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Abstract
Age-related macular degeneration (AMD) is an eye disorder that can have harmful effects on older people. AMD affects

the macula, which is the core portion of the retina. Hence, early diagnosis is necessary to prevent vision loss in the

elderly. To this end, this paper proposes a novel multipath convolutional neural network (CNN) architecture for the accu-

rate diagnosis of AMD. The architecture proposed is a multipath CNN with five convolutional layers used to classify

AMD or normal images. The multipath convolution layer enables many global structures to be generated with a large fil-

ter kernel. In this proposed network, the sigmoid function is used as the classifier. The proposed CNN network is trained

on the Mendeley dataset and evaluated on four datasets—the Mendeley, OCTID, Duke, and SD-OCT Noor datasets—

and it achieved accuracies of 99.60%, 99.61%, 96.67%, and 93.87%, respectively. Although the proposed model is only

trained on the Mendeley dataset, it achieves good detection accuracy when evaluated with other datasets. This indicates

that the proposed model has the capacity to detect AMD. These results demonstrate the efficiency of the proposed algo-

rithm in detecting AMD compared to other approaches. The proposed CNN can be applied in real-time due to its reduced

complexity and learnable parameters.
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I. INTRODUCTION

The retina in the human eye contains a photo sensitive

layer of optic nerve tissue that protects the eyeball’s inner

surface. This layer receives the centered light through the

focal point and moves into neural signs over it. The

macula is the main area that lies in the central part of the

retina, and is used for sensing. It includes unique photo-

receptor nerve cell layers that are responsible for detecting

color, light intensity, and subtle visual information [1].

The main eye diseases that occur in the retina are drusen,

choroidal neovascularization (CNV), age-related macular

degeneration (AMD), and diabetic macular edema (DME).

These eye conditions are among the most prevalent

causes of vision loss in Western nations, and cases are

estimated to number 300 million worldwide within the

next few years [2]. Such diseases can cause blindness and

affect patients’ lives. In response to this, scientists have

been compelled to build a modern and efficient tool for

diagnosing certain diseases in these circumstances. One
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of the imaging techniques called OCT, which is based on

weak coherence light interference, detects the back

reflection at various biological tissue levels of incoming

weak coherent light or several scattered signals. Therefore,

the cellular tissues with two or three-dimensional structural

representation can be obtained by scanning, which is

similar to ultrasonography displaying cross-sectional

images. Medical image analysis was developed from

the1970s to the 1990s with the sequential application of

low-level pixel processing and mathematical modeling to

create systems that could solve specific tasks. Next, the

pattern recognition or machine learning process has

gained popularity and has come to form the basis of many

commercially available successful medical image analysis

systems. As more learning algorithms continue to emerge,

computers can now learn to interpret medical images.

This idea has caused many deep learning algorithmic

models (networks) to be created, and they consist of

many layers that turn input images into classified outputs

while learning increasingly deeper characteristics [3].

The convolutional neural network (CNN) technique is a

state-of-the-art deep learning technique for medical disease

diagnosis, particularly for databased on X-ray images and

OCT images. To a limited extent, CNN has several layers

that transform their input with the convolutional layer.

While computer vision has been revolutionized by deep

learning, its implementation remains limited because of

the lack of broad training sets. It is always essential to

provide a large training set before deep learning can be

effectively used [4]. The macular region is a vital area of

the retina characterized by fine vision, color identification,

and other visual capabilities. When a lesion occurs in the

macular region, the vision will be adversely affected.

AMD is the progression of the macular region’s aging,

which occurs for most people over 45 years old, and

AMD incidence rate increases with age, making it one of

the oldest significant causes of visual impairment. The

prevalence of AMD in 2016 was 170 million people, and

it is projected to have reached 196 million in 2020 and

288 million by 2040 [5]. The disorder evolves into one of

two states: neovascular (“wet”) AMD and regional atrophy

(“late dry”) AMD. CNV splits through the neovascular

AMD via the neural retina, thereby releasing liquids,

lipids, and blood, resulting in fibrous scarring. These

advanced forms of illness cause the most serious vision

loss from AMD. Thus, early detection is a critical aspect

of the treatment of AMD. OCT provides us with a clear

view of the nine retinal layers, as shown in Fig. 1 [6],

whose varying thickness and irregularities encode a lot of

information that can help diagnose diseases, such as

CNV, DME, and drusen [7-11]. AMD can be in one of

two forms, namely, dry AMD (drusen) and wet AMD

(choroidal neo vascularization).

