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Abstract
Deep learning has become one of the most powerful prediction approaches, and it can be used to solve classification and

regression problems. We present a novel deep learning-based indoor Wi-Fi path loss modeling approach. Specifically, we

propose a local area multi-line scanning algorithm that generates input images based on measurement locations and a

floor plan. As the input images contain information regarding the propagation environment between the fixed access

points (APs) and measurement locations, a convolutional neural network (CNN) model can be trained to learn the fea-

tures of the indoor environment and approximate the underlying functions of the Wi-Fi signal propagation. The proposed

deep learning-based indoor path loss model can achieve superior performance over 3D ray-tracing methods. The average

root mean square error (RMSE) between the predicted and measured received signal strength values in the two scenarios

is 4.63 dB.
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I. INTRODUCTION

As indoor wireless communication using Wi-Fi has

become a necessity in day-to-day life, the provision of

Wi-Fi access in public and private buildings is becoming

increasingly important. Access points (APs) must be

carefully positioned to provide reliable wireless connectivity

to users. Path loss prediction plays a crucial role in

determining the optimal placement of APs. While a

number of relevant studies have been conducted in this

area, the majority of the path loss prediction models have

failed to reach the accuracy level needed for practical use.

This is mainly due to the diversity of the usage scenarios

and environmental characteristics [1-3]. The complexity

and unpredictability of path loss prediction in indoor

environments are caused by various factors, including

line of sight (LoS) and non-LoS (NLoS) propagation,

human movement, furniture placement, and the construction

materials used. Consequently, the received signal strength

(RSS) of the AP varies with time and location.

Researchers have developed traditional indoor path loss

prediction models using deterministic and/or empirical

methods. Deterministic models such as ray-tracing methods

employ physical laws to estimate the power loss of radio

signals [1]. However, they require an excessive amount

of computational time, and detailed information regarding

the radio environment is typically unavailable. Empirical

models including the closed-in model and alpha-beta-

gamma model are based on regression with field measure-

ment data, in which the TR-separation (the distance
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between the transmitter and the receiver) and frequency

are generally considered [4]. Although empirical models

usually yield less accurate prediction results than the

deterministic models, the simplicity of the empirical

methods has made them popular, and they require fewer

computational resources.

Neural networks have demonstrated good performance

on path loss predictions in indoor environments [3]. Neural

network-based methods do not require the precise environ-

mental information required by deterministic methods,

such as the electromagnetic (EM) characteristics of the

building materials. However, there are some features that

should be provided for the path loss prediction, such as

information on the propagation environment, including

distance, the frequency of the carrier wave, and terrain

information [5]. Feature extraction algorithms, such as

that described by Yang and Lee [6], should be designed

carefully to obtain the appropriate features, which makes

it difficult to achieve highly accurate path loss modeling

based on neural networks.

Deep learning models such as convolutional neural

networks (CNNs) can easily employ enormous amounts

of available data and parallel computational power to

achieve significantly improved performance in natural

language processing, computer vision, and many other

application domains [7]. CNN models can be trained to

learn the features related to the propagation environment

from the input data and underlying representations of the

input data without the need for complex data pre-processing.

In this study, a deep learning-based path loss modeling

method for 5.8 GHz Wi-Fi is proposed. This proposed

system can predict the RSS more accurately than the 3D

ray-tracing method. Based on the floor plan of a building

where the field measurement data have been collected, a

new kind of CNN input image that can represent the

environment and radio propagation information is generated

by the proposed local area multiple-line scanning (LAMS)

algorithm. The LAMS algorithm can generate CNN input

images containing information on the local area of a

certain indoor environment in which the AP and the

measurement points are located.

The rest of this paper is organized as follows. Section

II presents a review of the related work on path loss

modeling. A general introduction of CNN is provided in

Section III-A. Next, the CNN-based path loss modeling

system is illustrated in Section III-B. The measurement

environment and data collection are then presented in

Section III-C. The LAMS input image generation algorithm

is proposed in Section III-D. The design of the proposed

CNN-based path loss model is illustrated in Section III-E.

In Section IV, the proposed deep learning-based path loss

model is evaluated in two experimental test scenarios,

where it is demonstrated to have high performance by

which it outperforms 3D ray-tracing methods. Finally,

Section V concludes this paper and presents future work.

