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Abstract
Detection of Alzheimer’s disease (AD) is one of the most potent and daunting activities in the processing of medical

imagery. The survey of recent AD detection techniques in the last 10 years is described in this paper. The AD detection

process involves various steps, namely preprocessing, feature extraction, feature selection, dimensionality reduction,

segmentation and classification. In this study, we reviewed the latest findings and possible patterns as well as their main

contributions. Different types of AD detection techniques are also discussed. Based on the applied algorithms and meth-

ods, and the evaluated databases (e.g., ADNI and OASIS), the performances of the most relevant AD detection tech-

niques are compared and discussed.
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I. INTRODUCTION

Medical imaging refers to different technologies and

techniques that aim to have a comprehensive view of the

human body in order to diagnose, prevent, screen and

treat medical conditions more efficiently. X-rays, computed

tomography (CT) scans, magnetic resonance imaging

(MRI), ultrasound, positron emission tomography (PET),

and radioactive pharmaceuticals are among the most

often utilized medical imaging modalities. In the literature,
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we were able to find many studies on Alzheimer’s disease

(AD) detection using certain technologies.

The most common cause of dementia is AD, provoking

major social and health problems. It is one of the most

dangerous neurodegenerative disorders that cause a short-

term loss of memory, behavioral disturbances, cognitive

actions, and language comprehension issues.

AD typically affects individuals over 65 years of age

and whose occurrence rate increases with age exponentially.

Therefore, except for the most fundamental daily activities

(e.g., washing, eating, dressing), people continuously

need caregivers in the late stages, which inevitably leads

to death. Fig. 1 shows the difference between a healthy

brain and a brain with AD. With the aging of the

population, this disease will become more prevalent in

the coming years: If in 2020, the number of people with

AD in the world exceeded 54 million, more than 131

million people could be affected by 2050, according to

the data obtained from the Alzheimer Disease International

Association (Fig. 2).

There is no successful cure for AD so far, but early

diagnosis is important for finding a safe treatment and

slowing down the progression of symptoms. Thus, the

automated diagnostic tools have gained a lot of attention

in recent years. A recent analysis of the various methods

for AD detection is discussed in this paper.

The rest of the paper is structured as follows: We present

a summary of the current methods of AD detection in

Section II. Section III provides a distinction between the

available databases. We discuss the usefulness of the

examined methods and techniques in Section IV.

Conclusions and future trends end the paper.

II. MEDICAL IMAGING TECHNOLOGIES

Medical imaging field has grown exponentially in the

last years and has been successfully used to develop

automated methods for clinical decisions and disease

diagnosis. Subsequently, it has received wide acceptance

by the medical community. In the following, we present

the most used medical imaging technologies for

Alzheimer's disease detection namely MRI and PET.

A. MRI

MRI is an effective, non-invasive brain imaging tool

that offers higher quality information on the volume and

the shape of the brain. It offers superior differentiation of

the soft tissue, excellent spatial resolution, and perfect

contrast. The principle of MRI operation is based on a

physical phenomenon that exploits the magnetic properties

of atoms (these atoms have the particularity of emitting

radio waves when exposed to a magnetic field, making

them detectable). Furthermore, the diagnostic use of MRI

has been substantially enhanced as a result of automatic

and accurate labeling of MRI images, which plays an

important role in the detection of AD.

B. PET

PET is also a non-invasive imaging technique that

allows molecular processes to be visualized and quantified,

affording responsive and early illness detection. This

technique provides disease identification of molecular

processes before clinical symptom manifestation. PET is

based on the principle of scintigraphy which consists in

injecting a radioactive tracer intravenously, representing

the information in the form of an image showing in color

the areas of high concentration of the tracer. PET imaging

enhances the perception of possible AD causes, molecular

event timeline, and early AD detection.

III. AD DETECTION METHODS

According to the literature, there are several strategies

for identifying AD, which are categorized into three

groups: statistical methods, deep learning methods, and

segmentation methods. We detailed these three types in

this study by highlighting recent and successful strategies

proposed in the literature. Fig. 3 displays the taxonomy of

methods of detecting AD.

Fig. 2. Estimated number of people with AD in the world.

Fig. 1. Difference between a healthy brain and a brain with AD.
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A. AD Detection using Statistical-based
Methods

We highlight the latest statistical methods for AD

detection. Such methods often use a dimensionality

reduction mechanism after the feature extraction step, or

simply for feature selection. Using one or more classifiers,

classification is then implemented by taking the obtained

features as input. These methods can be categorized

according to the space in which the classification was

performed, into linear and non-linear methods.

