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Abstract
In this paper, we study the use of an Operand-Width-Aware Register (OWAR) packing mechanism for graphics process-

ing unit (GPU) energy saving. In order to efficiently use the GPU register file (RF), OWAR employs a power gating

method to shut down unused register sub-arrays in order to reduce dynamic and leakage energy consumption of RF. As

the number of register accesses was reduced due to the packing of the narrow width operands, the dynamic energy dissi-

pation was further decreased. Finally, with the help of RF usage optimized by register packing, OWAR allowed GPUs to

support more thread-level parallelism (TLP) through assigning additional thread blocks on streaming multiprocessors

(SMs) for general-purpose GPU (GPGPU) applications that suffered from the deficiency of register resources. The extra

TLP opens opportunities for hiding more memory latencies and thus reducing the overall execution time, which can

lower the overall energy consumption. We evaluated OWAR using a set of representative GPU benchmarks. The experi-

mental results showed that compared to the baseline without optimization, OWAR can reduce the GPGPU’s total energy

up to 29.6% and 9.5% on average. In addition, OWAR achieved performance improvement up to 1.97X and 1.18X on

average.
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I. INTRODUCTION

Taking advantage of the ability to process multiple data

in parallel, graphics processing units (GPUs) have been

increasingly used to accelerate general purpose applications

like compute-intensive data-parallel scientific computing

programs [1-3]. General-purpose GPUs (GPGPUs) execute

hundreds or even thousands of threads concurrently to

ensure high throughput. To support a massive number of

simultaneous threads and rapidly context switching

between these threads, a huge number of compute units

and a large register file (RF) are inevitable. GPU design

trend shows that GPU performance improvement continues

to rely on increasing the hardware resources and operating

them at higher frequencies to accommodate even more

active threads. Table 1 shows hardware configurations
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including number of single instruction multiple data

(SIMD) execution units and the size of RF in recent

GPUs [4-6]. The size of RF has increased significantly in

recent NVIDIA GPU generations. A similar trend is also

found in the number of SIMD computing units. Unfor-

tunately, persistently accumulating hardware resources

negatively exposes GPUs under the huge pressure of

power consumption and chip area [7-9]. In particular, RF

with the design of massive high leakage transistors has

been demonstrated to contribute significantly to GPU’s

total energy consumption. Thus, we need to explore new

techniques to exploit and manage GPU registers more

efficiently. This paper exploits the narrow-width operands

to reduce the GPU energy dissipation by 9.5%.

The narrow-width operands packing technique has been

fully studied and approved to be a promising solution to

reduce register pressure on CPUs [10-13]. Several RF

optimization methods have been proposed by considering

the narrow-width operands [11-15]. Brooks and Martonosi

[10] proposed hardware mechanisms for general purpose

microprocessors that dynamically recognized and capi-

talized on narrow-width operands and introduced both

power-oriented and performance-oriented optimizations.

Ergin et al. [11] extended Brooks and Martonosi [10]’s

work to reduce the pressure on the RF in super-scalar

processors. They proposed two schemes to dynamically

packing multiple narrow-width results into partitions

within a single register. These techniques which were

proven to be helpful for RF management in CPUs,

however, cannot be easily ported to GPUs due to the

essential differences of RF’s functionality and micro-

architecture between CPU and GPU.

To the best of our knowledge, existing researches on

GPU RF management do not make the most of the

opportunity offered by narrow-width operands for a

promotion of energy efficient and performance. Several

studies have introduced similar techniques [16-19].

Observing that the register values of threads within the

same warp are similar, Lee et al. [16] presented Warped-

Compression, a warp-level register compression scheme

which removes data redundancy of register values through

register compression to enable power reduction oppor-

tunities. Tan et al. [17] proposed the narrow-width-aware

register write back method which combines two narrow-

width writes to share data bus resource and hence enhance

the performance. The main purpose of the research was

to leverage resistive memory to enhance the soft-error

robustness and reduce the power consumption of registers

in GPUs, while they used the narrow-width-aware register

write back method only to counteract the performance

loss from the long write latency of STT-RAM register

file. Gilani et al. [18] noticed that many operands require

considerably fewer bits for accurate representation and

computations. They proposed a sliced GPU architecture

that improves the performance of the GPU by dual-

issuing instructions to two 16-bit execution slices.

The main aim of this paper is to propose a GPU RF

management mechanism that attains energy efficiency by

taking advantage of narrow-width operands. Inspired by

the narrow-width-aware register packing research on

CPUs, we designed a GPU register packing scheme

called OWAR (operand-width-aware register) which took

into account the characteristics of GPU’s microarchitecture

and RF organization. This novel technique first applied

the register usage prediction methods proposed in [20] to

dynamically identify narrow-width operands. Multiple

narrow-width operands were then packed into a single

register to improve energy efficiency and/or performance.

