CPUs also has a

private L2 cache (not shown in the figure). CPUs and

GPUs share the LLC (divided into 4 slices, each has 8

banks) and DRAM (with 2 channels), which are connected

through a ring network. This architecture is similar to

Intel’s Sandy Bridge [9], in which each slice of LLC, the

CPU cores, the on-die GPU, and the system agent (fancy

word for North Bridge) have a stop on the ring bus. The

LLC is shared among all the CPU cores and graphics.

Each LLC slice is associated with each CPU core although

each CPU core can address the entire LLC.

Since all the cores, LLC banks, and memory channels

are connected by the simple ring topology network, all

CPU memory requests missed in the CPU L2 cache and

GPU memory requests missed in the GPU L1 cache are

routed to the corresponding LLC banks via the ring

network. All memory requests missed in the LLC also

need to go through the network to the DRAM. It is not

hard to imagine that the network can have high congestion,

which is confirmed by the experimental results demon-

strated in Fig. 2.

The memory requests coming from the different nodes

in the ring are injected into the local router first, which

then go through all the intermediate nodes to arrive at the

destination nodes. From a router’s point of view, an

outgoing memory request can be either routed to the left

or to the right in the T-shaped crossroads to reach the

destination. The routing algorithm will typically choose a

shorter path in terms of the number of intermediate nodes

along the path. As we can see in the ring topology, the

placement of the connected components can influence the

performance, which is discussed in the previous work [8].

In this paper, we do not consider the impact of different

placements. We evaluate our work based on the placement

shown in Fig. 3.

When a GPU kernel is launched, the runtime creates

massive concurrent GPU threads that are organized

hierarchically. Warps are the minimum scheduling unit

inside a shader core. Execution of warps can be performed

in any order. All the threads in a warp execute the same

instructions but different threads in the warp operate on a

different portion of data. If an executing warp is waiting

for memory, the warp scheduler will schedule another

warp that is ready for execution. This helps to hide the

memory latency and maximize the available parallelism

to boost the performance.

III. PROBABILITY BASED METHOD FOR LLC
REPLACEMENT

When the LLC is shared between CPU and GPU, because

of the limited space in the LLC, both CPU performance

and GPU performance may suffer due to inter-core conflict

misses. Particularly, GPU applications tend to have more

power to evict CPU cache lines, which is demonstrated in

Table 1. The CPU and GPU columns give the LLC miss

rates when CPU and GPU applications run alone. The

CPU-GPU column lists the miss rates of CPU applications

running concurrently with GPU applications, whereas the

GPU-CPU column shows the miss rates of GPU applications

running concurrently with CPU applications. Although both

CPU and GPU miss rates increase, the CPU applications

suffer much more LLC misses than GPU applications.

Therefore, it is important to regulate the evictions of CPU

data caused by GPU data, because CPU performance is

usually much more sensitive to data access latency.

One way to reduce CPU-evicted-by-GPU conflict misses

is to partition the cache ways in every set for different

applications. This is what has been done in the previous

works [7, 10]. However, determining optimal partitioning

for different applications is not trivial. In the context of

the integrated CPU-GPU architecture, it is worthy to

explore simpler yet effective methods to reduce the CPU

conflict misses caused by GPU applications.

In this paper, we propose to use a probability-based

method to limit the evicting power of GPU on CPU cache

lines. The key idea is to mark every cache line whether it

contains CPU data or GPU data. Whenever a cache line

that stores CPU data is about to be evicted by a GPU miss,

it is only allowed to happen with a pre-set probability.

Making an analogy is similar to a coin-flipping. For

example, if it is a head, the replacement happens. If it is a

tail, instead of replacing the CPU line that is found by the

LRU policy, the least recently used GPU line will be

replaced instead. In case there is no GPU line in the set,

the LRU line is still replaced as usual.

The LRU cache replacement algorithm needs to be

modified to enforce the probability-based inter-core cache

replacement. The detailed procedure can be seen in

Algorithm 1. In this method, the probability can be adjusted

to regulate the GPU’s evicting power in the LLC. The

higher the probability is, the more likely a CPU cache

line can be evicted by a GPU miss. If the probability is 1,

the LLC becomes a normal LLC that is shared by CPU
Fig. 3. The integrated CPU-GPU heterogeneous architecture
that is evaluated in this work.
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and GPU without any restriction on inter-core cache

replacements. On the other hand, the smaller the probability

is, the less likely CPU data will be evicted by GPU data.