II. RELATED WORK

A. Deterministic Models

The most common approach in deterministic indoor

path loss prediction is ray-tracing methods. Ray-tracing

is used to model the physical propagations of wireless

signals by simulating the geometrical optics, including

reflection, refraction, and others. There are two major

types of ray-tracing methods: the brute force ray launching

method and the image method [8]. The brute force

method relies on a ray shooting in all directions from the

transmitter, which requires numerous ray-object intersection

tests and extensive data storage. Meanwhile, the image

method associates virtual sources with every obstacle and

calculates their effect on transmission based on wave

propagation rules. Therefore, the image method is preferable

due to its practical appeal and reduced computational

complexity. One study used the image method to estimate

the path loss based on the basic two-ray model for the

indoor NLoS corridor scenario at 2.4 GHz frequency [8].

A generalized ray-tracing model that includes diffraction

loss using both knife-edge diffraction and scattering loss

has been proposed as an improvement over N rays [1]. 

However, due to the use of the knife-edge diffraction

model, diffraction and scattering losses calculated from

empirical models lead to bigger prediction deviations

after a certain distance. In [9], a 3D ray-tracing method

for path loss modeling at 15 GHz in indoor corridor

scenarios is proposed which takes into account a direct

path, specular reflection paths, and scattering paths. This

3D ray-tracing method also includes the antenna modeling

components (the gain and polarization of the antenna),

environment modeling components (the structure of the

propagation environment, the permittivity and conductivity

of all objects, and the location of Tx/Rx), and the 3D ray-

based channel model components (type of path, i.e.,

direct path, reflection path, or scattering path, as well as

path delay and 3D angular properties). In [10], a 3D ray-

tracing approach is used to generate propagation models

in the high-speed train tunnel and outdoor scenarios

which consider the influences of the antenna and the

other elements that affect the propagation including

scattering, reflection, and diffraction. Two studies [11,

12] have reported on the developed 3D ray-optical tool,

which can be used in the indoor scenario with modifications

to the environment and the propagation parameters for a

sub-6 GHz antenna.

For a given scenario, indoor deterministic path loss

models based on the ray-tracing method typically make

certain assumptions about the dominant elements affecting

the wireless signal propagation, such as the maximum

number of reflections of the transmission signal. To estimate

the RSS, the empirical equation for the calculation of

these factors may be used. The prediction accuracy of
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deterministic models depends on whether there are

enough site-specific parameters and whether the radio

propagation environment information is available. However,

such information is rarely available in practice, and the

only thing that we can do is to apply the deterministic path

loss model of a similar scenario. Another major drawback

of deterministic models is that they require a tremendous

amount of computational resources as well as time.

B. Empirical Models

Empirical models are constructed from the field measure-

ments taken in specific representative environments. In

[2], the authors propose an indoor path loss model called

the Tata Indoor Path Loss Model (T-IPLM) used for

regular Wi-Fi operations within the 2.4–2.5 GHz band in

India; this model considers the power loss coefficient due

to distance, the LoS loss factor of walls (glass or wooden

or temporary partitions) between the transmitter and the

receiver. The total loss due only to walls and the floor

attenuation factor are two parts in the T-IPLM. The floor

attenuation factor is considered as a separate consideration

in [2]. Although the simulation result shows that T-IPLM

performs better than the popular empirical path loss

models used in practice, such as ITU-R and the log-

distance model, it must be given the loss factor of the

building structure and the floor attenuation factor, which

are difficult to calculate and estimate. 

In [13], another indoor empirical path loss model is

presented for the scenarios of a closed corridor, an open

corridor, a classroom, and a computer lab. The log-distance

path loss model together with log-normal shadowing, and

the two-ray model are used to determine path loss equations

for different scenarios. In [14], a d1-and-d2 path loss

model is proposed where d1 and d2 are LoS and NLoS

distances, respectively. This model can predict path loss

when a mobile receiver is moving around the corners of a

building in an indoor scenario with a carrier frequency of

5.25 GHz. In [15], a path loss model for wireless indoor

office environments at the 5.8 GHz band is proposed. The

path loss is modelled by characterizing the distance with

a Gaussian random variable X due to the shadow fading

by linear regression in addition to the log-distance path

loss model. The path loss exponent n is fitted by the

frequency using the power function and modelled as a

frequency-dependent Gaussian variable as the standard

deviation σ of X. El-Keyi et al. [16] present an indoor

probabilistic path loss model for smart homes, which

takes into account excess path loss caused by indoor

propagation effects such as wall penetration, reflection,

scattering, and diffraction effects, and a loss component

is probabilistically added to the log-distance path loss

model. This model does not require building topology and

material knowledge, and the probability of the additional

loss component depends only on the TR-separations, which

is the distance between the transmitter and receivers.