A. Drusen

Drusen, also called dry AMD, which is histologically

classified as hard formations, consists of small hyaline

deposits with delimited margins which are considered

age-related low-risk changes. Soft drusen, which are

deposits of granular or amorphous material, are considered

precursors to AMD. Drusen can progress to an atrophic

form (dry) or an exudative form (wet) of AMD. The risk

is based on the lesion number, size, and confluence of

drusen. A color SD-OCT image of drusen is shown in

Fig. 2 [12]. In the case of drusen, there are corrugations

present in the RPE+Bruch’s membrane layer.

B. Choroidal Neovascularization 

CNV is also called wet AMD, which involves the

growth of new blood vessels. The vessels originate from

the choroid through a break in Bruch’s membrane into the

sub-retinal pigment epithelium or subretinal space. CNV

is a major cause of vision loss; statistics show that 10%

of AMD patients are affected by the wet form [13]. A

color SD-OCT image of CNV is shown in Fig. 3 [14].

Fig. 1. A healthy OCT B scan of retina with all the layers marked
[11].

Fig. 2. Drusen is characterized by the corrugations observed in
the RPE+Bruch's membrane layers,which has very high reectance,
shown as reddish pixels [12].
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C. Normal or Healthy

Fig. 4 shows the color SD-OCT of a normal eye. This

paper proposes novel deep CNN architecture that can be

used to automate the accurate diagnose of AMD in the

early stage. The main features of this work are:

1. The multipath feature extraction permits the CNN to

merge more features regarding the sparse local and

fine global structures.

2. The 128 relevant features from the second fully

connected layer of the CNN are followed by the

sigmoid activation function for the binary classifi-

cation.

3. The proposed network is trained using the Mendeley

dataset and tested with the Mendeley dataset as well

as the other three datasets, which provide notable

results.

4. Suitable for real-time implementation due to the

reduced number of learnable parameters, which

reduces the complexity of the system.

II. RELATED WORK

Srinivasan et al. [15] worked on the Duke SD-OCT

dataset, which consists of 15 AMD and 15 healthy OCT

image. The feature extraction was performed using a

multiscale histogram of oriented gradient (HOG)

descriptor. Then, the features were classified using a

support vector machine (SVM) classifier with leave-3-

out cross-validation. They used a threshold value of 33%,

where if 33% or more images in the volume show

abnormality, then only that volume was classified as

diseased; ultimately, they achieved an overall accuracy of

93.3%. In [16], the Gaussian filter was used for noise

removal. The retinal pigment epithelium (RPE) layer was

segmented using the estimated line value of RPE

(ELRPE) from the denoised images. A combination of

ELRPE and new estimated line of RPE (NERPE) was

used to remove the retinal nerve fiber layer (RNFL).

They used the Duke SD-OCT dataset [15]. The main

limitation of this method is that it cannot work on images

with a significant amount of noise. Farsiu et al. [1]