In [1], the principal component analysis (PCA) was

utilized to pick the important features from a process that

focuses on the multidimensional classification of the

features of longitudinal brain atrophy. It is a way of

describing models in data and utilizing them in a way that

demonstrates their similarities as well as differences. This

approach enables the feature space dimension to be

reduced and become further effective. The K-means,

support vector machine (SVM), and fuzzy clustering

methods (FCM) are the basis of the classification

process. In the analysis of 2D and 3D MRI images for

classification, the local binary pattern (LBP) approach

was used in [2] for texture analysis. They improved the

LBP method using a sign and magnitude value to utilize

extraction of features from three brain areas (named

advanced local binary pattern, ALBP). The input function

for dealing with ALBP was composed of the concatenation

of its binary values. After that, they used PCA and factor

analysis for selection of features. Next, as a classification

tool, they used SVM. The negative point in this analysis

was that the extraction of high-dimensional features

contributed to high computing processing. So, concentrating

on extracting features of a large MRI dataset using

parallel computing methods may be easier. In terms of

feature extraction, the authors of [3] used the discrete

wavelet transform (DWT) technique. Then, for feature

selection, PCA was applied. Next, for classification, linear

discriminant analysis (LDA) was used. The accuracy rate

of this method was 77.78%.

Similarly, the authors of [4] employed the DWT for the

extraction of the feature and the PCA for the reduction of

the feature. Then, they used the Normalized Mutual

Knowledge Feature Selection (NMIFS) method for the

selection of features. A similar approach was suggested

in [5]. A system composed of three phases was proposed.

Initial extraction of features utilizing a dual-tree complex

wavelet transform (DTCWT), reduction of feature

dimensionality using PCA and finally, the feed-forward

artificial neural network (FNN) was used for classification.

The results of this approach (accuracy 90.06%) were

considered to be successful. It was noticed that with the

use of another preprocessing tool, the efficiency can be

further improved. Furthermore, the authors of [6] have

used the PCA for feature selection in order to reduce the

dimensionality of data. Three classifiers were used for

classification SVM, import vector machine (IVM), and

regularized extreme learning machine (RELM). The

accuracy rate was considered relatively low for the last

three classifiers.

A computer-aided diagnostic system consisting mainly

of three parts was proposed in [7]. First, the automatic

segmentation of brain tissue has been applied for each

image. Second, partial least squares (PLS) and PCA were

used for extraction of features. Lastly, with the SVM,

image classification was applied. The PCA-based method

in [8] was paired with supervised methods of learning.

This combination helped address the limited sample size

issue. In this research, PCA was first used with two linear

feature selection techniques—LDA and Fisher discriminant

ratio (FDR)—to obtain the final characteristics that will

then feed the two subsequent classifiers—neural networks

(NN) and SVM.

The authors of [9] suggested a novel method for the

diagnosis of AD using voxel-based morphometry (VBM)

detected features by the classifier self-adaptive resource

allocation network (SRAN). Furthermore, PCA has been

carried out on the morphometric features acquired mainly

from the VBM analysis for feature reduction. As for the

SRAN classifier input, these reduced characteristics were

used. Another analysis of using an SVM classifier on the

PCA’s reduced features was also performed. Also, in [10],

by using the PCA, the authors applied an automated AD

classification method. Then, to identify the level of AD in

the input MRI, the reduced dimensional information is

transmitted to an artificial neural network (ANN). The

classification rate of this method reached 89.22%. The

latter can be improved by using more data in the learning

phase or focusing on another region of the brain affected

by AD.

For AD identification, non-linear statistical-based

techniques have also been used. For instance, the authors

of [11] introduced an approach based on the combination

of the extracted characteristics with the Mini-Mental

State Examination (MMSE) scores, applying a two-sample

t-test to pick a subset of features.

In [12], another method using similar characteristics

was suggested, which consists of four stages: (1) a brain

network was constructed from the functional magnetic

resonance imaging (fMRI) data, using a minimum spanning

tree, (2) frequent subnetworks were operated via the graph

substructure pattern mining (gSpan), (3) to discover the

Fig. 3. Taxonomy of methods of detecting AD.