A method was also developed to predict the shrunken

register usage for the incoming thread blocks. By register

packing and usage prediction, the remaining RF space

increased and the pressure of future thread blocks on

register resources decreased. As a result, more registers

became available. OWAR was then turn off the sub-

arrays that contained unused registers to save both

dynamic and leakage energy. Combined with a renaming

table, OWAR was able to map multiple architectural

registers that stored narrow-width operands into a single

physical register at run time. Consequently, OWAR

offered the illusion that extra RF space was available,

making it possible for streaming multiprocessors (SMs)

to host more thread blocks. For GPU kernels whose

occupancy of threads was limited by RF resources, OWAR

can provide additional thread-level parallelism (TLP) to

further boost performance and reduce energy consumption.

This paper is an extended version of a prior conference

paper [21]. The major extensions in this paper include the

following: (1) we studied the use of a coarser-grain

Table 1. Number of SIMD units and size of RF in NVIDIA GPUs

RF per SM (kB) # of SIMD units per SM # of SMs Total RF (kB) Total SIMD units

Tesla G80 [4] 32 8 16 512 128

Tesla GT200 [4] 64 8 30 1920 240

Fermi GF100 [5] 128 32 16 2048 512

Kepler GK110 [6] 256 192 15 3840 2880

Kepler GK210 [6] 512 192 15 7680 2880
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power gating technique for unused GPU registers; (2) we

evaluated the overheads of the proposed OWAR packing

approach and found that the hardware cost accounts for

3% of the total GPU RF, which is insignificant; and (3)

we showed the reduction of RF accesses with our

method, and we found that on average, the total number

of RF bank accesses was reduced by 13.1% for OWAR-

PG and OWAR-TO-PG, indicating good opportunities for

dynamic energy reduction for register banks.

II. BACKGROUND OVERVIEW

A. CUDA Programming Model

CUDA programming language allows the programmer

to define C functions as several kernels which consist of

thousands of threads that are executing in parallel [22].

Each thread within a CUDA kernel is marked with an

assigned unique thread ID which is accessible through the

built-in threadIdx variable. GPGPU applications always

contain multiple kernels organized as a group of thread

blocks. A thread block is formed by one-dimensional, two-

dimensional or three-dimensional thread index allowing a

vector, matrix or volume computation domain. Thirty-

two threads within the same thread block with consecutive

thread IDs are grouped as a warp. A warp is executed in a

single instruction multiple threads (SIMT) way and has

only one PC. However, threads in the same warp can

access different memory address and follow different

control flow paths. The warps in a thread block allow

GPU to overlap long latency by conserving the context of

the stalled warps and switching to the oldest ready warp.

Each warp is assigned with a set of dedicated architectural

registers that are one-to-one mapped to corresponding

physical registers.

B. Baseline GPU RF Architecture

Modern GPUs are equipped with a huge RF in order to

support massive TLP to maximize computation throughput.

For example, NVIDIA GTX480 GPUs [5] feature 128 kB

multi-banked SRAM RF per SM. To our knowledge, there

is no official documentation on GPU RF organization

that is publicly available. Thus, we take the detailed RF

structure described in [23] as our baseline, which has

been proven an efficient organization for GPU RF (Fig. 1).

For each SM, the whole 128 kB RF is partitioned into 32

banks with 4 kB register per bank. The multi-banked

design is employed to increase GPU RF bandwidth. Each

bank is dual-ported (one read port and one write port)

with 256 128-bit wide entries. All registers for threads

within a warp reside in consecutive banks, while accessing

to a single bank entry can fetch only four 32-bit register

values and reading an operand for a warp instruction

needs to access up to eight banks. Although writing and

reading the same bank can happen concurrently, multiple

accesses to the same bank lead to bank conflicts. Therefore,

a unit named operand collector is applied to buffer the

source operands of the instruction. The RF and the

operand collectors are connected via a crossbar network.

To support our register packing technique, we modified

the baseline RF organization to 32 banks with 128 256-

bit wide entries for each bank and the reason will be

described in Section IV.

III. MOTIVATION

RF packing: The narrow-width operands packing

techniques have been studied and employed on CPUs.