introduced a semi-automatic segmentation of Bruch’s

membrane (BM), inner limiting membrane (ILM), and

RPE layers. The features were extracted manually. Linear

regression was used to separate AMD and healthy images

with leave-1-out cross-validation. The area under curve

(AUC) was used to measure the system’s performance,

and they obtained a value of 0.99. The Bioptigen SD-

OCT images were used in the experiment (Bioptigen,

Morrisville, NC, USA). Precise retinal layer segmentation

and manual corrections were required to avoid misleading

outcomes. Naz et al. [17] worked on the Duke dataset to

classify AMD and normal images. RPE layer extraction

was performed using intensity-based thresholding. The

layer was smoothed by a curve fitting method. An SVM

classifier with 10-fold cross-validation was adopted for

the classification, and it obtained an overall accuracy of

96%. In that study, they remarked that the eye curvature

estimation using 2nd-degree polynomial affects detection

in images with many drusen. The work used only a tiny

portion of the original dataset. One study recommended

the use of local configurable patterns (LCP) using a

correlation-based feature subset selection algorithm to

extract features from the OCT images [18]. The sequential

minimal optimization (SMO) method was used to classify

the images. The work was done using the Duke dataset

and it achieved 96.6% accuracy. The OCT image was

first scaled, then divided into a spatial pyramid by using

the multiscale spatial pyramid (MSSP). In [19], the

authors used the Duke dataset. They selected the region

of interest (ROI) from those images with a size of

512×256. Then, the speckle noise in the images was

eliminated using kernel regression. In the denoised

image, intensity-based thresholding was used to extract

the RPE layer by removing the RNFL layers. Polynomial

fitting was used to obtain the best fit line for the data. The

overall accuracy was 92%, but the sensitivity was 0.56.

Karri et al. [20] used the CNN model to classify images

into AMD and normal images.Transfer learning using

GoogLeNet was proposed, and it achieved an overall

accuracy of 94% on the Duke dataset. For the Heidelberg

Spectralis dataset classification, a modified version of the

VGG-16 CNN model was used in [21]. That network had

21 layers and obtained an accuracy of 93.4%. Sun et al.

[22] suggested a dictionary learning method in which the

Fig. 4. Color SD-OCT image of Normal [12].

Fig. 3. Color SD-OCT image of CNV [14].
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images were divided into three different scales. In each

patch, the local features were measured, such as scale-

invariant feature transform (SIFT), and the features’

sparse representation was concatenated into vectors to

create a global representation. The linear SVM was used

as the classifier to classify the input images, and it

acquired an overall accuracy of 96.6% on the Duke

dataset. Kaymak and Serener [23] used the Mendeley

dataset, which consisted of 37,206 CNV, 8,616 drusen,

and 51,140 normal images for training and 750 images

for testing. The transfer learning model was then trained

and tested on the OCT images, and it obtained an overall

accuracy of 96.53%. In [23], the original AlexNet was

trained, and a deep network was generated based on the

trained AlexNet. The Mendeley dataset [24] was used to

evaluate the network’s performance, and it showed an

accuracy of 98.26%. A three-dimensional segmentation

methodology was adopted to segment the SD-OCT in

[25]. Three features were extracted, such as the volume

of hyper-reflective intra-retinal spots (HIS), drusen, and

the myoid zone-ellipsoid zone (MZ-EZ) boundary

curvature. A random forest classifier was employed, and

97.7% accuracy was attained on the Duke dataset. The

main limitation of this Work was that the retinal layer

segmentation failed to detect in cases of extreme

pathologies. Rasti et al. [26] proposed a classification

network that worked on the Noor SD-OCT dataset and

the Duke dataset. All images were resized to 496×512,

and the image intensity values were normalized to 0

mean and one standard deviation. Then, the eye was

flattened and the background was cropped. Different

CNN classifiers were used, and the results of each were

combined using a Gaussian mixture model (GMM). The

network achieved AUC values of 0.999 for the Duke

dataset and 0.998 for the SD-OCT Noor dataset. The

main highlights were that a GMM model was used to find

the optimal classifier. The spatial pyramid helped reduce

the time and prevent overfitting. An eighteen-layer

recombined residual CNN was proposed in [27]; the main

advantage of this was that there combined residual CNN

showed better results than the original residual network.

A CNN-based classification model was suggested in

[28]. Before classification, sparse representation-based

image denoising, accompanied by thresholding and

morphological operation, was used. The network was

trained and tested on the Duke and private datasets, and it

respectively obtained AUC values of 0.9856 and 0.9783.

Kuwayama et al. [29] tested the network on a dataset

obtained from Nagoya City University Graduate School

of Medical Sciences (consisting of 570 normal images

and 136 wet AMD images). Due to a lack of data,

augmentation was performed. A CNN model was used

for classification; after parameter tuning, the network

obtained 85% accuracy, which was a lower value. In [30],

the work was done on the publicly available dataset,

namely the Project macula dataset, which consists of the

OCT and fundus images. The input images were

manually cropped to select the desired area in the image.