Journal of Computing Science and Engineering, Vol. 16, No. 1, March 2022, pp. 1-13

http://dx.doi.org/10.5626/JCSE.2022.16.1.1 4 Marwa Zaabi et al.

important discriminative subnetworks, they used the sub-

network selection algorithm, and (4) to extract features

from the reconstructed networks, graph kernel PCA was

applied. The SVM was finally used for classification.

Deficiency of generality due to the small data used (68

participants) affected the results of the classification.

Also, the authors of [13] used the SVM for AD detection.

On the other hand, the authors of [14] introduced a kernel

PCA as a form of feature selection which was incorporated

to the extraction of the feature of 3D texture descriptor,

CLBPSM-TOP (complete local binary pattern from three

orthogonal planes). Then, they used an SVM for the

classification. Table 1 recaps the statistical methods listed

above and their accuracies [1-14].

B. AD Detection using Deep Learning-based
Methods

In the field of medical imaging, many methods based

on deep neural networks have significantly improved

precision and outperformed traditional methods, one of

which is the detection of COVID-19 [15].

We distinguished various types of deep learning

strategies to detect AD. Each strategy is aimed to accurately

employ the deep architecture of the deep models, and

eventually make a good classification. The choice of the

strategy was dependent on many factors such as the

database size, availability of labeled images, number of

layers, and the learning technique that will be employed.

In the following, we present the main deep learning

strategies for AD detection.

1) Autoencoder based Methods

One of the vast families of deep learning techniques is

an auto-encoder. It consists of two symmetrical deep

networks, which typically have shallow layers illustrating

the network’s encoding section, and second layers

representing the decoding section. Here, using the auto-

encoder network, we concentrate on AD detection

methods.

For instance, in [16] the authors suggested a deep

learning method based on sparse auto-encoder (SAE) for

the detection of AD. This auto-encoder enabled the

features to be selected in an unsupervised way by

reducing reconstruction errors (cost-function optimization

is the basis of the training process). It consisted of an

encoder followed by a decoder. Two auto-encoders were

trained and then a softmax layer was built to classify the

vector characteristics.

Other autoencoder-based methods can also be found

using linear activation features and weights, as in [17],

using a k-sparse auto-encoder (KSA) for classification. The

downside to this approach was the overfitting of multiple

parameters that can occur when small data sets were

employed. Furthermore, the authors of [18] used the

architecture of deep convolutional auto-encoder (CAE), a

method that can decompose a very large dataset

automatically and nonlinearly (using convolutional layers,

this architecture can extract data-based features straight

from 3D maps).

The authors of [19] used the texture details and other

related features to achieve a multi-class classification.

Then, deep learning was implemented on the basis of two

separate models. In particular, subcortical region-specific

feature extraction, feature selection and a deep stacked

auto-encoder were subsequently performed successively.

In order to improve classification accuracy, computing

fractal dimension cooccurrence matrix (FDCM) from

texture has been utilized. The two models achieved

56.6% and 58.0% cross-validation accuracy. Using other

Table 1. Statistical methods

Study Technique Classifier Dataset Accuracy (%)

[1] PCA K-mean / FCM SVM ADNI 83.3 / 90

[2] LBP+PCA SVM ADNI 96.28

[3] DWT, PCA LDA ADNI 77.78

[4] DWT+PCA SVM ADNI 95

[5] DTCWT, PCA FNN OASIS 90.06

[6] PCA SVM / IVM / RELM ADNI 75.33 / 60.20 / 76.61

[7] PLS SVM ADNI 88.49

[8] PSA SVM / NN ADNI 96.7 / 89.52

[9] VBM SRAN OASIS 91.18

[10] PCA ANN OASIS 89.22

[11] PCA, LDA SVM ADNI 93.85

[12] Kernel PCA SVM ADNI 91.3

[14] Kernel PCA SVM ADNI 84
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texture characteristics, these rates can be increased.

Another approach was proposed in [20] that used the

brain network and clinical text knowledge. By computing

the functional connectivity of brain regions utilizing

resting-state functional MRI data, the brain network was

built. A stacked auto-encoder network was applied in

order to differentiate among normal aging and early stage

of AD. The precision of the classification reached 86.47%.

By utilizing a larger data set, this outcome can be

improved. In [21], the proposed strategy was presented in

two steps. An ensemble of auto encoder-based feature

extraction modules was utilized in the first step to

produce image features from a 3D input image, and a

convolutional neural network (CNN) was employed in

the second step to diagnose AD. The accuracy of the

results obtained was 95%.