Observing that many operands called narrow-width

operands have fewer significant bits compared to the full

Fig. 1. Baseline RF architecture. Adapted from [20] with permission of IEEE.
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width of a 32-bit register, several works [10-12, 14, 15]

proposed to detect them and merge multiple narrow-

width operands into a single full-sized register. The

register packing techniques were then designed to save

power consumption [12] and improved performance [11,

12] as well as register file reliability [14, 15]. Unlike CPUs

which primarily counted on caches to reduce memory

latency, GPUs can exploit massive TLP to hide memory

latency and increase throughput. To support fast and low-

cost context switching for many concurrently running

threads, a large number of registers were necessary.

Therefore, compared to CPUs, GPUs were much thirstier

for RF resources. We evaluated the operand width

characteristics across 17 GPU benchmarks and classified

the operand width into three level: 8-bit, 16-bit, and 32-

bit. Fig. 2 shows the width distribution of values written

into registers. On average, 45.3% of all values consume

only 8-bits of a full 32-bit register, 16.1% of all values

can be represented by only 16 bits and only the rest

38.6% need a full-sized register. Obviously, using 32-bit

registers to conserve operands with varied significance

bits can be a waste of precious RF resources. The

evaluation results presented an opportunity to save plenty

of RF space by packing narrow-width operands into a

single 32-bit register. Although narrow-width packing

techniques show advantages on CPUs, the effectiveness

was still unknown on GPUs due to the fundamental

architectural differences between CPU and GPU. In this

paper, we employed a GPU register packing method

called two-level (thread-level and warp-level) narrow-

width packing proposed in [20]. The thread-level packing

is to select the most economic number of bits which is

sufficient to store each thread register belong to the same

warp without any accuracy loss. The warp-level packing

maps all registers of a warp to consecutive RF space.

Energy savings: The GPU RF is demonstrated to be

responsible for a large fraction of GPU’s total energy

consumption. We evaluate the dynamic and leakage

energy consumptions of GPU RF for 17 benchmarks and

compare them with the GPU’s total energy consumptions.

We find that 6.5% of dynamic energy and 20.9% of

leakage energy is consumed by RF, respectively. Fig. 3

shows that the GPU RF contributes 14.5% to the GPU’s

total energy. By shrinking the RF size, the RF leakage

energy consumption will decrease due to the reduction of

the number of leaking transistors. In addition, a smaller

RF size also leads to lower dynamic energy consumption

per access. We have evaluated the dynamic energy

savings due to the reduction of the RF size. The results

represented in Fig. 4 tell that for a halved RF, the dynamic

energy consumption of one RF read and one RF write is

reduced by 15.2% and 17.5% respectively. All these

results are obtained by using GPUWattch [8] starting

with the baseline described in Section II. The results

inspire us to reduce dynamic and leakage energy through

scaling down RF capacity. Furthermore, due to register

packing, a fewer number of RF accesses also lead to

further reduction of the dynamic energy consumption.

IV. OPERAND-WIDTH-AWARE REGISTER
PACKING MECHANISM

The narrow-width operands packing technique shows

its effectiveness of improving energy efficiency and

performance on CPUs. Unfortunately, this promising

mechanism cannot friendly adapt to GPUs as a result of

the distinction between GPU and CPU architectures. In

Fig. 2. Width distribution.

Fig. 3. The fraction of RF energy consumption compared to the
total GPU energy.

Fig. 4. RF dynamic energy savings with different RF size.
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this work, we proposed OWAR, a novel GPU RF mana-

gement approach supported by affordable hardware to

improve the energy efficiency of the RF and the GPU.

A. Overview

Fig. 5 illustrates an overview of OWAR. Block 1 (Section

IV-B) involves a two-step register packing mechanism.

The first step was to dynamically detect narrow-width

operands and profile operand-width boundaries at write

back stage. The second step acts a two-level register

packing and makes a prediction about future register

usage. Detailed descriptions about Block 1 can be found

in [20]. Block 2 (Section IV-D) is the renaming table-

based register reallocation mechanism that dynamically

maps architectural registers to physical registers to

achieve RF resource saving.

B. Detecting and Packing Narrow-Width-
Operands

Detect and profile: The narrow-width operands are

identified at the write-back stage using 32 zero-detection

logic units [10]. Each unit inspected the length of one

operand from a single thread and outputs a 2-bit operand

width indicator. Specifically, “01” represents an 8-bit

operand, “10” represents a 16-bit operand, and “11”

represents a 32-bit operand. All the outputs from the 32

zero-detection logic units were then compared to find the

upper bound width of 32 values which can guarantee

sufficient bits for all operands. The upper bound width

was forwarded to the thread-level packing table (TLPT)

with register index in the form of profiling information.