Thus, we can use a small probability value to reduce the

CPU miss rates; however, it may increase the GPU miss

rates. Since GPU applications are often not very sensitive

to the miss rates due to GPU’s capability to tolerate the

miss latency [6, 7], it is possible to aggressively lower

CPU miss rates without significantly impacting GPU

performance. However, if the GPU LLC miss rate is

increased dramatically, it can increase pressure on the

shared interconnection network, which can influence

performance for both CPU and GPU (see Section IV for

more discussion).

The number of GPU accesses in the LLC is generally

more than 10 times higher than the CPU accesses. The

number of times that a CPU cache line is evicted by GPU

is expected to be about one magnitude higher than the

CPU misses. To reduce the number of CPU line evictions

caused by GPU, one can set a very small probability to

begin with for the probability-based LLC control method.

The number of such evictions is expected to be reduced

by 1,000 times. In other words, the probability 0.001 is

small enough to prevent most of the CPU conflict misses

caused by GPU.

The probability-based method has a small hardware

overhead. An extra bit for every cache line is needed to

identify whether it is the cache line that stores CPU data

or GPU data. In addition, a global random number generator

is needed to produce the probability of inter-core cache

replacement control. To hide the latency of random number

generation, the random numbers can be generated and

stored in advance. The size of the random number store

buffer depends on the bandwidth of the cache.

IV. VIRTUAL CHANNEL PARTITIONING

As Fig. 3 shows, each on-chip component is connected

to the ring network by the router. The microarchitecture

of a router is depicted in Fig. 4. A router has multiple

ports. For the router in the ring topology, each router has

three ports. The local ports connect to the on-chip

components such as CPU and GPU cores, LLC banks,

and DRAM controller. The left and right ports link to the

other ports of neighboring routers. Each port has multiple

incoming and outgoing virtual channels as can be seen in

Fig. 4. Packets received from the on-chip components are

injected into the injection buffer first (not shown in the

figure). Then, packets follow multiple stages [4] to get to

the next router.

Since the injection buffer and virtual channels are shared

between CPU and GPU applications in heterogeneous

architecture, the contention on these resources will slow

down each other’s progress in the network. However, the

flow of CPU packets can be more severely interrupted by

GPU packets since GPU applications typically have

much more network traffic.

The CPU packets are blocked mainly in two different

locations. The first one is at the injection buffer of the

local port due to the buffer full, which is above the local

port depicted in Fig. 4. Another one is within the virtual

channels. Those channels may be exhausted by the GPU

packets so that the CPU packets cannot be injected, or the

CPU packets are interleaved with GPU packets. In both

cases, the CPU packets have to wait for the GPU packets

to be drained first.

Algorithm 1. Probability method for LLC replacement

1: begin

2: Pre-set a probability_level (for example, 100);

3: Mark every cache line in a set either a CPU line or a

GPU line when it is used;

4: One cache line has to be replaced caused by a miss;

5: Call the find_replacement_line_with_probability function

to determine which line will be evicted out;

6: Function find_replacement_line_with_probability()

7: while (for each cache line in a cache set) do

8:      if (This line is an invalid line) then

9:           Replace this line.

10:       else

11: Check the lru_time to keep track of the least recently

used line (eviction_line) and least recently used GPU

line (eviction_line_candidate) if it exists in a set;

12:       end if

13: end while

14: if (The eviction_line is a CPU line and it is caused by    

     a GPU access) then

15:      Randomly generate a number between 1 to 1000;

16:      if (The number > probability_level) then 

17:           Evict the eviction_line_candidate;  

18:           return;

19:      end if

20: end if

21: Evict the eviction_line;

22: EndFunction

23: end

Fig. 4. Microarchitecture of the router.
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To reduce the contention in the network, the straight-

forward way is to partition the virtual channels for CPU

and GPU. Also, the injection buffer of the local port is

separated to minimize the interferences. In our work,

there are 4 input and 4 output virtual channels for each

port. We partition them for three configurations (3:1, 2:2,

1:3 for GPU:CPU). This strategy is similar to the previous

work [4, 8].

Since there is only one link connecting different routers,

an arbitration policy has to be applied to select a packet

from the different output virtual channels in the LT stage.

In our work, we use first-come first-service (FCFS) policy

within CPU and GPU virtual channels. Between the CPU

and GPU channels, we always prioritize the CPU packets

since the number of the CPU packets is much smaller

than that of the GPU packets.