2) CNN based Methods

In recent years, CNN has been highly used in AD

detection methods owing to its ability to automatically

learn features and also to use them on a large dataset.

Therefore, different approaches have been suggested in

the literature for that purpose. For example, the authors of

[22] used a CNN for feature extraction then they employed

the random forest (RF), SVM and K-nearest neighbor

(KNN) for classification of images.

In [23], an analytical approach based on multi-modal

MRI was suggested that was suitable also for fMRI or

diffusion tensor imaging (DTI) data. Connectivity network

images were extracted by using DTI and FMRI conjointly.

It was then used as an input of a CNN for classification.

The obtained accuracy of classification was 92.06%. This

rate can be improved by trying 3D convolution instead of

2D convolution. Yue et al. [24] utilized for the extraction

of features a deep convolutional neural network (DCNN).

Initially, the structural MRIs were pre-processed inside a

strict pipeline. Next, instead of parceling regions of

interest, they resliced each volume and put the resliced

images directly into a DCNN. Also, the authors of [25]

used the graph convolutional neural network (GCNN)

classier. It was based on structural connectivity inputs in

the form of Laplacians graphs. This network composed

of 11 layers (nine convolutional layers and two fully

connected layers) allowing the classification of individuals

of AD.

Besides classifying AD patients utilizing a structural

brain MRI, the authors of [26] introduced a deep 3D CNN

model. Although this technique used two databases, the

classification accuracy reached 73.4% (ADNI) and 69.6%

(OASIS). These values can be improved by optimizing

the shape of the network. Also, the authors of [27]

suggested a new AD recognition CNN system where 3D

CNN and 3D convolutional long-term memory (3D

CLSTM) were used. To learn informative features, they

used initially a six-layer 3D CNN, next 3D CLSTM was

exploited to extract higher-level channel-wise information.

On the other hand, in [28], 2D slices obtained from the

decomposed 3D PET images were learned by recurrent

neural networks (RNN) and 2D-CNN conjointly. The

hierarchical 2D-CNNs were then constructed to capture

the intra-slice features whereas RNN’s gated recurrent

unit (GRU) was applied to extract the inter-slice features

for final classification. The authors of [29] used a 3D-

CNN capable of learning generic characteristics capturing

biomarkers of AD. The 3D-CNN was based on a 3D

CAE pre-trained to identify anatomical form variations in

MRI scans. Then, the 3D-CNN fully connected layers were

fine tuned for task-specific classification. Backstrom et

al. [30] also utilized a 3D-CNN compound of five

convolutional layers for feature extraction, and three

fully connected layers and softmax for performance of

classification. In addition, in [31], a classification method

based on a combination of multimodal convolutional

networks was used to learn the different features. Initially,

3D-CNN is used to extract high-level features hierarchically.

Next, multi-scale 3D CAEs are designed to learn different

features. Then, such convolutional networks combine the

features learned with the fully connected layers and

softmax layers for image classification.

Besides, a deep 3D-CNN (HadNet) has been proposed

in [32], which compounds five types of processing layers

(data layer, convolutional layer, 3D max-pooling, global

average pooling, and dense layer). The HadNet

architecture was categorized in three blocks: STEM that

down samples the MR-image data; MAIN that used

starting blocks to get the most hidden features; and

HEAD where classification of the output was applied. In

[33], a CNN model was used to classify slice data that

has been randomly partitioned and slice data with

independent participants. Then, MRI participants were

diagnosed using a slice voting approach. The proposed

method’s accuracy was 93.10%.

3) Transfer Learning

We can discover transfer learning-based approaches in

the literature that seek to manipulate the problem of AD

detection accurately. The saved information was gained

while dealing with a vast problem and applying it to

another problem which was taken into account in this

form of model. In these approaches, one of the old CNN

architectures “LeNet-5” [34] detects AD. The LeNet

model relied on the architecture of CNN, consisting of

three convolutional layers, two subsampling layers, and a

fully connected layer. In [35], the authors used another

CNN architecture named AlexNet pretrained on the

ImageNet dataset, containing five convolutional layers

and three fully connected layers. Also, the method

proposed in [36] was based on the model AlexNet-SVM,

which consists of four procedures.