Pack and predict: A TLPT was added to each SM to

store all narrow-width information provided at the

narrow-width detecting stage. When the TLPT received

an operand width from the narrow-width detecting logic,

it makes a comparison between the newcomer and the

current maintained operand-width and it only keeps the

width that was wider. In NVIDIA Fermi architecture [5],

each thread can use up to 63 registers. In this case, the

TLPT has 63 entries and each entry was indexed by a

registered id and holds 2 bits data indicating the bit width

of the value stored in the corresponding register. The total

TLPT size per SM was calculated by Eq. (1):

TLPT Size = (#entry × #bit per entry) = 63 × 2 bits =

126 bits (1)

At the beginning of application execution, the TLPT

was empty and it was filled dynamically during run time.

The TLPT kept itself updated with the widest width (i.e.,

upper bound) fed by the narrow-width detecting logic and

profiler. Whenever all threads in a thread block were

completed, the prediction on register usage can be made

by adding up the sizes of total registers according to the

narrow-width status held in the TLPT. Then register

usage prediction was sent to the thread block scheduler to

loosen the register file constraint for future thread block

scheduling. A misprediction happens when the TLPT

found that the maintained width of a register was insufficient

to meet the requirement of the current computed result. A

mechanism to deal with misprediction, though very rare,

will be introduced in Section IV-C.

C. Renaming Table

The conventional use of register renaming on CPUs

was to eliminate the false data dependencies caused by

reusing of architectural registers among several contiguous

Fig. 5. Overview of OWAR. At write back stage, narrow-width operands are detected, profiled and packed. A shrunken register usage is
predicted to guide the scheduling of future thread blocks (Block 1). A renaming table is featured for register reallocation (Block 2).
Adapted from [20] with permission of IEEE.
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instructions. By changing the names of registers for

certain instructions, the false data dependencies can be

removed. As a result, more instruction-level parallelism

(ILP) can be achieved to improve performance. Jeon et al.

[24] adapted register renaming for achieving the opposite

effect of CPU renaming, namely reducing the number of

physical registers without reducing the architectural

register space. Motivated by work in [24], in this paper,

we leveraged a similar register renaming approach to

create an illusion that the total number of architectural

registers exceeds the capacity of physical registers so that

the barrier set by hardware resources may be overcome.

As shown in Fig. 6, the GPU RF was featured with a

renaming table which holds all mapping information. An

architectural register was mapped to a physical register at

the moment of being written. The registers in GPU RF

were organized as warp registers. Each warp register has

32 full-size 32-bit registers, each for a thread. Each entry

of the renaming table was indexed by global architectural

id which can be simply derived with warp ID, local

architectural register ID and architectural register usage

per thread. A renaming table entry keeps reallocation

details for one architectural warp register composed of

two data fields including 10-bit for a physical warp

register address and 4-bit for a bit mask that indicates the

location of the target data fields. In our Fermi like

baseline architecture, each SM has a 128-kB register file

which is partitioned into 32 banks with 128 256-bit wide

entries per bank. Each physical warp register can hold

four entries from consecutive banks with the same index.

Normally, an architectural warp register is one-to-one

mapped to a physical warp register. OWAR offers the

opportunity to map multiple architectural registers to a

single physical register, for example, 216-bit or 48-bit

architectural registers can be assigned to a physical

register of 32 bits. A 4-bit mask was used to identify

where the values of an architectural register were located

within a physical register. Each bit in a 4-bit mask

represented a bank entry and a 4-bit mask denoted four

entries from consecutive banks with the same index. An

architectural register can also be mapped to entries from

discrete banks within a physical register. For instance, the

data fields of a 16-bit architectural registered whose first

half was mapped to the second entry of a physical register

and the second half was stored in the last entry, can be

indicated by a 4-bit mask, “0101”.

According to the baseline architecture, the total number

of physical warp registers per SM was 1024. By using a

renaming table with 2048 entries, 1024 physical warp

registers can support at most 2048 architectural warp

registers on the condition of sufficient narrow-width

operands. The total size of renaming table required to

maintain all mapping information was calculated by

Eq. (2):

Renaming Table Size = (#entry × #bit per entry) = 2048

× 14 bits = 3.5 kB (2)

By increasing the number of entries of the renaming

table, OWAR was able to provide even more architectural

registers without increasing the number of physical

registers. However, naively growing the renaming table

capacity can increase hardware overhead and resulted in

larger waste in case of the lack of narrow-width operands.

We examined 17 benchmarks and found that the demand

on RF resources has a 47% reduction on average, thereby

we limited the renaming table with 2048 entries (i.e.,

twice the number of total physical registers) to fit the

requirement of most applications and avoid unnecessary

waste and overhead. Moreover, a single bit bank entry

availability vector per RF bank entry was used to indicate

if a corresponding bank entry within a physical warp

register was assigned to an architectural warp register or

unused [24].