V. COMBINING VCP AND PROBABILITY-
BASED LLC CONTROL

To minimize the inter-application interferences, the

LLC and interconnection network management should be

considered together. However, the probability-based LLC

control and VCP are not independent of each other. For

example, if the probability-based LLC control is used too

aggressively, the number of GPU cache misses may be

increased more significantly, which can increase the

pressure to NoC and VCP although the number of CPU

cache misses can be reduced. This is especially problematic

for latency-sensitive CPU applications and GPU applica-

tions that are bandwidth-limited, for which the probability-

based LLC control should be carefully adapted to avoid

large GPU performance degradation. On the other hand,

the VCP without considering the probability-based LLC

control may be suboptimal, as the numbers of DRAM

accesses from CPU and GPU may have been changed by

the probability-based method. In this paper, we consider

two approaches, a static one and a dynamic one, to

combine the VCP and the probability-based LLC control.

A. Statically Combining VCP and the Probability
Based Method

We can statically use a small probability value (for

example, 0.001) for the LLC replacement by combining

with the VCP to achieve better CPU performance. However,

as discussed before, a small probability will increase the

GPU miss rate, which can lead to more contention in the

network and result in relatively high GPU performance

overhead. To reduce network traffic, we can use a higher

probability (for example, 0.01), which will sacrifice some

CPU performance to trade for the GPU performance. The

problem is that different applications have different data

access behaviors. For some GPU applications, a smaller

probability may not lead to large GPU performance

degradation. In the static approach, a small probability

can be adopted for the maximal benefit of the CPU

performance. However, to be adaptive to different appli-

cation behaviors, a dynamic strategy is needed to make

better tradeoffs of CPU and GPU performance.

B. Dynamically Combining VCP and the
Probability-Based Method

To guide the dynamic strategy to determine whether a

smaller or a larger probability should be used, we define

a metric as follows:

(1)

In this equation, GPU Packets are the total number of

GPU network packets, and Stalled Cycles are the total

number of stalled cycles due to network full that has a

limited capacity (It can become full if there are too many

packets). For the network that has a higher congestion

due to the increased GPU packets, the number of GPU

packets should increase at higher rate than the increased

stall cycles, because for the packets that are already

waiting in the line, the number of stalled cycles during a

certain period will not increase immediately. We use

different fixed probabilities to run the same benchmark

multiple times and get the metric that is shown in Table 2.

We observed that increase in the probability led to a

decrease in the metric as expected. But for some

benchmarks, the metric leads to only small changes in the

values. This is because when we increase the probability,

network congestion does not drop very much. Apparently,

we propose a sampling method to predict whether a GPU

application has relatively high-performance overhead

with a small probability. Two sampling periods are used.

After the initiation of the application, we calculate the

metric in the first period of time using a small probability

0.001. After that, in the second consecutive period, we

calculate it with a larger probability 0.5. If the difference

PendingBuffull

GPU Packets
Stalled Cycles
------------------------------------=

Table 2. Metric results with a different probability

Benchmark 

(CPU : GPU)

Probability 

= 0.001

Probability 

= 0.01

Probability 

= 0.1

bzip2 : b+tree 1.05 0.96 0.84

fmm : bfs 1.11 0.93 0.76

milc : b+tree 1.05 0.93 0.81

fmm : lud 0.91 0.89 0.83

water-nsquared : pathfinder 1.26 1.26 1.25

bzip2 : lud 0.84 0.82 0.75

water-nsquared : bfs 1.16 1.03 0.79

fmm : pathfinder 1.07 1.07 1.06

perlbench : gaussian 1.71 1.71 1.63
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between the calculated metric in the second period and

the predicted value based on the metric of the first period

is larger than a threshold (i.e., 0.07, which is determined

empirically), we predict that the GPU application is

network-sensitive and a larger probability 0.01 is used for

the following simulation. Otherwise, we predict the GPU

application as not network-sensitive and the probability

value of 0.001 is used.

The precondition for the sampling method is that the

metric does not change significantly between consecutive

periods if the probability does not change; otherwise, we

cannot state whether the change in metric is caused by the

probability changes or the application itself. The GPU

application works in a SIMD way. Although each thread

may have different behavior at a time, the phase behavior

becomes blurred by other massive numbers of concurrently

running threads [4]. Our evaluation shows that the metric

behavior is very predictable. Fig. 5 shows that the metric

PendingBuffull is relatively stable during consecutive time

units, in which each time unit in the X-axis is 2 million

cycles. This figure only shows the first 11-time units. In

our sampling method, the first 4-time units are used for

the first period, and the following 4-time units are used

for the second period. The SIMD architecture of the GPU

makes all the threads in a warp execute the same instruction

but operate on a different portion of the data, and it is

unlikely to generate drastically different memory traffic in

a short period, even for the irregular application like bfs.