Another approach based on transfer learning using a

mathematical model was proposed in [37]. This model

contained three steps: pre-processing; choosing most
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informative MRI slices; and classification utilizing transfer

learning (applying the VGG-16 architecture). The accuracy

was 95.73%. Using the fine-tuning approach (training the

model’s pre-trained convolutional layers), this can be

improved. Also, in [38], for the detection of AD, before

using the VGG-16 architecture for feature extraction, the

authors applied the preprocessing to convert images 3D to

2D. Then, decision tree, SVM, K-means clustering and

linear discriminate were used for classification.

In addition, the authors of [39] applied a 2D

convolutional network “DemNet,” founded on VGGNet,

for the detection of AD, which took the slices in input.

Thirteen convolutional layers and three fully connected

layer were built into this network. The convolutional

layers were split into five batches through a max pooling

layer. After that, it produces three outputs corresponding

to the classification ratings. The VGG-19 architecture

was also used in [40] to diagnose AD. Besides, in [41],

other than VGG-16, the authors used another architecture

called Inception-V4. The breakthrough of the Inceptions

was in the realization that by modifying how convolutional

layers were connected, nonlinear functions can be studied.

Therefore, the fully connected layer was then rejected in

preference of a global average pooling (GAP) which

averaged the maps of features. Then, it was connected for

classification with a softmax layer.

The approach in [42] was focused also on deep learning.

The method treated the 3D input volumes and then applied

the SPM eight for every volume to bring out the gray

matter. Each volume was translated to 166 slices of 2D.

Afterwards, these slices were moved onto two architectures

(GoogLeNet and ResNet). The GoogLeNet was composed

of 22 layers and concentrated on accurate augmentation

of modules in depth of the network. It is known for its

inception module as well. Several filters extract multi-

scale information that was combined prior to transfer to

the next layer. Otherwise, the residual learning theory

was the foundation of ResNet. This model enabled the

depth to increase dramatically and reduced the complexity

of calculation. This was due to the implementation of

identity connections through various convolutional layers,

which transmitted directly the input to the output with its

transformed information f(x).

In [43], there were three phases of the method

proposed: initially, converting a whole-brain MRI to a 2D

cortical thickness sheet, then, extracting brain slices from

MRI volume data, and lastly classifying with CNN,

ResNet architecture, and Inception architecture. Another

method of detection was proposed in [44]. In order to add

more functionality, the ResNet extracts the feature vectors

from MRI scans. Then, these vectors were concatenated

with their respective values of age and sex. Finally, these

extended features were fed into an SVM classifier.

Table 2 recaps the deep learning methods listed above

and their accuracies [16-44].

Besides, ResNet-18 was the CNN architecture used in

[45]. The temporal convolutional network (TCN) and

several types of RNN were used as sequence-based

models. This model achieved a precision of 91.78% in

[46]. The identification of AD was proposed using a

novel DSC (depthwise separable convolution) network-

based method. The CNN was initially employed to detect

AD, with a classification accuracy of 78.02%. Then, a

strategy that combined DSC and CNN was proposed. In

addition, transfer learning was used to increase model

performance in this method. Two trained models (AlexNet

and GoogLeNet) showed a classification accuracy of

91.40% and 93.02%, respectively. Also, to improve

classification accuracy, an ensemble model was applied

in [47], where Xception and MobileNet, two pre-trained

models, were combined. The results reveal that using the

separable convolution layer of both Xception and

MobileNet, the ensemble model improved classification

accuracy (91.3%).

Table 2. Deep learning methods for AD detection

Study Technique Dataset Accuracy (%)

[16] SAE OASIS 91.6

[17] KSA ADNI 74.605

[18] CAE ADNI 80

[19] SAE ADNI 56.6 (model1) / 

58 (model2)

[20] SAE ADNI 86.47

[24] DCNN ADNI 96.9

[25] GCNN ADNI 89

[26] 3DCNN ADNI / OASIS 73.4 / 69.6

[27] 3D CNN+3D CLSTM ADNI 94.19

[28] CNN+RNN ADNI 95.28

[30] 3D ConvNet ADNI 98.74

[31] Multimodal CNN ADNI 88.31

[32] 3D CNN ADNI 88.31

[34] LeNet-5 ADNI 96.85

[35] Alexnet ADNI 67.62

[36] Alexnet-SVM ADNI 96.39

[37] VGG-16 ADNI 95.73

[38] VGG-16 ADNI 73.46

[39] DemNet ADNI 91.85

[40] VGG-19 ADNI 99.36

[41] VGG-16 / Inception V4 ADNI 92.3 / 96.2

[42] GoogLeNet / ResNet ADNI 99.18 / 99.08

[43] Inception / ResNet ADNI 81 / 72

[44] ResNet ADNI / OASIS 78.64 / 86.81
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C. AD Detection-based Segmentation