Modification on RF operations: As shown in Fig. 5,

to write back results to RF, the width of the computed

results was profiled by the narrow-width detecting logic

first and then sent to the TLPT. The TLPT made a

Fig. 6. An example for two-level packing approach. Adapted from [20] with permission of IEEE.
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comparison between the newcomer and the currently

maintained operand-width and performed different actions

accordingly. If the newly detected width was wider, the

TLPT updated the width of the corresponding register

and forwarded a misprediction message to the renaming

table. The TLPT kept its context unchanged if the detected

width was narrower or equal. The misprediction message

informed the renaming table to re-map the width-

mismatched architectural register to another physical

register which has sufficient free entries. The renaming table

was then visited with architectural register information to

retrieve the corresponding physical register address and

the data field indicator (a 4-bit mask). With all this

information, the bank arbitrator decided to write results

to several entries within the target physical register. The

procedure of reading RF was quite straightforward with

no concern for the misprediction. Moreover, the register

renaming assisted RF offers an economical way to

complete a register operation, namely writing or reading

RF with a fewer number of entry accesses. By reducing

the total number of RF accesses, the RF dynamic energy

consumption can be reduced

D. Handling Unused Registers

Due to the use of the register packing technique, OWAR

was able to meet the architectural register usage and at

the same time lower the demand on physical register

resources. Consequently, a great portion of GPU RF can

be saved and remain unused. In this work, we explored

two methods to handle unused registers for further energy

reduction.

Power gating: We applied a traditional coarser-grained

subarray power gating [25]. As shown in Fig. 7, GPU RF

was partitioned horizontally into several sub-arrays.

Taking advantage of register renaming, the in-service

physical registers can be concentrated in certain sub-

arrays, making the rest of sub-arrays, if any, unoccupied.

To save energy consumption, the spared sub-arrays were

then power gated. An inactive subarray will be woken up

only when active sub-arrays run out of free registers.

With a sufficient architectural register supply, which is

common for GPUs, the sub-array level power gating

scheme shuts down excessive hardware resources to

avoid energy waste without significant performance loss.

Running beyond the limit: Instead of turning off the

unused hardware resources, we proposed to fully utilize

them for reducing the execution time, with the aim to

reduce the energy dissipation. The performance of many

GPU applications was prevented from further improvement

due to the limitation of hardware resources, especially the

number of registers. Since OWAR offered additional RF

resources, the GPU was able to increase the occupancy

by hosting more co-running threads (also called thread

overrun in this paper), which can enhance its capability

of hiding memory latencies and hence contribute to better

performance. The overall energy consumption may also

be reduced due to the shortened execution time.

E. Overheads of OWAR

The total hardware overheads of OWAR include

primarily three components: the TLPT, the renaming

table, and the bank availability indicator. The TLPT size

was 16 bytes and the size of the renaming table was

28672 bits = 3.5 kB as calculated in Eqs. (1) and (2),

respectively. According to the baseline RF organization,

the total number of bank entries was 4096. Thus, the size

of the bank availability indicator was 4096 bits = 0.5 kB

(each bit indicated the status of a bank entry, 0 for free, 1 for

unused). The total hardware cost of OWAR implementation

was thus 126 + 28672 + 4096 = 32894 bits ≈ 4 kB accounting

for 3% of GPU RF size. These energy overheads were

included into GPU’s total energy model and were

described in Section VI. We also considered performance

overheads caused by sub-array wake-up delay. Whenever

a new sub-array was required to be re-activated from the

power gated status, the pipeline was stalled until the sub-

array was completely ready for service. The sub-array

wake-up penalty was conservatively set to one cycle by

default, although it is proven to be less than one cycle by

calculation using CACTI-P [25].

V. METHODOLOGY AND HARDWARE DETAILS

We used GPGPU-Sim v3.2.2 [26], a cycle-level GPU

performance simulator that focused on general-purpose

computation on GPUs, to evaluate the proposed GPU

register packing scheme. The energy consumption was

measured using GPUWattch [8]. CACTI [27] was used toFig. 7. Coarser-grained sub-array power gating.
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estimate the dynamic and leakage power of the renaming

table. The baseline GPU architecture used was modeled

based on NVIDIA GTX480 GPUs [5], which consisted

of 15 GPU cores called SMs (Table 2). Each SM has its

own private L1 data cache, read-only texture cache,

constant cache and software managed shared memory

(scratchpad memory). Each SM core owned two warp

schedulers and two instruction dispatch units, enabling to

issue two independent instructions from two different

warps. Each SM core contained 32 single instruction

multiple data execution units and four special function

units (SFUs). All SMs shared a unified L2 cache. The

SMs and the shared L2 cache were connected via an on-

chip network. For the GPU RF organization, we assumed

a 128-kB register file for each SM. The register file was

partitioned to 32 banks with 4 kB register per bank. The

multi-banked design was employed to increase GPU RF

bandwidth. Each bank was dual-ported (one read port and

one write port) with 128 256-bit wide entries. For the

benchmarks, we used 17 applications from Rodinia [28]