Empirical models typically use the dominant factors

that can affect radio propagation as features to model the

path loss in a given scenario. To achieve higher accuracy,

more features can be considered, such as the antenna

height, the furniture distribution, and the building materials.

These factors can also be added in the format of probability.

The critical parameters, such as the path loss component

and the standard deviation of Gaussian shadow fading,

could be found by curve fitting with the measurement

data. Compared to the deterministic models, the empirical

models are derived from the RSS measurements, where

the grid measurement of RSS in the indoor scenario must

be performed. The empirical models have demonstrated

satisfactory computational efficiency, and they are easy

to apply to similar types of scenarios without complex

modifications. However, since they are not built to be

specific enough to each path loss modeling scenario, the

prediction performance of the empirical methods is

usually not better than that of the deterministic path loss

modeling methods.

C. ANN Models

Artificial neural networks, also known as ANNs or

NNs, are computational models inspired by the structures

and functions of biological neurons of intelligent organisms,

and they have the ability to acquire knowledge through

experience [6, 7, 17, 18]. Given inputs that contain enough

appropriate information about the radio propagation

environment, ANNs can learn the underlying function of

a path loss using the measurement data as the training

data set and then make predictions for arbitrary locations

due to their so-called generalization capabilities. 

In [19, 20], multilayer perceptron (MLP) networks and

radial basis functions (RBF) networks are used to make

predictions of RSSs in complex indoor environments.

RBF networks and MLP networks are both nonlinear

multilayer neural networks. An RBF network only has

one hidden layer, while an MLP network can have one or

several hidden layers. One of the most prominent

characteristics of RBF networks is that the distance (such

as the Euclidean distance) between the input pattern and

the central vector is used as the input of the activation

function, which is usually called the radial basis function.

The role of the activation function is to introduce non-

linearity into the network, which is the crucial aspect that

makes the ANNs more powerful. One example of the

radial basis function is the Gaussian function. Sigmoid

functions and softmax functions are typically used as the

nonlinear activation functions of the hidden nodes of an

MLP network whose inputs are the inner product of an

input pattern and a weight vector. 

The operation frequency of the study in [19] is 2.427

GHz; the input of their ANNs are the 3D coordinates of

the AP and receiving points, and the output is the predicted

RSS. More complicated inputs are used in [20], where the
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performances of RBF networks and MLP networks are

also compared. The results show that the RBF networks

obtain a slight improvement over the MLP networks of

about 0.15 dB in the RMSE sense. Milijic et al. [21]

present a hybrid-empirical neural (HEN) model for

indoor and outdoor path loss prediction. Two MLP

networks are used to estimate two important parameters

in a log-distance form empirical model—the power loss

coefficients and the floor penetration loss factor. In

addition to the carrier frequency and TR-separations, the

HEN model takes many other parameters affecting the EM

propagation as the inputs of ANN, like the percentage of

foliage areas in the propagation path, average height of

foliage areas objects, and average height of buildings in

the urban environment. In an attempt to prepare good

features that are easy to learn, Yang and Lee [6] presented

a neural network wave propagation loss model with the

feature extraction algorithms, which can pre-process

urban area digital elevation maps (DEM) to the inputs of

ANN. The inputs of ANN include terrain penetration

features, building penetration features, diffraction features,

and reflected distances, which are calculated based on

their algorithms. However, the input of their feature

extraction algorithm still includes a lot of influencing

factors of wave propagation, such as the antenna radiation

pattern and varying distance elements. For the feature

extraction, it is still difficult to acquire DEM data in a

new urban area, and extensive computations of the feature

extraction are likely inevitable. Moreover, although their

work may provide some hints for indoor path loss modeling,

their model is designed for outdoor urban areas.