If the metric changes significantly by its behavior

(although it is very unlikely), the sampling approach will

misidentify it and use a higher probability to give GPU

applications more space in LLC, which may lead to

nonoptimal CPU performance. The CPU performance

improvement will be less but still better than pure shared

LLC.

VI. DRAM SCHEDULING

The DRAM controllers are also shared between CPU

and GPU and hence can potentially affect the system

performance. DRAM has a two-dimensional bit array

structure. When the DRAM is accessed, a row of bit cells

is read into a row buffer first, which is called activation.

Read and write operations from the row buffer are called

row buffer hits, and it has relatively low latency. If the

requested data are not in the row buffer, a precharge

operation has to be applied to close the current row and a

new row will open. This process needs much longer

latency. The first-ready first-come first-service (FRFCFS)

[11] scheduling policy is used to prioritize the memory

requests that result in row buffer hits, which can increase

DRAM throughput. However, in the integrated CPU-

GPU heterogeneous architecture, this policy may unfairly

prioritize GPU requests against CPU requests since

GPUs typically access memory much more frequently

and have higher spatial locality due to the SIMD-style

execution.

In this work, DRAM scheduling is not our primary focus,

as our evaluation indicates that the inter-applications in

the LLC and NoC have a much larger impact on the CPU

performance. To further boost CPU performance, we

study a DRAM scheduling to prioritize CPU requests in

the DRAM controller buffer. Due to the unequal amount

of DRAM accesses from CPU and GPU, especially due

to the further increase in GPU DRAM accesses after the

probability-based LLC control, it becomes important to

prioritize the CPU requests to minimize its DRAM access

latency. Due to a relatively smaller amount of CPU DRAM

accesses, such prioritization is not expected to have large

impact on GPU performance.

VII. EXPERIMENTAL METHODOLOGY

A. Simulation Environment

We use MacSim [12], a CPU-GPU heterogeneous

simulation framework, to evaluate our work. The architecture

Fig. 5. The metric is relatively stable if the probability does not
change.

Table 3. Architecture configuration

Component Specification

CPU 4 cores, 3 GHz

GPU 6 cores, 1.5 GHz

CPU L1 icache per core 32 kB, assoc 8

CPU L1 dcache per core 32 kB, assoc 8

CPU L2 cache per core 256 kB, assoc 8

GPU L1 icache per core 4 kB, assoc 8

GPU L1 dcache per core 32 kB, assoc 8

LLC 4 MB, assoc 16, 1 GHz

Network Ring topology, 1 GHz

DRAM controller 2 channels, 1.6 GHz

DRAM scheduling policy FRFCFS
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simulated is depicted in Fig. 3 in Section II. Each CPU

core is a 3 issue, x86 core with out-of-order scheduling.

A GPU core contains 8-wide SIMD lanes equipped with

texture and constant caches, as well as shared memory.

More configurations are shown in Table 3. 

The CPU benchmarks are chosen from SPEC2006 [13]

and Splash-2 [14], and the GPU benchmarks are from

Rodinia [15], all of which are listed in Table 4. Based on

the amount of network traffic, we classify each benchmark

into high, middle, and low categories as shown in the last

column of Table 4. The CPU and GPU applications run

concurrently on the simulator. The CPU applications run

on the CPU and the GPU applications run on the GPU.

The GPU applications are repeated until the completion

of CPU applications (since GPU applications are shorter in

our simulation) to simulate the on-chip resources contention.

In all experiments, the CPU (GPU) performance is

measured by the total number of execution cycles. Thus,

fewer execution cycles imply better performance.

B. Network and DRAM Latency Breakdown

To figure out how much time is spent on the inter-

connection network and DRAM during the simulation

cycles, we break down the network and DRAM latencies,

which are shown in Fig. 2 in Section I. It is worthy to

note that these latency results are not simply to add up all

the individual memory request latencies. Instead, we only

count the non-overlapped portion of latencies as shown in

Fig. 6.

VIII. EXPERIMENTAL RESULTS

A. The Effectiveness of the Probability-Based
Method

We first analyze the effectiveness of the probability-

based LLC management method. Fig. 7 shows that as the

probability decreases from 0.3 to 0.001, the CPU performance

improves in general. This indicates that the probability-

based method can effectively limit the evicting power of

GPU applications on CPU cache lines as expected. Fig. 8

shows how the CPU miss rates in the LLC change with

different probabilities. A smaller probability means more

restrictions on the replacement of a CPU cache line caused

by a GPU miss thereby leading to a lower CPU miss rate.