and PolyBench/GPU [29] to evaluate our GPU register

packing schemes. Table 3 lists all benchmarks, 15 from

Rodinia [28] and 2 from PolyBench/GPU benchmark suit

[30]. We summarized the CUDA kernel grouping

patterns of grid and CTA for benchmarks.

VI. EXPERIMENTAL RESULTS

We evaluated two OWAR based GPU RF management

approaches, OWAR-PG (OWAR with power gating) and

OWAR-TO-PG (OWAR with thread overrun and power

gating). OWAR-PG focused on reducing RF energy

consumption by shutting down spared RF resources.

OWAR-TO-PG attempted to improve the energy efficiency

through making the most use of the additional RF resources

freed by OWAR. And the power gating was reserved by

OWAR-TO-PG to further reduce the energy consumption.

We compared the energy improvement of these two

schemes with the baseline (without OWAR). We also

measured the performance improvement of OWAR-TO-

PG. We used the geometric mean to report all the averaged

values in this paper.

A. RF Utilization

As aforementioned in Section IV, OWAR was able to

split a physical register into up to four parts and assign

them to multiple architectural registers containing narrow-

width results. Although the architectural register usage

per warp stayed the same, the corresponding physical

register usage was significantly reduced by OWAR. As

shown in Fig. 8, OWAR can achieve up to 70.8% off the

original register usage per warp and the averaged

Table 2. Simulated GPU architecture configuration

GPU 15 SMs, 700 MHz

SM configuration 16 thread blocks/SM, 32 threads/warp

2 warp schedulers, 1024 ROB entries, 32 SIMD width, 5-Stage pipeline

Register file 128 kB per SM

32 banks, dual-ported (1 read port and 1 write port) for each bank 4 kB register per bank, 256-bit wide entry, 

128 entries per bank

L1 cache 16 kB, 4-way set-associative, line size 128 byte, 128 MSHR entries

L2 cache 768 kB, 8-way set-associative, line size 128 byte

Shared memory 48 kB, 32 banks, 1 cycle latency

Data from [20].

Table 3. GPU benchmarks

Benchmarks Grid CTA #Warp per CTA

backprop (1,1024,1) (16,16,1) 8

bfs (4096,1,1) (512,1,1) 16

b+tree (1000,1,1) (256,1,1) 8

cfd (909,1,1) (256,1,1) 8

dwt2d (6,15,1) (192,1,1) 6

gaussian (64,64,1) (16,16,1) 8

hotspot (43,43,1) (16,16,1) 8

hybridsort (490,1,1) (256,1,1) 8

kmeans (121,1,1) (256,1,1) 8

lud (31,31,1) (16,16,1) 8

nw (200,1,1) (16,1,1) 1

particlefilter (128,1,1) (256,1,1) 8

pathfinder (128,1,1) (256,1,1) 8

sad1 (128,1,1) (512,1,1) 16

sad2 (16,16,1) (16,16,1) 8

2DCONV (16,64,1) (32,8,1) 8

2MM (8,32,1) (32,8,1) 8

Data from [20].



Reducing GPU Energy Consumption by Packing Narrow-Width Operands

Xin Wang and Wei Zhang 143 http://jcse.kiise.org

reduction for all evaluated benchmarks was 40.3%. The

register usage reduction resulted in high underutilization

of RF resources. During the run-time, we sampled the

number of in-service registers periodically and take the

average of all samples as an estimated RF utilization of

an application. Fig. 9 shows the GPU RF utilization rates

for 17 benchmarks by using the RF management approa-

ches proposed in this work. With no optimization, 77.9%

of total RF was used on average. As expected, the RF

utilization rate dropped sharply to 45.7% when OWAR-

PG was employed, indicating that a great number of

registers which were supposed to be used, were now

saved by OWAR. The large idle portion of RF can be

power gated by OWAR-PG to save RF’s dynamic and

leakage energy. Unlike OWAR-PG, OWAR-TO-PG tries

to improve the RF utilization and the performance by

increasing the capacity of concurrent threads. Provided

that the performance was boosted, the improvement of

energy efficiency was then applied not just to RF, but to

all other components in GPU. However, OWAR-TO-PG

can result in a higher RF utilization (81.1% on average)

compared to the baseline. Even though RF was further

exploited by OWAR-TO-PG, for some benchmarks like

bfs, Gaussian, and nw, there are still considerable
unused registers remaining, which thereby can be power

gated to enable more RF energy savings.