In ANN-based path loss modeling, feature selection

and extraction are the most critical parts that determine

the accuracy in path loss prediction. The features used in

ANN models usually contain many propagation environ-

ment configuration parameters, such as distance, the

frequency of the carrier wave, terrain information, and so

on. However, these features may not be the only ones that

play important roles in obtaining an accurate model. They

may also be extremely complicated to compute, even in a

simple indoor scenario, thus leading to an intolerable

amount of data pre-processing and feature extractions.

This leads us to consider a deep learning model as an

alternative method because it can be trained to learn to

extract the features related to the propagation environment

and to estimate the latent probability distribution of the

measurement data. 

III. DEEP LEARNING-BASED PATH LOSS
MODELING SYSTEM

A. Convolutional Neural Networks

CNNs are one of the most popular and powerful deep

neural network variants, and they typically involve more

than two convolutional layers [22]. In CNNs, features are

extracted automatically by the filters (or kernels) of

convolutional layers, which can be used for classifications

or regressions [23]. The filters can be regarded as the

learnable weight matrix in convolutional layers. A CNN

usually involves two additional crucial parts: pooling

layers and fully connected (FC) layers, as shown in Fig. 1.

The input of the CNN is RGB images. Then, convolution

operations and pooling operations are performed in the

following multiple convolutional layers. FC layers (FCs)

are added to the final convolutional layers to execute

classifications or regressions. Pooling layers can progre-

ssively reduce the size of the output of convolutional

layers, which is called an activation map, as well as

reduce the number of parameters to be calculated and

learned during the training. Hence, a pooling layer can

control overfitting. The pooling layer can also achieve

spatial invariance of features by reducing the resolution

of the activation maps. The activation maps are expected

to contain the features extracted by the convolutional

layer. Based on the features extracted by the upper

convolutional layers, the FC layers can do the inference

in the same manner as the traditional MLP networks with

the supervision of the label(s).

A CNN can be trained to find the useful features of the

objects in an input image by updating the weights

associated with the filters, which has been demonstrated

in our previous research of suburban path loss modeling

[24, 25]. During the convolution process, a CNN filter

moves from the top left of an input image to the bottom

right of that image at a certain step size, which is called a

stride. Fig. 2(a) illustrates the convolution process of

CNNs. The size of the activation maps is usually smaller

than the size of the convolutional layer. The neurons in

the convolutional layers are typically arranged in three

dimensions: width, height, and depth. The input of a

typical CNN is three channels of RGB images. The

number of output channels of a convolutional layer is the

same as the number of filters. Here, we only show one

channel as a simple example. Within each convolutional

layer, input images are convolved with learnable filters.

After the convolution process, the activation function

will be applied to the output of the convolutional layer

with an added bias. The most popular types of activation

Fig. 1. The basic structure of a convolutional neural network.
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functions used in convolutional layers are the sigmoid (or

logistic) function, Tanh (hyperbolic tangent), and the

ReLU (rectified linear units) function. The activation

function will also be used in the FC layer. In general, the

jth activation map in layer l can be defined as:

(1)

where f (·) is the activation function and Mj is the set of

the input activation maps or input image channels, and

each output activation map can be given an additive bias

. The inputs are convolved by different filters to multiple

output activation maps by multiplying the neurons  of

the jth input activation maps in the (l − 1)th layer with the

weight wl
ij of the filter in lth, and these connect the ith

output activation map and the jth input activation map.

Given a volume of input neurons of shape ,

four hyperparameters can be used to define the convolution

operation: the number of filters K, the size of a filter

, the stride size S, and the amount of zero-padding P.

An output activation map of size  is

produced after the convolution operation in the manner

shown in the following equation.

(2)

The pooling is a down-sampling operation that can be

performed on the activation maps by the pooling layer,

which can combine multiple neurons in a square shape at

one layer into a single neuron in the next layer. One of the

most popular pooling methods is max pooling, which

extracts the most prominent features of the activation

maps, like edges, by taking only the maximum value from

a fixed region of an activation map. Fig. 2(b) illustrates

an example of a max pooling procedure of a 4×4 input

(green) volume with a 2×2 (red) filter. The output (blue)

volume will shrink into the small one shown at the

bottom with the size of 3×3.