The higher the probability is, the closer the CPU miss

rate is to the case when the LLC is shared without any

restriction. For most of the benchmarks, we notice an

adequate reduction in CPU LLC miss rates with the

probability of 0.001, with up to 47.7% reduction for fmm

running concurrently with pathfinder, as compared to the

miss rate of the default shared LLC.

We also find that the CPU performance results and the

CPU miss rate results are positively co-related. In

Table 4. Benchmark information

Benchmark
Chosen 

from
Type

NoC 

traffic

NoC 

packets/cycle

bzip2 SPEC2006 CPU High 0.011

fmm Splash-2 CPU Middle 0.005

milc SPEC2006 CPU High 0.013

perlbench SPEC2006 CPU Middle 0.006

water-nsquared Splash-2 CPU Low 0.003

b+tree Rodinia GPU High 0.064

lud Rodinia GPU Low 0.013

pathfinder Rodinia GPU Middle 0.052

gaussian Rodinia GPU Middle 0.040

bfs Rodinia GPU Middle 0.055

Fig. 6. Calculation of network and DRAM latency. Fig. 8. CPU LLC miss rate with different probabilities.

Fig. 7. CPU performance with different probabilities.
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general, the lower LLC miss rates translate to better CPU

performance. However, for the CPU benchmarks that

already suffer bad locality and high miss rates even after

running alone, for example, water-nsquared, their LLC

miss rates are only reduced modestly, which results in an

insignificant impact on CPU performance. Also, we find

that the CPU performance of some benchmarks can be

greatly affected by the network the traffic of the concurrent

GPU benchmark. For example, since the b+tree is classified

as a GPU benchmark with high NoC traffic (see Table 4),

for the CPU benchmarks bzip2 and milc, there is still a

large CPU performance gap between the probability of

0.001 and the CPU running alone. This is likely caused

by the intense NoC traffic from the b+tree. This also

motivates us to study both LLC control and NoC manage-

ment in an integrated manner to best benefit the CPU

performance without significantly affecting the GPU

performance. On average, we observe that the CPU

performance can be improved by 9% with the probability

of 0.001, and up to 27% performance increase is achieved

for the CPU benchmark fmm that is running with GPU

benchmark pathfinder.

For GPU, Fig. 9 shows that a smaller probability

generally increases the GPU miss rates, because GPU

data are forced (based on probability) to replace other

GPU data, not CPU data. We also notice that for the GPU

benchmark pathfinder, which already has very low

locality and high miss rate in the LLC (see in Table 1),

the probability-based method has very a limited impact

on changing its miss rate.

However, different from CPU applications that are

more sensitive to the LLC miss rates, GPU performance,

shown in Fig. 10, does not degrade abundantly with an

increase in the GPU LLC miss rate. Again, this is because

GPU applications can more effectively tolerate the cache

miss latency, which is consistent with the finding of

previous studies [6, 7]. With the probability 0.001, the

GPU application lud has the highest performance overhead

(6.3%) when it runs with the CPU application fmm. On

average, the GPU performance is degraded by about 3.8%.

B. Virtual Channel Partitioning

We evaluate the CPU and GPU performance by parti-

tioning virtual channels in the interconnection network.

Figs. 11 and 12 represent the CPU and GPU performance

results, respectively, by using different partitioning confi-

gurations. These results are obtained with virtual channel

partitioning alone, without using the probability-based

method for the LLC. As shown in Fig. 11, the CPU

performance benefits from separated virtual channels

(18% improvement on average), because the partitioned

virtual channels prevent GPU packets from blocking

CPU packets in the network. Our results reveal that

reserving one channel is sufficient for CPU applications

to receive most benefits, and allocating more channels for

CPU does not result in significant improvement. In contrast,

GPU applications provide the best performance when

Fig. 10. GPU performance with different probabilities.

Fig. 9. GPU LLC miss rate with different probabilities.

Fig. 11. CPU performance with different partitioning configurations
(with the default LLC).

Fig. 12. GPU performance with different partitioning configurations
(with the default LLC).
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virtual channels are shared. Because GPU applications have

much more memory requests than CPU applications, they

are more bandwidth sensitive. When the number of GPU

virtual channels is reduced to 2 or 1, we observe significant

performance reduction in most of the GPU benchmarks.