The data augmentation was performed to increase the

dataset. Transfer learning with VGG-19 was adopted in

this work. The VGG- 19 network has 16 convolutional

layers and three fully connected layers, and it was pre-

trained on the ImageNet dataset. Here, transfer learning

was used to extract relevant features from the input

images, and finally, these features were fed into a random

forest classifier. This method achieved an overall accuracy

in OCT classification of 82.6% and an AUC value of

0.906. Fang et al. [4] introduced an iterative fusion CNN

network; the network consisted of two sections: a basic

CNN section and a network fusion section. Here, VGG -

16 is used as the basic CNN network. In the fusion

section, multiple layers of information are iteratively

incorporated. Hwang et al. [31] was scheduled to work on

private and Mendeley datasets. The private dataset

consisted of OCT images of 174 healthy and 583 AMD

patients. The private dataset was augmented to obtain a

large dataset and ensure that the resolution and image

sizes were similar to the original data. The author tried

three different CNN networks for the classification

ResNet-50, Inception-v3, and VGG-16; 80% of the data

were applied for training while the remaining 20% were

used to validate the networks. The models were verified

using another independent dataset and the Mendeley

dataset. The Inception-v3 model shows the best perfor-

mance over the Mendeley dataset, with 96.93% accuracy.

The ResNet-50 and VGG-16 attained accuracies of

95.87% and 91.20%, respectively, on the Mendeley

dataset. Serener and Serte [32] used pre-trained AlexNet

and ResNet for the classification of dry and wet AMD.

The AUC value in AlexNet was 0.81, and that for the 18-

layer ResNet was 0.94 for dry AMD classification. For

wet AMD classification, AlexNet and ResNet had

respective AUC values of 0.61 and 0.63, respectively. In

[33], a guided convolutional neural network (LGCNN)

was introduced for the classification of retinal OCT

images. To produce the retinal layer segmentation maps,

ReLayNet wasused, and two lesion-related retinal layers

were extracted. The two sub-networks were used to

extract the information present in the layers. The outputs

of two sub-networks were combined using a fully

connected layer, then produced the final output prediction.

The authors utilized a private dataset and the Mendeley

dataset. The overall accuracy achieved with the Mendeley

dataset was 93.96%. Das et al. [34] used a multiscale

deep feature fusion (MDFF) network for classification

[34]. The Mendeley dataset was used for training and

testing. The system had three main stages of operation,

namely preprocessing, multiscale feature extraction, and

classification. The preprocessing stage focused on

removing the retina’s curvature by using a graph-based

curvature method, then selecting the desired ROI for

further analysis. The multiscale CNN network was used
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to extract the coarse features from OCT images. Then,

finally, the different multiscale layers were fused to

classify the images. The whole system produced an

overall accuracy of 97.71%. The imbalance in the dataset

is controlled during classifier learning by implementing a

cost-sensitive loss function. This work represented one of

the best existing algorithms for OCT classification. Yim

et al. [35] worked on a real-time dataset, which contained

11 months of patient data, to create the prediction system

for finding wet AMD. Two deep learning networks were

used: segmentation and classification (ensemble deep

learning model).The specificity of the network was 0.90.

The author created a system that predicted wet AMD

conversion risk within 6 months. A 19-layer CNN network

was proposed in [36] for AMD classification. The network

was trained on the Mendeley, Duke, and private datasets,

and it achieved an accuracy of 95.3%. 

Bhatia et al. [37] developed Pegasus OCT software

based on theVGG-16 basic building blocks. The system

was trained and tested using three publicly available (the

Duke, Mendeley, and SD-OCT Noor datasets) and three

private datasets. The overall AUC value of AMD

classification was 0.99. AMD classification using fundus

and OCT images was proposed in [38]. Two transfer

learning networks using ResNet-50 were developed, one

for fundus and other for OCT images. Each network’s

last stage has 2048 features, and these features are

concatenated and ultimately given to a fully connected

stage before being classified. The network was tested

using 143 fundus and OCT image pairs. The main

limitation of this work was the limited dataset.

III. MODEL

A CNN contains several computational layers, such as

the convolutional layer (CL), pooling layer (PL), and

fully connected layer (FCL), to extract features from

input images and classify them into different classes.