The calculation of pooling layers is almost the same as

that for the convolutional layer, except that there is no

padding. Given a volume of input activation maps with

the shape as , there are only three hyper-

parameters needed to define the pooling operation: the

number of filters K, the size of the filters with the shape

as , and the stride size S. After the pooling procedure

in the pooling layer, a volume of size  is

produced as follows:

(3)

After several convolutional layers and pooling layers,

the neurons in the activation maps will be flattened into a

neuron vector, which will serve as the input of the first

FC layer. With a certain number of neurons in each FC

layer, the final outputs can be inferred. The FC layers in

CNNs work in the same way as the traditional MLP

networks, except that the inputs of the first FC layer are

the flattened high-level features from the last convolutional

layer.

B. Deep Learning-based Path Loss Modeling
System Design

The architecture of the proposed deep learning-based

path loss modeling system is illustrated in Fig. 3. The

measurement data include the locations of the APs and

the measurements as well as the corresponding RSS

values. The main input of the proposed CNN path loss

model is images generated by a novel input image

generation algorithm known as the LAMS algorithm. The

LAMS algorithm aims to extract the environmental

features from the simplified floor plan. Since the TR-

separation plays a significant role in path loss modeling,

a distance neuron is appended to the first FC layer to

make explicit the distance information to the CNN

model. The CNN path loss model is trained to predict

RSS based on the LAMS images and the TR-separation

in the training phase. RMSE is used as the loss function
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Fig. 2. Without a loss of generality and for simplicity, we show
an example of the convolution and the pooling procedure with
the single channel two-dimensional data. (a) The diagram of the
convolutional process. (b) A max pooling example with a 2×2
filter and a stride size of one.
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of the CNN model. The trained CNN model can predict

the RSS of a given location with the LAMS image and

the TR-separation.

C. Measurement and Data Collection

Fig. 4 shows the floor plan of the measurement environ-

ment, which hosts research laboratories, two seminar

rooms with glass walls at the bottom center, and

elevators, among other things [26]. The measurement

area marked by the red rectangle with a size of 30 m × 15

m. One AP, which supports the IEEE 802.11.a/n 5.8 GHz

Wi-Fi, was used as the transmitter in the measure-

ment. A laptop was used as the Wi-Fi signal receiver. A

measurement campaign was conducted during nights,

when there was no movement of people or doors. Thus,

the process is stationary [27, 28]. It is difficult to

manually collect extensive measurements in a variational

environment in practice. Still, at least 10 measurements

were collected at each location 0.9 m apart from each

other in order to average out the time fading effect. There

are 236 measurement locations in the measurement area.

Table 1 shows the numbers of measurement data of the

APs. The RSS values were recorded by WirelessMon

[29], which allows users to gather information about

nearby wireless APs and hotspots in real time. APs are

placed at six selected locations in the experiment, and

these are marked as red dots in Fig. 4. The measured

datasets are divided into two scenarios. The dataset of

AP6 is used as the test dataset in Scenario 1. AP6 was

placed at the center of the building, and the remaining

APs were placed near the corners of the building. The

dataset of AP1 is used as the test dataset in Scenario 2.

AP1 was placed in the corner of the building, and it

covers a larger LoS area than the other APs. The training

dataset of these two scenarios covers different regions

and different amounts sites with various propagation

types. For example, the training dataset in Scenario 2

covers a smaller measurement area and contains more

long-distance LoS measurement data than that of

Scenario 1. The dataset of AP1 can be considered as a

scenario with long LoS propagation paths, and it also

covers a lot of NLoS sites, except for the sites located in

the bottom long corridor, as shown in Fig. 4, while that of

AP6 is a more general case wherein AP6 is located at the

center. Therefore, Scenario 1 is a general indoor scenario

and Scenario 2 is a specific scenario with long LoS sites

and a lot of NLoS sites.

D. CNN Input Images Generation: LAMS
Algorithm

The inputs of CNNs should include sufficient environ-

mental information of the path loss for the automatic

feature extraction of convolutional layers so that the

potential deep learning-based path loss model can learn the

relationship between the inputs and outputs. The LAMS

algorithm is designed to generate input images that include

path loss environment information for CNN-based path

loss modeling. The LAMS algorithm is analogous to a

medical computed tomography scan, which uses many

X-rays collected from different angles to generate repre-Fig. 4. The floor plan of the RSS measurement environment. 