However, for VCP 3:1 (GPU:CPU), the GPU performance

is very close to that of the shared channels. This means

that reserving one channel for CPU can improve CPU

performance significantly with a negligible impact on the

GPU performance for the benchmarks we have studied.

C. Statically Combining the Probability and
VCP

Since contention exists in both LLC and interconnection

networks, focusing on the LLC or network alone may be

suboptimal for the improvement of the CPU performance.

Combining LLC and network management effectively

can further improve the CPU performance. Figs. 13 and

14 show the CPU and GPU performance results by

statically combining VCP with probability-based control

(with probability 0.001), which is also compared to the

performance of VCP alone and the probability of 0.001

alone, respectively. As we can see, statically combining

VCP with the probability-based LLC control provides

better CPU performance than either VCP alone or the

probability-based LLC control alone.

As can be seen in Fig. 14, although the GPU performance

becomes worse, it is not as sensitive as the CPU applica-

tions. Combining probability 0.001 and VCP is the closest

one to the CPU baseline performance (i.e., when the CPU

applications run alone). On average, it is observed that

the CPU performance can be improved by 26% and the

GPU performance overheads are about 5% by combining

with probability 0.001 and VCP.

D. Dynamically Combining the Probability
and VCP

Fig. 15 shows the normalized CPU performance results

of dynamically combining the probability-based LLC

control and VCP, which are normalized to the total

number of CPU execution cycles in the default integrated

CPU-GPU with a shared LLC and NoC. For CPU bench-

marks, the dynamic strategy significantly improves the

performance over the baseline for all benchmarks, which

is only slightly less than the static strategy with the

probability of 0.001.

Fig. 16 represents the normalized GPU performance

results of dynamically combining the probability-based

LLC control and VCP, which are normalized to the total

number of GPU execution cycles in the default integrated

CPU-GPU with a shared LLC and NoC. We observe that

Fig. 13. CPU performance by statically combining the probability
based LLC control and VCP.

Fig. 14. GPU performance by statically combining the probability
based LLC control and VCP.

Fig. 15. Normalized CPU performance by dynamically combining
the probability based LLC control and VCP.

Fig. 16. Normalized GPU performance by dynamically combining
the probability based LLC control and VCP.
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the dynamic strategy has less GPU performance overhead

than the static strategy. For some application pairs such

as water-nsquared:pathfinder, bzip2:lud, fmm:pathfinder,

and perlbench:gaussian, the GPU performance is not

very network-sensitive. For example, the miss rate of

pathfinder is already very high even after running alone

(refer to Table 1) and remains stable regardless of the

probability change. The gaussian has very good locality

and high hit rate, thus its performance is only improved

slightly with the dynamic strategy. Although the miss rate

of lud increases dramatically, the total number of network

packets is relatively small, resulting in limited performance

improvement. For these benchmarks, the dynamic strategy

can effectively choose the probability of 0.001 to maximize

CPU performance with reduced GPU performance

overheads. For other benchmarks, the dynamic strategy

chooses to sacrifice some CPU performance to improve

GPU performance with a larger probability of 0.01. On

average, the GPU performance overhead is reduced to

2% with 24% CPU performance improvement. Thus, if

GPU performance degradation has tight constraints, the

dynamic approach is more desirable than the static strategy.

E. More Discussion about Interrelation between
Network and LLC

In our implementation, the initial probability is set to

0.001. It is assumed is that GPU applications are generally

cache insensitive. We use small probability to provide

more LLC space to CPU applications. There are two

cases for the cache insensitive GPU applications when a

small probability is applied. The first case is that the GPU

LLC miss rate does not change much (i.e., streaming

applications). A small probability will reduce the CPU

conflict misses in the LLC without increasing the

network traffic. In the second case, the GPU LLC miss

rate increases significantly and the network has higher

pressure. GPU performance degradation mainly comes

from the higher network congestion. In this case, the

network feedback will suggest using a higher probability

to yield more space to the GPU application to reduce the

network traffic. The more memory-intensive GPU appli-

cations are, the more important the network feedback is.

In Fig. 16, the b+tree suffers an 8% performance loss

without the network feedback when it runs with bzip2.

This overhead is reduced to 3.6% by applying the dynamic

approach that considers the network feedback. We would

expect more performance overhead on the more memory

intensive, but cache insensitive GPU applications if we

blindly use a small probability without considering the

network traffic.

For the cache sensitive GPU applications, a small

probability also increases the GPU LLC miss rate, which

is similar to the second case that we have just discussed.