There are several automatic segmentation methods that

aim to localize the hippocampus region to accurately

diagnose AD. For example, the authors of [48] proposed

a method for hippocampus segmentation. This method

involved several stages. The extraction of the skull from

the brain was the first step, then a selection of the region

of interest was done using OpenCV. Also, they used K

means to isolate the white matter and the gray matter. All

the pixels were scanned in order to separate all related

regions into a label, thus separating regions of the same

image by boundary. The idea to coherently select the

hippocampus region was to choose among the labelled

regions, their maximum two areas which represented the

target region. On the other hand, the Atlas model

containing two volumes of images were used by Dill et

al. [49], based on a structural brain MRI and a binary

image with the corresponding hippocampus map. Twenty-

five atlases were used: Twenty-four were chosen to show

a combination of features associated to three parameters

while the last atlas was MNI152 with 21 hippocampal

subcortical structures. Besides, in [50], the authors

proposed a model containing four steps: The first step

presented the preprocessing utilizing the non-rigid

registration implemented in the Advanced Normalization

Tools (ANTs). The displacement fields were calculated

through this non-rigid registration.

Furthermore, the ANTs also calculated a coefficient

that indicated the similarity between the training and

target images in terms of image features and brain

morphometrics. In the third step, using a surface

triangulation module, every labelled image was converted

to training point set representation. In the fourth step, the

training point sets and their corresponding coefficients

were added. On the other hand, authors of [51] presented

an approach for segmenting hippocampus automatically

utilizing a fully-convolutional network (FCN) with a

conditional random field (CRF) layer. This approach

allowed more accurate segmentation of the edge with

integrating details about the edge into the loss function.

In [52], the authors proposed a dual functional 3D-

CNN that incorporated 3D hippocampus segmentation

into the classification of brain pathological states. To

segment the hippocampus, they utilized variant V-Net.

Finally, by connecting a 3D-CNN, the classification was

conducted. The downside of this method was that the

dataset was small; therefore, the features that the samples

have learned was limited. Moreover, a hybrid convolutional

and RNN has been proposed in [53]. This method was

composed of three steps. For each hippocampus, a binary

mask was created by segmentation. Then, the 3D image

batch was divided into two patches, namely the external-

hippo and internal-hippo. Next, RNN was applied to

learn the decomposed patches obtained after applying 3D

DenseNet. The aim was to get high-level correlation

features which will feed a classifier through the fully

connected layer.

To gain more contextual knowledge for hippocampus

segmentation, the authors of [54] used a deep network,

DCCNet (dual dense context-aware network). A

combination of two modules, a multi-resolution feature

fusion module (multi-resolution feature fusion module,

MRFFM) and a multi-scale input module (multi-scale

input module, MSIM), highlighted the contextual detail.

By collecting the location data and detailed characteristics

from various viewpoints, the MSIM was efficient in

segmenting target items and backgrounds. The MRFFM

was used to combine features between the encoder and

the decoder from different resolution layers via cross-

connections. It used high-resolution encoder features to

direct segmentation of the hippocampus edge in the

decoder process. The method in [55] was centered on

segmenting the corpus callosum and ventricle regions

utilizing the multi-level thresholding techniques such as

artificial bee colony (ABC) and ant colony optimization

(ACO). Using different measures of ground truth (GT)

pictures, these methods have been quantitatively and

qualitatively tested. Then, the CNN was introduced in

order to extract the characteristics of the segmented

image for the classification. The method in [56] used a

3D structural brain MRI images to isolate the MRI

images of white and gray matter, extract 2D slices and

pick main slices from them for extraction of features. In

order to calculate the first-order statistical features,

feature extraction is applied on top of these slices and the

prominent feature vectors produced by PCA were selected.

In the classification process, these features were taken as

input by various classifiers to predict the AD classes.

An automatic hippocampus segmentation process based

on the assembly of convolutional multiview networks

was proposed by Chen et al. [57]. Initially, to perform 2D

segmentation on the slices extracted from nine different

views, they used U-SegNet (a modified U-Net) architecture,

creating nine 3D probability maps for each hippocampus.