Table 1. The number of measurement data of APs

AP
The number of 

measurement data

Total number of 

measurement data

AP1 3,275

19,053

AP2 2,852

AP3 2,795

AP4 2,807

AP5 3,682

AP6 3,642Fig. 3. Flow diagram of deep learning-based path loss modeling
system.
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sentative images of a scanned object. As illustrated in

Fig. 5 and Algorithm 1, a local area is defined as a

rectangular shape region wherein the AP is located at the

center of an edge and a measurement location is located

at the center of the opposite side. Grey shading is used to

indicate whether rooms are occupied. Grey and black

lines represent foam and concrete walls, respectively.

As depicted in Fig. 5, the LAMS algorithm can abstract

the environmental information of the path loss within the

local area, which is defined as a region related to a pair

consisting of an AP and a measurement location. The

blue square and the yellow lines indicate the local area

and the scan lines, respectively. The LAMS algorithm

collects the pixels of the floor plan along multiple scan

lines, which can be determined by the position of the

local area. The AP (T) and a measurement receiver (R)

are located at the edge centers and the opposite side of the

local area, respectively. Specifically, the pixel values of

the scan lines on a floor plan are copied as vectors. The

size of a generated input image is pre-defined as (w, n).

Given the floor plan IF and the locations of T and R, the

LAMS algorithm proceeds as follows. First, the linear

equation of line lTR is calculated. Then, the locations of n

points on lTR are calculated. These n points, which are

marked in red in Fig. 5, are regarded as the midpoints of

n scan lines. The endpoint locations of each scan line

perpendicular to lTR are then calculated. Next, the w pixel

values of the ith scan line are saved as si. Finally, an input

image can be generated by concatenating the pixel values

set of scan lines si, i = 1, 2, 3, ..., n together. Fig. 6 shows

three generated input images that capture the building

structures of the local area.

E. Design of CNN Model

A CNN can learn the underlying functions of the Wi-Fi

signal propagation by the automatic feature extraction of

the convolutional layers. The distance neuron is appended

to the flattened feature map that represents the path loss

relevant features in the first FC layer to predict RSS. In

this case, the size of the CNN input images is 40 × 40,

which is designed to maintain the spatial information of

the path loss environment and the directivity from the

APs to the measurement locations.

There is no pooling layer between two adjacent

convolutional layers. In general, the usage of pooling can

decrease the parameters of the network, and it can thus

accelerate the speed of training and avoid the overfitting

problem. For example, in computer vision problems, the

pooling operation helps CNN achieve spatial invariance.

However, the introduction of pooling layers can lead to a

loss of essential information in the input. In our case, we

are attempting to maintain the spatial information of the

measurement environment as well as the directivity from

the AP to the measurement points. The size of the CNN

input images in our experiment is 40 × 40, and they are

simple small grey images. If there is no pooling layer

after the convolutional layers, the size of activation maps

can be kept unchanged, and useful features can thus be

expected to be extracted from the CNN input images,

which can be good for the reasoning and calculation on

the FC layers. Consequently, pooling layers are not used

in our CNN models.

The prediction performance of a CNN model is

Algorithm 1. LAMS algorithm

Fig. 5. LAMS algorithm. 

Fig. 6. Examples of generated input images.
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primarily dependent on its structure, such as the number

of convolutional layers and FC layers, and the number

and size of filters [30]. Table 2 details the four types of

convolutional layers, which are denoted as C1, C2, Cmj
,

and Cf. C1, C2, and Cf are the first, second, and final

convolutional layers, respectively. Cmj
 is the jth Cm

convolutional layer, where Cm indicates that it is between

the C2 and Cf layers, and it is a middle convolutional

layer. Using the “SAME” padding method, the activation

maps of the input and output of  layers are of

the same size. Thus, the size of the activation maps can

be maintained, which is conducive to the implementation

of deeper CNN structures. 