Previous studies have demonstrated the use of a

conventional CNN in detecting AMD from OCT images

due to its effective high-level feature extraction [39]. This

paper brings forth a new CNN architecture for the

classification of AMD in OCT images. The proposed

CNN applies a multipath feature extraction method that

helps the network create global structures.

IV. IMPLEMENTATION

The proposed CNN architecture is shown in Fig. 5. In

the proposed CNN, the input size is 200×200; this is the

most reliable scale. As the input size reaches 200, the

precision does not improve significantly, and the compu-

tational time increases. In addition, the precision is

reduced when the input image size is less than 200. When

the input dimension is reduced in medical images, parti-

cularly in OCT and fundus images, significant information

is lost. As a result, the image input size was set to 200

times 200. The proposed CNN consists of five CL. The

extraction scheme for multipath features provides an

additional path to combine features created from early

layers and later layers to maintain losses in the later

layers of global structures (e.g., object or contour shape).

The proposed neural network contains four successive

single-scale convolutional layers (SSCL) with one

Fig. 5. Proposed CNN architecture.
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multipath convolutional layer (MPCL) and two FCLs.

The first SSCL uses a filter size of 3×3 and generates 16

feature maps that are given to the MPCL with the filter

size of 9×9 to extract global features from the OCT

images. The first SSCL is followed by a max-pool layer

of kernel size 2×2 with stride 2. The max-pool values are

given to another SSCL with the same filter size of 3×3

and generates 32 feature maps to the next max-pool layer.

Eventually, all paths from SSCL and MPCL are combined

using the concatenation layer, thus producing 96 feature

maps. The result is then given to two SSCL having a

filter size of 3×3 with 128 feature maps each. The max-

pooling layers are used to lower the spatial resolution of

the following layers of the network, so the max-pool layer

is used after all CL. The pooling method the network to

learn from inputs to more complex local structures. The

first fully connected layer with 128 neurons has activated

only 64 neurons to the next level. Because of the complete

connectivity structure, the denser fully connected layer

frequently leads to overfitting. Herein, a dropout scheme

[40] is applied to the proposed architecture to the first and

second fully connected layers with a dropout ratio of 0.5

to prevent overfitting. The predicted results are normalized

using the sigmoid function, which is good for binary

classification in the logistic regression model. The sigmoid

function maps every individual value between 0 and 1

[41]. Sigmoid is used to map predictions to probabilities

in machine learning, as given below,

(1)

where x is the input to the function. The rectified linear

unit (ReLU) is used to activate each CL. ReLU suppresses

all values less than zero to 0, there by retaining all values

greater than zero. Compared to the sigmoid and the tanh

activation function, the ReLU displays greater gradient

changes [42]. It is also simple to implement, and it can

help boost training speed efficiency and network inference.

A. Multipath Convolution Layer 

The extraction of multipath features enables more

robust features to be combined with sparse local features

and fine global structures. The fine global structures are

extracted using earlier CLs in the network. The derived

features become more sparse and localized after the

network propagates to the deeper layer in which the

global architectures are reduced. The suggested multipath

function avoids the global structure losses by taking the

shortcut. The network consists of one MPCL shortcut

path, in that one parallel CL with filter size 9×9 generates

64 feature maps. A max-pool layer with stride four is

introduced into the shortcut to combine the functionalities

of the two branches. Depth-wise concatenation is used to

merge feature maps generated from these two branches.

The network cannot describe the global structure through

an SSCL. The application of large filter sizes can cover

the global structures due to the improved coverage area.

The proposed CNN extends an SSCL to an MPCL,

thereby enabling the network to produce more global

structures with large filter dimensions

B. Model Training Parameters

The proposed CNN architecture is trained using

backpropagation [43] with a batch size of 32. Stochastic

gradient descent (SGD) [44], is used to train the CNN.

The default settings for the CNN model are as follows:

learning rate α = 0.001, exponential decay rates β1 = 0.9,

β2 = 0.999, and numerical value ϵ = 10−8, epochs = 50.

SGD with momentum is used very frequently due to its

stability and good convergence, although it converges

slower than the other optimization algorithms. The total

number of learn able parameters in the proposed CNN is

1,993,249.