Then, the Ensemble-Net was trained to combine probability

maps to generate the final segmentation. In addition, to

manipulate the task of 3D hippocampus segmentation,

the authors of [58] proposed a new two-stage process,

which incorporated a localization step and a segmentation

step. There were two steps in the localization phase:

extraction of the slices of interest (slices containing the

hippocampus) using Bi LeNets and generation of candidate

regions (using U-Nets). The segmentation process

consisted of two phases: First the selected regions are

combined (using modified U-Nets), and second, a decision

is made for to multi-view. A hippocampus segmentation

strategy based on iterative local linear mapping (ILLM) is

proposed in [59], with a representative and local structure-

preserved feature embedding mechanism. The proposed

framework consists of three phases: (1) the LLM used for

preliminary segmentation forecasting; (2) the object of
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the semi-supervised deep autoencoder is to map the

samples from the MR patch to the embedded feature

manifold in a nonlinear manner; and (3) ILLM is used to

achieve accurate segmentation. In addition, Cui and Liu

[60] proposed a hippocampus analysis method focused

on the fusion of densely connected convolutional networks

(3D DenseNet) and the analysis of shape. This method

combines four stages: segmentation of hippocampus and

extraction of a patch, 3D DenseNet models constructed,

shape analysis based on an MLP (multi-layer perceptron),

and classification. On the other hand, the authors of [61]

proposed the improved deep learning algorithm (IDLA)

and statistically important text information for early

detection of AD. For the measurement of connectivity in

brain regions, the brain function was identified with

resting-state functional data. Between normal aging and

disorder development, an autoencoder network is used.

The proposed method integrated efficiently biased neural

network features and authorized for accurate detection of

AD.

In [62], the authors suggested using the ROI-based

contourlet sub-band energy (ROICSE) feature to achieve

AD classification. After preprocessing, the structural

MRI image was segmented into 90 distinct ROIs via a

brain mask. Next, the contourlet transform was performed

on these ROIs to obtain their sub-bands, and then sub-

band energy feature vectors of multiple brain ROIs were

concatenated to generate the ROICSE feature. Then, to

classify the subjects, the SVM was applied. Moreover,

for detection AD, in [63] the hippocampus was segmented

bilaterally by multi-atlas. Intensity-based features, shape-

based features, and texture-based features were among the

characteristics recovered. The segmentation was then

accomplished using local label learning. In [64], the

authors suggested a new approach that only uses features

that show significant variations across the classes. An

ANOVA test was used to do this. They only used

structural hippocampal asymmetrical features based on

the directional response of 3D log-Gabor filters. These

features were subsequently incorporated to train the SVM

model. The authors of [65], on the other hand, utilized an

icobrain dm, an automated technology that allows for the

segmentation of brain areas that are significant for the

diagnosis of dementia (cerebral lobe, hippocampus). As a

result, they are focusing on the precision, reliability, and

diagnostic effectiveness of these volumetric measures for

assessing the brain volume of specific dementia patients.

Other techniques seek to quantify the hippocampal

volume in order to achieve an accurate segmentation of

its area. For instance, the authors of [66] used 3-channel

2D patches, obtaining the volume by multiplying the

volume of the voxel and the number of hippocampal

estimates.

Manual segmentation methods that proposed at

localizing the hippocampus can also be found, as in [67].

They used manual segmentation of the hippocampus in

which 32×32 patches (of each coronal view, axial view

and sagittal view) were formed and then combined in one

sample. The three view patches were then inserted in

CNN.

Table 3. Segmentation methods for AD detection

Study Technique Dataset Performance

[50] Coherent Point Drift OASIS RMSE = 0.6827

[51] FCN+CRF-RNN ADNI Acc = 87.31%

[52] Dual functional 3D CNN ADNI Acc = 84%

[53] CNN+RNN ADNI Acc = 91%

[54] DCCNet ADNI Acc = 95.71%

[56] First-order statistical features OASIS Acc = 90.09%

[57] U-SegNet ADNI 89% Dice ratio

[58] Bi-LeNet+U-Net ADNI DSC = 92.69

[59] ILLM ADNI DSC = 0.8852 ± 0.0203

[60] 3D DenseNet ADNI Acc = 95.29%

[61] IDLA ADNI Acc = 94.6%

[66] Volume measurement ADNI Average errors: (4.3173 ± 3.5436) and (4.1562 ± 3.5262)

[67] Manual segmentation ADNI Acc = 90.05%

[68] Volumetric changes Regional Ethics Committee Stratum pyramidal of subiculum (p < 0.05)

[69] Combination of cerebral image features ADNI AUC = 0.8906

[70] harmonized protocol (manual) ADNI Volume (left/right hippocampus): 1.990 / 2.070

DSC: dice similarity coefficients.
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Also, in [68] the proposed method was based on the

evaluation of seven T-MRIs for the detection of

volumetric changes in the structure of the hippocampus.