B. Reducing the Number of RF Bank Accesses

Based on our baseline RF architecture, accessing to a

single bank entry can only fetch eight 32-bit register

values and reading an operand for a warp instruction

needs to access up to four banks in the absence of RF

optimization. Through the help of OWAR, fewer bank

accesses were necessary to collect all values from RF, for

example, one access for 8-bit width data, two accesses for

16-bit width data, if the desired data can be represented

with narrowed width and was stored in packed registers.

We kept the trace of accesses to narrow-width values and

record the total number of RF bank accesses for each

benchmark. As shown in Fig. 10, both OWAR-PG and

OWAR-TO-PG have the power to complete register

operations with less numbers of bank accesses. The

benchmark pathfinder represented the most significant
reduction (28.6%, OWAR-PG and OWAR-TO-PG achieve

the same result). On average, the total number of RF bank

accesses was reduced by 13.1% for OWAR-PG and

OWAR-TO-PG, indicating good opportunities for dynamic

energy reduction for register banks.

C. Performance Results

To allow more thread blocks to run on SMs concurrently,

we loosen the constraints of the maximum number of

thread blocks and warps. Fig. 11 shows the IPC improvement

Fig. 8. Reduction in physical register usage.

Fig. 9. GPU RF utilization of baseline, OWAR-PG, and OWAR-TO-
PG.

Fig. 10. Normalized number of RF bank accesses.

Fig. 11. IPC Improvement.
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of 17 benchmarks. As expected, the increased occupancy

generally results in better performance. Overall, the

performance speedup reached up to 1.97X with the

average of 1.18X.

D. Energy Results

Implementation overheads: Table 4 lists the power

parameters of the renaming table and RF calculated by

CACTI [27]. The leakage energy consumed by the

renaming table only accounted for 0.79% of the RF

leakage energy. Similarly, the dynamic energy per access

to the renaming table only slightly increased the dynamic

energy per RF access (1.13% increase per read, 1.10%

increase per write). Thus, the energy overhead introduced

by the renaming table was negligible in comparison to the

energy consumption of the RF.

We also evaluated the performance overhead of sub-

array reactivation. We assumed that it took one cycle to

completely reactivate a sub-array from the power gated

status. As shown in Fig. 12, the performance of only a

few benchmarks (b+tree, backprop, lud, and
hybirdsort) was negatively affected by the sub-array
re-activation latency. Most of the benchmarks maintain

their performance. The reason was that the sub-array re-

activation barely happened during the execution,

resulting in negligible performance overhead. Unlike

other benchmarks, the total number of execution cycles

of benchmark 2DCONV was reduced instead because the
overhead cycle unintentionally alleviated the high pressure

of cache resource contention. The performance overhead

caused by the sub-array re-activation was only 0.2% on

average as shown in Fig. 12 for all benchmarks except

2DCONV.

Energy reduction: In Section III, we mentioned that

RF consumed a large amount of total energy (i.e., 14.5%

of GPU’s total energy consumption). Here, we further

demonstrated that leakage energy contributes to most of

RF’s total energy consumption (leakage energy 71%;

dynamic energy 29%). Therefore, decreasing RF leakage

energy was more effective at improving RF energy efficiency.

First, we focused on evaluating the efficacy of OWAR-

PG and OWAR-TO-PG on RF energy reduction. Fig. 13

represents the dynamic, leakage, and total RF energy

consumption of two OWAR schemes, respectively. The RF

dynamic energy reduction was a result of RF accessing

frequency reduction and sub-array level power gating.

OWAR-PG and OWAR-TO-PG produced a similar

reduction in the number of RF accesses, while OWAR-

Fig. 12. Sub-array re-activation overhead.

Table 4. Energy consumption of renaming table compared to RF

RF Renaming table

Leakage power (mW) 9.75 0.08

Dynamic energy per read (pJ) 53.6 0.61

Dynamic energy per write (pJ) 57.0 0.63

Fig. 13. RF energy reduction: (a) RF dynamic energy, (b) RF
leakage energy, and (c) total RF energy.