C. Evaluation

The results of the proposed work are evaluated based

on the confusion matrix [45-48]. Table 1 presents the

structure of the confusion matrix that depicts a binary

classifier’s characteristics. In that matrix, the numbers of

true positives (TP), false negatives (FN), false positives

(FP), and true negatives (TN) are M, N, O, and P,

respectively. TP and TN give properly classified data

results while FP and FN give the wrongly classified

information. We can measure the precision, F1-score,

recall, and accuracy using these values to analyze machine

performance.

(2)

The false positive rate (FPR) refers to the number of

false positive outcomes. For a good classifier, the best

FPR rate is 0.

(3)

The positive value of prediction is given by precision.

This value provides details about how effectively our

system is avoiding FPs. It can be measured as follows:

Sigmoid x( )
1

1 e
x–

+
-------------=

Accuracy
P M+

O P N M+ + +
-------------------------------=

FPR
P

O P+
------------=

Table 1. Binary-classification confusion matrix

Predicted class

Normal AMD

Targeted class Normal M N

AMD O P
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(4)

Recall, also referred to as sensitivity, provides

information about how effectively the model decreases

FN. That can be measured as

(5)

The F1-score specifies the harmonic mean of precision

and recall

(6)

The proposed method is implemented in the Keras

framework in Python using TensorFlow. The experiment

is conducted using a PC with a Nvidia GeForce, RTX

2080 11GB GPU.

D. Dataset

The proposed network is trained and validated using

the Mendeley dataset [24], given in Table 2. The Mendeley

dataset contains 500 AMD images (250 dry AMD and

250 wet AMD) and 250 normal images for testing. We

have also tested the same model with the other three

datasets, namely the OCTID [49], Duke dataset [15], and

SD-OCT Noor dataset [26]. The details of the data

distribution are provided in Table 3.

E. Performance Analysis

1) Mendeley Dataset

The confusion matrix of the Mendeley dataset [24] is

presented in Table 4. The testing dataset consists of 250

dry AMD, 250 wet AMD, and 250 normal images, so

here we took a total of 500 AMD images and 250 normal

images for testing. Out of 500 AMD images, only two

images are misclassified as normal. In normal images,

only one image out of 250 is misclassified as AMD.

The classwise and weighted average (WA) performance

of the network on the Mendeley dataset are listed in

Table 5. The WA evaluation parameters such as F1-score,

recall, and precision are greater than 0.99. For a good

network, the AUC is nearer to 1. The proposed network

attained an AUC value of 0.9998 in the Mendeley dataset

[24]. Hence, this indicates that the proposed network

performs well in AMD/normal classification.

A comparison of the proposed method with existing

methods is provided in Table 6. In the case of the

Mendeley dataset, it achieved an accuracy of 99.6%,

which is the one of the highest accuracies among the

compared works. Kaymak and Serener [23] proposed

AlexNet, which is highly sensitive to the training dataset.

The AlexNet obtained 98.26% accuracy and an AUC of

0.9917 with 800 epochs. The other previous works

achieved less than 98% accuracy and an AUC value

under 0.992. The ROC curves of all the previous results

and the proposed work are plotted in Fig. 6. Based on the

ROC curve, it is clear that the proposed work has the best

performance of all compared works. The proposed

network is trained only on the Mendeley dataset, but it is

Precision
M

M N+
-------------=

Recall
M

M O+
--------------=

F1 score–
2M

2M O N+ +
--------------------------=

Table 3. Data distribution for testing

Testing

AMD Normal

Mendeley dataset [24] 500 250

OCTID [49] 55 206

Duke dataset [15] 15 15

SD-OCT Noor dataset [26] 48 50

Table 2. Data distribution for training and validation

Training (90%) Validation (10%)

AMD Normal AMD Normal

Mendeley dataset 41,238 46,026 4,583 5,114

Table 6. Comparison of proposed work with existing works
conducted on Mendeley dataset [24]