The network feedback prevents the GPU performance

from significant degradation.

The network virtual channel partition is also important.

Without the VCP, the possible increase in network

congestion will have more interferences to the CPU

requests and limit the benefits of reduced conflict CPU

misses in the LLC. However, the VCP alone is not

enough to achieve superior CPU performance. Fig. 13

shows that on average, combining the VCP and our LLC

replacement policy can lead to extra 8% improvement

compared to the VCP alone.

F. CPU DRAM Requests Prioritization

We also evaluate whether prioritizing CPU requests in

the DRAM controller will have large performance impact

on both CPU and GPU applications. Figs. 17 and 18

demonstrate the normalized CPU and GPU performance

with and without the CPU DRAM request prioritization,

both of which combine the VCP and probability 0.001

together and are normalized to the CPU and GPU

execution cycles, respectively, without the DRAM request

prioritization. As we can see, the CPU performance is

enhanced but the improvement is rather limited (on

average, it is only about 1%). The GPU performance

degradation is still negligible. These results are consistent

with the previous results shown in Fig. 2, i.e., the DRAM

latency only counts for a limited portion of the overall

performance, and the interconnection network is the main

performance bottleneck.

Fig. 18. GPU performance degradation with CPU DRAM requests
prioritization.

Fig. 17. CPU performance improvement with CPU DRAM requests
prioritization.



Journal of Computing Science and Engineering, Vol. 14, No. 4, December 2020, pp. 131-145

http://dx.doi.org/10.5626/JCSE.2020.14.4.131 142 Hao Wen and Wei Zhang

G. Comparing TAP-UCP with Probability
Based LLC Replacement

TAP-UCP is proposed in [7], which is a TLP-Aware

cache management policy for a CPU-GPU heterogeneous

architecture. This method is based on UCP [10], a

dynamic cache partitioning mechanism for only CPU

workloads. The UCP tries to find optimal last level cache

partitioning between different CPU applications. However,

UCP tends to favor GPU applications in heterogeneous

workloads since GPU applications have much more

memory requests than CPU applications. Therefore, in

the TAP-UCP, the GPU accesses are reduced by a

normalization factor that is determined by the access ratio

between CPU and GPU periodically.

We implemented the TAP-UCP and compared the

performance results with our probability-based LLC

replacement policy. Figs. 19 and 20 represent the CPU

and GPU performance comparison between TAP-UCP

and our LLC replacement policy with probability 0.001,

respectively. Both TAP-UCP and our method are working

on a shared network. So, the performance difference

comes from LLC management only. The performance is

normalized to the results when the LLC is shared (without

any management).

The TAP-UCP dynamically partitions the LLC between

CPU and GPU. We also statically partition the cache ways

between CPU and GPU for comparison. Considering that

CPU applications are more cache sensitive, 75% of the

cache ways of each set are allocated to CPU, and the rest

is allocated to GPU. Both TAP-UCP and static LLC

partition are not optimal for CPU performance.

The TAP-UCP tends to provide more LLC space to

GPU applications compared to our method with probability

0.001. On average, the TAP-UCP has a slightly better

GPU performance (about 1.8%) than our method. But our

method performs 2% better than TAP-UCP on average

for the CPU applications. For some CPU benchmark like

milc, the probability method is 8% better than TAP-UCP

in terms of CPU performance.

Overall, the TAP-UCP and the probability-based method

are comparable for the performance. But our method has

much less complexity. Both methods need modification

to the original cache line replacement control logic. Other

than that, we only need one random number generator.

But for the TAP-UCP, an LRU stack is required for each

sampled set (UCP collects the information only from

sampled sets to reduce the overhead of maintaining an

LRU stack for each set [7]) and a hit counter for each way

in all the sampled sets. It also needs to keep track of the

access ratio of CPU and GPU.

H. Sensitivity Study

We reduce the cache size by half (reducing the number

of sets with the same associativity) to do the sensitivity

study. The CPU and GPU performance results of different

methods are shown in Figs. 21 and 22, which are

normalized to the CPU and GPU execution cycles,

respectively, of the integrated CPU-GPU with the shared

LLC and NoC. With a smaller LLC, the interconnection

network has more traffic due to the increased miss rates

Fig. 19. CPU performance comparison between TAP-UCP and
probability based LLC replacement.

Fig. 20. GPU performance comparison between TAP-UCP and
probability based LLC replacement. Fig. 22. Normalized GPU performance with a smaller cache.