Reducing GPU Energy Consumption by Packing Narrow-Width Operands

Xin Wang and Wei Zhang 145 http://jcse.kiise.org

PG was better at power gating due to the availability of

more free registers. Thus, OWAR-PG can save more RF

dynamic energy than OWAR-TO-PG (OWAR-PG 15.7%;

OWAR-TO-PG 13.0%). Similarly, OWAR-PG achieved

more RF leakage energy reduction than OWAR-TO-PG

(OWAR-PG 44.4%; OWAR-TO-PG 23.1%). Overall, for

the purpose of RF energy saving only, OWAR-PG was

better than OWAR-TO-PG (OWAR-PG 33.7%; OWAR-

TO-PG 18.9%), because OWAR-PG enabled to apply

power gating more aggressively.

Second, we examined the effects of OWAR-PG and

OWAR-TO-PG in reducing GPU’s total energy consumption.

Fig. 14 illustrates that OWAR-TO-PG was better as

performance was significantly improved. In contrast,

OWAR-TO-PG was inferior to OWAR-PG if it resulted

in only limited performance improvement. In general,

OWAR-TO-PG outperformed OWAR-PG in overall energy

reduction (OWAR-TO-PG 9.5%; OWAR-PG 4.8%), because

the former can not only reduce the energy consumption

of RF but also other components in GPU owing to the

overall performance improvement.

VII. RELATED WORK

The narrow-width operand packing techniques were

first employed on CPUs, especially multi-threaded CPU

processors to mitigate RF pressure. By noticing that

many operands called narrow-width operands have fewer

significant bits compared to the full width of a 32-bit

register, several researchers proposed to detect them and

merge multiple narrow-width operands [10-12, 14, 15].

The narrow-width operand packing techniques for CPU

were then designed to save power consumption [12] and

improve performance [11, 12] as well as register file

reliability [14, 15]. There is also prior work to reduce

GPU RF leakage energy by exploiting a drowsy register

file [31], and application-specific information [32]. Brooks

and Martonosi [10] proposed hardware mechanisms for

general-purpose microprocessors that dynamically recognize

and capitalize on narrow-width operands. They introduced

both power-oriented and performance-oriented optimizations.

Power-oriented optimization reduced processor power

consumption by using aggressive clock gating to turn off

portions of integer arithmetic units that will be unnecessary

for narrow-width operations and can achieve 50% power

consumption reduction [10]. Performance-oriented opti-

mization improved performance by merging together

narrow integer operations and allowed them to share a

single functional unit and the performance speedup is

around 10% [10]. Ergin et al. [11] extended Brooks and

Martonosi [10]’s work to reduce the pressure on the

register file in super-scalar processors. They proposed

two prediction-based schemes to dynamically packing

multiple narrow-width results into partitions within a

single register. Their approach can improve the CPU

performance by 15% on average. Although these two

techniques showed advantages on CPUs, they cannot be

applied on GPUs directly due to the difference of

architecture and RF size between CPU and GPU. Modern

GPUs features a huge size of the RF in order to support a

massive number of active threads. GPUs rely on tens of

thousands of concurrent threads to obtain high throughput.

On contrary, CPUs mainly focus on single applications

performance and only support tens of threads and utilize

large caches to reduce memory access latency instead of

massive TLP. For the reasons above, conventional CPU

register packing techniques were not suitable for GPUs.

To the best of our knowledge, there is no prior GPU-

exclusive register packing technique aiming at leakage

energy reduction for GPGPU programs. However, several

studies have introduced similar techniques [16-19].

Fig. 14. GPU energy reduction: (a) GPU dynamic energy, (b) GPU
leakage energy, and (c) total GPU energy.
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Observing that the register values of threads within the

same warp were similar, Lee et al. [16] presented Warped-

Compression, a warp-level register compression scheme

which removed data redundancy of register values

through register compression to enable power reduction

opportunities. This technique saved 25% of the total RF

power consumption. Tan et al. [17] proposed the narrow-

width-aware register write back method which combined

two narrow-width writes to share data bus resource and

hence enhance the performance. Gilani et al. [18] noticed

that many operands required considerably fewer bits for

accurate representation and computations. They proposed

a sliced GPU architecture which was much alike the method

designed for CPUs in [10]. Their approach improved the

performance of the GPU up to 15% by dual-issuing

instructions to two 16-bit execution slices. Wang and

Zhang [20] exploited narrow-width operands for GPU

performance improvement, while this paper focuses on

dynamic and leakage energy reduction with different

techniques and different architectural support.

VIII. CONCLUSION

In this paper, we dynamically exploited narrow-width

operands to improve the RF and GPU energy efficiency.

Our approach utilized the additional registers saved by

register packing to reduce energy dissipation through

power gating and thread overrun. The experimental

results showed that our method can reduce the GPGPU’s

total energy up to 29.6% and 9.5% on average, with a

hardware overhead within 3% of the GPU RF. In addition,

the performance can be improved up to 1.97X and 1.18X

on average.
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