WA accuracy AUC

Kermany et al. [24] 0.9653 0.9762

Das et al. [34] 0.9771 0.9900

Kaymak & Serener [23] 0.9826 0.9917

Feng et al. [4] 0.9340 0.9798

Huang et al. [31] 0.9690 0.9835

Proposed method 0.9960 0.9980

Table 5. Confusion matrix of Mendeley dataset

Predicted class

Normal AMD

Targeted class Normal 498 2

AMD 1 249

Table 5. Classwise values of evaluation parameter of network on
Mendeley dataset [24]

Precision Recall F1-score
Accuracy 

(%)
AUC

AMD 0.9980 0.9960 0.9947 99.6 -

Normal 0.9920 0.9960 0.9947 99.6 -

WA 0.9960 0.9960 0.9960 99.6 0.999
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tested on other publicly available OCT datasets such as

the Duke dataset [15], OCTID [49], and SD-OCTNoor

dataset [26], and their performance is provided below.

1) Duke Dataset

The Duke dataset [15] consists of 30 image volumes

where in 15 are AMD and the remaining 15 are normal.

The confusion matrix of the Duke dataset is listed in

Table 7. All AMD patients are classified correctly, and

only one healthy case is misclassified as AMD. The

performance evaluation of the Duke dataset is tabulated

in Table 8. All the AMD patients are classified properly,

and the model obtained 100% accuracy in AMD patient

detection. One misclassification in normal leads to an

accuracy value of 93.33%. The overall accuracy of the

Duke dataset is 96.66% while the AUC value is 1.

A comparison of the Duke dataset results with existing

methods is presented in Table 9. With the Duke dataset

[15], the proposed method achieved an accuracy of 0.96

using 5-CL with a sigmoid activation function. In [25],

the authors achieved an accuracy of 0.977 using 15-fold

cross-validation. This method failed to detect disease in

cases of extreme pathologies. The overall accuracy of

0.9666 has been claimed in [27], but they used 17-CL to

obtain that result. Sun et al. [22] obtained one of the best

accuracies of 96.6% by using the traditional hand crafted

feature extraction method. Wang et al. [18] used a

correlation-based feature subset selection algorithm and

achieved an AUC of 0.991.

3) SD-OCT Noor Dataset

The confusion matrix of the SD-OCT Noor dataset

[26] is provided in Table 10. The dataset consists of 48

AMD patients and 50 healthy participants. Of the 48

AMD patients, the proposed method correctly predicted

45 AMD patients, with three misclassifications. In the

case of normal, the real so three misclassifications, and

the remaining 47 normal images are classified correctly.

The network performance on the SD-OCT Noor dataset

is tabulated in Table 11. The AMD patient classification

accuracy is 0.9375 with three misclassifications while the

Fig. 6. ROC curves for the various architectures of deep
learning using Mendeley dataset [24].

Table 8. The evaluation parameter of network on Duke dataset
[15]

Precision Recall F1-score Accuracy AUC

AMD 0.9375 1.0000 0.9677 1.0000 -

Normal 1.0000 0.9333 0.9655 0.9333 -

WA 0.9687 0.9666 0.9666 0.9661 1.000

Table 7. Confusion matrix of Duke dataset [15]

Predicted class

Normal AMD

Targeted class Normal 15 0

AMD 1 14

Table 9. Comparison of proposed work with existing works
conducted on Duke dataset [24]

WA accuracy AUC

Srinivasan et al. [15] 0.933 -

Khalid et al. [19] 0.920 -

Hussain et al. [25] 0.977 0.9900

Wang et al. [18] 0.966 0.9910

Meng et al. [27] 0.9666 -

Sun et al. [22] 0.9666 -

Proposed method 0.9667 1.000

Table 11. The evaluation parameter of network on SD-OCT Noor
dataset [26]

Precision Recall F1-score Accuracy AUC

AMD 0.9375 0.9375 0.9375 0.9375 -

Normal 0.9400 0.9400 0.9400 0.9400 -

WA 0.9387 0.9387 0.9387 0.9387 0.9812

Table 10. Confusion matrix of SD-OCT Noor dataset [26]

Predicted class

Normal AMD

Targeted class Normal 45 3

AMD 3 47
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healthy detection accuracy is 0.94; the overall accuracy

of 93.87% is obtained. The comparison of the SD-OCT

Noor dataset results with existing methods is given in

Table 12. In [26], the authors resized all images into

496×512, then normalized the intensity values to zero

mean and one standard deviation. Then, they flattened the

eye and cropped the background. Different existing CNN

classifiers were used, and the results of each were

combined using a GMM model, and a precision rate of

0.9886 and an AUC of 0.998 were ultimately achieved.