Zero-padding is also introduced. The padding method

is set as “VALID” in the first two and the last

convolutional layers, while “SAME” padding is used in

the rest of the convolutional layers. “VALID” means

there is no padding, which can make the size of the

activation map shrink fast. “SAME” padding can make

the spatial size of the output volumes the same as the

input volumes. “SAME” padding tries to pad evenly left

and right, but if the number of columns to be added is

odd, it will add an extra column to the right. The

activation functions used in the convolutional layers and

FCs are the ReLU function [31]. The range of the

measurement RSS values is between -100 dBm and -10

dBm. Due to the unilateral suppression attribute of

ReLU, the negative measurement RSS values cannot be

directly used as labels. Therefore, the label data should be

shifted into positive values. For example, if the RSS

value is -30 dBm, the label value will be 70 if we add 100

to it. The loss function used in the experiment is the

RMSE. Another design decision is the choice of the

training algorithm. Here, the Adam algorithm is chosen

(learning rate lr = 0.001, beta1 = 0.9, beta2 = 0.99, ε = e−8)

[32]. TensorFlow is used to implement our CNN model

[33]. Since the training datasets of the two scenarios

contain different environmental information and propa-

gation types, we designed two CNN models with various

network structures for two scenarios. The performances

of the different CNN structures in the test are illustrated

in [26]. CNN Model 1, which is designed for Scenario 1,

has five convolutional layers (including two Cm layers),

and seven and three neurons in the first and second

hidden FC layers, respectively. CNN Model 2, which is

designed for Scenario 2, has 10 convolutional layers

(including seven Cm layers), and 15 and five neurons in

the hidden FC layers, respectively.

IV. EXPERIMENTAL RESULTS

CNN models with different structures were trained and

tested in two scenarios to evaluate the performance of the

proposed deep learning-based path loss model. Comparisons

between the predicted RSSs of CNN models and the

measured RSSs with respect to the TR-separation as well

as those in Scenario 1 and Scenario 2 are shown in Figs. 7

and 8. We perform polynomial curve-fitting on both the

measured RSS values and the predicted RSS values for

improved visualization. Given a fixed location of an AP

and a measurement location, if the center line lTR of CNN

input images generated by the LAMS algorithm has pixel

values that are not white colour, then this measurement

point will be thought of as an NLoS point; otherwise, it is

thought of as an LoS point. The polynomial fit degrees of

CNN Model 1 and CNN Model 2 were set to 4 and 9,

Cm
j
j 1>( )

Table 2. Four types of convolutional layers

Layer

type

Parameters of convolutional layers

Input 

channel

Output 

channel

Kernel

size

Stride

size

C1 3 6 4 3

C2 6 3 3 2

Cmj
3 3 2 1

Cf 3 2 2 2

Fig. 7. Performance evaluation of CNN Model 1.

Fig. 8. Performance evaluation of CNN Model 2.
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respectively. The difference between the predicted and

measured RSS values of CNN Model 1 is smaller than

that of CNN Model 2. For both scenarios, the predicted

RSS of CNN models can separate the LoS and NLoS

scenarios, which indicates that the proposed CNN-based

path loss model has a good interpretation of the LoS and

NLoS propagation.

The test RMSEs of CNN Model 1 and CNN Model 2

are 3.94 dB and 5.32 dB, respectively. The prediction

errors of CNN models are larger when an LoS Rx is far

from the Tx and close to the corner, as shown in Figs. 7

and 8. According to [34], because of the reflection of radio

waves caused by walls behind Rx and perpendicular to

the T-R direction, the RSS values at LoS sites in the

corner are larger than the others. CNN Model 2 could not

perform as good as CNN Model 1 since the LAMS

images do not contain information on the environment

behind. Table 3 summarizes the percentiles of absolute

RSS prediction errors at 2, 5, and 10 dB in CNN Model 1

and Model 2 with a total of 236 measurement points. The

results show that the absolute errors smaller than 5 and

10 dB of CNN Model 1 are about 7% higher than those of

CNN Model 2. This suggests that the CNN models can

achieve a good generalization capability when they are

trained with a set of training samples covering a sufficient

range of different radio propagation environments.

With incomplete information of the propagation environ-

ment, CNN Model 2 achieves the best performance when

it has 10 convolutional layers as well as 15 and five neurons

in hidden FC layers. The CNN-based path loss model

requires additional parameters to model the underlying

function of the path loss when there is limited environment

information.

Moreover, we validated the performance of the CNN-

based path loss model by comparing it with the 3D ray-

tracing method using a ray-tracing simulator developed

by Beijing Jiao Tong University [12]; it can trace the

direct, reflected, scattered, and diffracted rays, and it is

validated and calibrated by a large number of measurements

from sub-6 GHz to terahertz (THz) band. The ray-tracing

method is a popular approach for channel modeling

because it can simulate the propagation mechanisms of

wireless channels [35, 36]. Fig. 9 shows a 3D map of the

measurement environment that is built by SketchUp [37].