Fig. 21. Normalized CPU performance with a smaller cache.
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of the LLC. Some of the CPU benchmarks like bzip2 and

water-nsquared have even worse performance with the

probability 0.001 alone since the network contention

becomes a dominant factor. On average, CPU performance

can be improved by 7% with probability 0.001 alone, and

by 22% improvement by combining the probability 0.001

and VCP. On average, the dynamic approach increases

the CPU performance by 21% with 3% GPU performance

overhead.

IX. RELATED WORK

Techniques that control interferences among different

applications can be generally classified into two categories.

The first one is core management or throttling schemes.

The key idea is to reduce the number of threads such that

the congestion in on-chip network and memory is reduced.

Some core throttling techniques are proposed in [16-18]

for CPUs. Kayiran et al. [19] studied a dynamic CTA

scheduling algorithm to allocate an optimal number of

CTAs per core to reduce contention in the memory for

GPGPU architecture. The objective of GPU thread throttling

is to keep the GPU cores busy, but not with too much

work. Based on the same idea, Kayiran et al. [3] proposed to

manage GPU concurrency in the CPU-GPU heterogeneous

architecture.

Alternatively, the inter-application interference problem

can be solved by managing shared resources at inter-

connection network, cache, and memory. Qureshi and

Patt [10] proposed Utility-Based Cache Partitioning in

the context of multi-core CPUs to dynamically allocate

more cache ways in the LLC to the applications that can

benefit greatly from larger caches. However, the Utility-

Based Cache Partitioning may allocate more cache ways

to GPU applications that are not sensitive to the cache size

for the integrated CPU-GPU heterogeneous architecture

[7]. Thus, Lee and Kim [7] designed a modified version

of it, TLP-aware cache management policy (TAP), to

work on the heterogeneous architecture. Mekkat et al. [6]

proposed heterogeneous LLC management (HeLM) to

take advantage of the GPU’s tolerance for memory access

latencies to throttle GPU LLC accesses and yield LLC

space to cache-sensitive CPU applications.

Subramanian et al. [20] studied the application slowdown

model to accurately estimate application slowdowns at

both the shared cache and main memory. For the

interconnection network management, Trivino et al. [21]

explored the benefits of virtualizing the NoC with a

partitioning mechanism for Chip Multiprocessor systems

(CMPs). Lee et al. [4, 8] proposed virtual channel partitioning

to reduce interferences between CPU and GPU packets in

heterogeneous architectures. Jang et al. [22] designed

virtual channel monopolizing and asymmetric virtual

channel partitioning for GPGPUs. For memory scheduling

management between CPU and PU applications, Jeong et

al. [23] and Ausavarungnirun et al. [5] dynamically adapted

the priority of CPU and GPU memory requests based on

tracking information of GPU workloads. However, none

of the shared resources management techniques considers

both the LLC and interconnection network in an integrated

manner to boost CPU performance without any significant

impact on GPU performance for the integrated CPU-

GPU architecture, which is done in the present work.

X. CONCLUSION

Shared resources contention can have a significant impact

on the performance of applications running concurrently

on the integrated CPU-GPU architecture. It is important

to reduce the inter-application interferences in such

systems to achieve balanced performance improvement.

This problem can be solved from two different angles.

One is the throttling scheme that reduces the memory

subsystem traffic mentioned in the related work. The

other is to manage shared resources more effectively. In

this paper, we focus on the management of the shared

resources in an integrated manner to substantially reduce

the GPU’s negative impact on CPU performance.

For the integrated CPU-GPU heterogeneous architecture

shown in Fig. 3, contentions in the shared LLC and

virtual channels of the interconnection network are the

major factors that can disparately slow down the CPU

applications. To solve these problems, we propose a new

probability based method to effectively control the GPU’s

evicting power on CPU cache lines in the LLC without

any significant impact on GPU performance. Moreover,

to further improve the CPU performance, we propose to

combine the VCP and the probability based method

either statically or dynamically to reduce the contentions

in both the LLC and NoC. The static integration of VCP

with a fixed probability of 0.001 can lead to the best CPU

performance but it has relatively large performance

overhead for GPU applications. Dynamically combining

VCP and the probability-based LLC control method can

improve CPU performance by 21% with only 3% GPU

performance degradation on average. We also find that

the DRAM latency alone contributes to only a small

portion to the overall performance, and prioritizing the

CPU requests to the DRAM has a very limited impact to

further boost the CPU performance.

Currently, the probability values are based on experi-

mental results. These values may not be the best across

different architectures. Our future work is directed towards

the design of a model considering some major architectural

features.
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