4) OCTID

The confusion matrix is presented in Table 13. In

OCTID, only 1 out of 55 AMD images is misclassified as

normal, while all the normal images are classified

properly. The classwise and weighted average values of

the proposed method are listed in Table 14. With the

OCTID dataset, the proposed model achieved an accuracy

of 99.61%. It should be noted that the network produces

less misclassification for all the datasets. The system’s

accuracy shows the best performance on a different

dataset with the proposed CNN. Even if the proposed

model is trained only on the Mendeley dataset, it can still

achieve good detection accuracy when tested on other

datasets such as the Duke, OCTID, and SD-OCT Noor

datasets. This indicates that the proposed model has the

ability to classify AMD/Normal images.

F. Grad-Cam Images

Another satisfying observation is that the proposed

network’s activation is nearly the same as the color OCT

images. Most of the clinical diagnoses made by ophthal-

mologists are based on the color OCT image in the eye.

Table 12. Comparison of proposed work with base work of SD-
OCT Noor dataset [26]

Method Precision AUC

Rasti et al. [26] 0.9886 0.9980

Proposed method 0.9387 0.9387

Table 13. Confusion matrix of OCTID dataset [49]

Predicted class

Normal AMD

Targeted class Normal 54 1

AMD 0 206

Table 14. The evaluation parameter of network on OCTID
dataset [49]

Precision Recall F1-score Accuracy AUC

AMD 1.0000 0.9818 0.9908 0.9818 -

Normal 0.9951 1.0000 0.9975 1.0000 -

WA 0.9961 0.9961 0.9961 0.9961 0.9980

Fig. 7. Retinal images (a, b, c) and corresponding Grad-Cam images (d, e, f ).
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The proposed network generates a similar kind of

activation map using gradient-based class activation

mapping (Grad-CAM) [50, 51], from which doctors can

then directly validate and classify the result generated in

cases of misclassification. Grad-CAM finds the gradient

of the last CL and feature maps concerning the predicted

class, then backpropagates the gradient to produce eat-

map of the same size as the input, when superimposed on

the image, provides an idea of the discriminative regions

of an image. In color OCT, the RPE+Bruch’s membrane

layers have very high reflectance and appear as red

pixels. If one examines the activation for dry AMD in

Fig. 7(e) and compares it with the color OCT image in

Fig. 2, the similarity is evident. The corrugations highlighted

in the activation map conform with the corrugations

present later in the RPE+Bruch’s membrane layer, thus

justifying the decision-making process. After comparing

the activation map of wet AMD in Fig. 7(f) with its color

OCT in Fig. 3, it can be seen that the Bruch’s membrane

breaks into the subretinal pigment epithelium or subretinal

space. For a normal image, the RPE+Bruch’s membrane

layer is almost a line, without any corrugations.

V. CONCLUSION

A novel multipath CNN architecture is proposed to

automate the accurate diagnosis of AMD in the early

stage. The proposed CNN has five CLs for classifying

AMD or normal images. The multipath feature extraction

allows the CNN to merge more features regarding the

sparse local and fine global structures. In this proposed

network, the sigmoid function is used as the classifier.

The proposed CNN is trained on the Mendeley dataset

and tested on four datasets, namely the Mendeley, OCTID,

Duke, and SD-OCT Noor datasets, and it achieved

respective accuracies of 99.60%, 99.61%, 96.67%, and

93.87%. Even if the proposed model is trained only on

the Mendeley dataset, it still achieves good detection

accuracy when tested with other datasets. This indicates

the proposed model’s ability to classify AMD/normal

images from other datasets. A comparison with other

approaches shows the efficiency of the proposed algorithm

in detecting AMD. The proposed architecture can be

applied in rapid screening of the eye for the early

detection of AMD. Due to the reduced complexity and

fewer learnable parameters, the proposed CNN can be

implemented in real-time.
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