The black walls on the edge of the building are concrete

walls and the green walls are foam walls. Note that the

floor is also green, which indicates that we assume that

the materials of the floor are the same material as the

foam wall, and the path loss between floors is not

considered. The white and orange walls are made from

metal and glass materials. The hyperparameters used in

the 3D ray-tracing simulation are listed in Tables 4 and 5,

including the parameters of the transmitter (AP) and

Table 4. Configurations of transmitter and receiver

Value

Transmitter

Height 1.7 m

Transmission power 17 dBm

Channel 40

Center frequency 5.8 GHz

Antenna pattern Vertical omnidirectional polarization

Receiver

Height 0.92 m

Number of discrete 

measurement locations

236

Antenna pattern Vertical omnidirectional polarization

Fig. 9. The SketchUp 3D map of the measurement environment.

Table 5. EM properties of building materials

Materials
Directive Real 

permittivity

Imaginary 

permittivityS Sigma

Wall

Foam 0.0026 18 1.1955 0.4894

Concrete 0.0018 50 1.9155 0.0568

Metal 0.0020 30 1 10000000

Glass 1.0538 24 0.0025 5.5106

Table 3. The absolute error of predicted RSS of CNN Model 1,
CNN Model 2, and the 3D ray-tracing method

Absolute error 

(dB)

Percentile %

CNN Model 1 CNN Model 2 Ray-tracing

<2 38.33 37.01 31.36

<5 77.97 70.11 67.82

<10 98.05 91.76 88.30



A Practical Approach for Indoor Path Loss Modeling Based on Deep Learning

Shengjie Ma et al. 93 http://jcse.kiise.org

receivers (laptops in different measurement points) and

the EM properties of the building structure materials that

determine the energy contribution of each ray when rays

interact with the material surfaces. The transmission

power of the transmitter used to compute the path loss

values both for the CNN models and the 3D ray-tracing

model was -17 dBm. The directive attributes include two

parameters, the S factor and Sigma, which are used to

calculate the attenuation of reflection and the pattern size

of scattering by the Directive Model [12, 38], respectively.

The value of real permittivity is also used as the S factor

when calculating the scattering with the Lambertian Model.

The simulation result of the 3D ray-tracing method is

shown in Fig. 10. The test dataset of Scenario 1 was used

to evaluate the 3D ray-tracing method because Scenario 1

is more representative than Scenario 2 due to the former’s

wider variety of propagation environment. The RMSE

between the measured RSS and the predicted RSS values

generated by the 3D ray-tracing method is 5.85 dB. One

can see that given the limited nature of the environmental

information (just the floor plan), the predicted RSS values

of the 3D ray-tracing method are less accurate than those

of the CNN models, and 3D ray-tracing methods fail to

make equally accurate predictions for a relatively simple

indoor environment. The distribution of predicted RSS

values is very narrow. The fitting curve of RSS prediction

made by the 3D ray-tracing method cannot separate LoS

and NLoS scenarios, which implies that the robustness of

the ray-tracing method is not as good as our proposed

CNN method when the floor plan is the only available

propagation environment information.

The percentiles of absolute RSS prediction errors at 2,

5, and 10 dB of the 3D ray-tracing method are summarized

in Table 5. The percentiles of the absolute RSS predicted

error of the 3D ray-tracing method are at least 8 dB smaller

than those predicted by the proposed CNN models. From

the above comparison and illustration, it can be seen that

the proposed CNN-based path loss prediction model

outperforms the 3D ray-tracing method in terms of

robustness, generalization, and accuracy.

V. CONCLUSION

We developed a novel deep learning-based indoor path

loss modeling approach for 5.8 GHz Wi-Fi. Based on a

floor plan and measurement data, the LAMS input image

generation algorithm for CNNs was proposed. Two CNN-

based path loss models with different network structures

were presented. The experimental results demonstrated

the superior performance of the proposed path loss

models over the 3D ray-tracing method. In our future

research, we plan to study deep learning-based path loss

models for the new-generation Wi-Fi operating in the

60 GHz frequency band as well as 5G systems in both

indoor scenarios and outdoor scenarios involving environ-

mental changes. We will also generate new training images

containing more information on the propagation environment

for training.
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