Using a procedure that classified layers into two classes

in neuronal bodies, manual segmentation of subregions

within the hippocampus was performed. Five subregions

in the hippocampus region are then segmented. The

approach suggested by Jongkreangkrai et al. [69] was

based on a combination of the volume of the amygdala,

hippocampus, and thickness of the entorhinal cortex.

Initially, with FreeSurfer tools, T1-weighted MR brain

images were analyzed to extract features in both brain

hemispheres. Then, the relative volumes of the

hippocampus and amygdala were measured. Next, the

characteristics were used for classification as input into

the SVM. As a serious drawback of this research, the

relatively limited number of subjects used in the training

phase can be considered. In [70], various protocols were

used to assess hippocampus volume using manual

segmentation. To this end, they have introduced a

harmonized protocol which makes it possible to reduce

the heterogeneity of anatomical landmarks. This protocol

has been tested on each tracing unit to segmentation

accuracy and volumetric differences between patients and

controls. The aforementioned hippocampus segmentation-

based techniques and their performance are summarized

in Table 3 [50-54, 56-61, 66-70].

IV. DATA COMPARISON

A brief comparison between two main datasets, for the

AD detection task, used in the literature depending on

two criteria was provided to give further idea into our

research [71, 72] (Table 4).

Alzheimer's Disease Neuroimaging Initiative (ADNI):

It is a multicenter longitudinal study utilized for the early

detection and monitoring to establish clinical genetic

imaging. Cognitive and functional clinical examination

tests were carried out for 819 subjects (for 12 months,

they were monitored).

Open Access Series of Imaging Studies (OASIS):

It’s a collection of MRI data sets that were available for

study and examination. The initial data set consisted of a

cross-sectional collection of 416 subjects. Three or four

individual T1-weighted MRI scans acquired in single

imaging sessions were integrated for each individual

subject.

V. DISCUSSION

The reported results in the previous tables showed very

different performances on the same databases. This

difference was highly dependent on the feature extraction

stage as well as the classification algorithm and the applied

protocol. These performances were further enhanced

through the preprocessing stages that can be employed as

an initial treatment. However, other researchers eliminated

this preprocessing step to reduce the computing

complexity and to prove the efficiency of their methods

in the presence of some imperfections in the images.

The three main categories proposed in this survey

showed that the deep learning techniques prove more

robust against the image variations and gave higher

detection performances than the classical methods using

statistical models.

This performance was explained by the high

discriminative power of the deep features that were

mostly extracted using pretrained models. These models

were initialized after long training on very large

databases such as ImageNet database. The diversity of

these databases played an important role to build a robust

model that can still be efficient in the presence of very

high challenging classification problems such as AD

detection, where distinguishing between the two main

classes (AD or normal) is a very hard task. One of the

best strategies to accurately employ the deep learning

models is transfer learning. This strategy aims to fine-

tune the pre-trained models to the problem of AD

detection while freezing the initial parameters. The last

fully connected layer, however, is changed to classify the

images into AD or normal case. As an example, [38]

achieved an accuracy of 99.36% using VGG-19 fine-

tuned with ADNI database. OASIS database was another

challenging database that contained fewer numbers of

images. In [15], the accuracy was 91.6% using another

deep learning strategy called auto-encoder. This is a

different way to use the deep features with two different

stages encoder and decoder. Good performances have

been achieved.

Recently, the generative models have been used to

handle the problem of the lack of grand labeled datasets.

These models aimed to generate new images using the

images of small datasets. This strategy enhanced the

discriminative power of the deep models, and thus

improved the classification performance.

Table 4. AD datasets comparison

Dataset Number of subjects Technology

ADNI [71] n = 819 (229 CN, 229 CN, 192 AD) MRI acquisition

Oasis [72] n = 416 (aged 18 to 96) T1-weighted MRI scans
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VI. CONCLUSION

We presented in this paper a detailed survey which

highlighted the main approaches and methods proposed

in the last decade to handle the problem of AD detection.

We proposed a taxonomy that divides these methods into

three main categories according to the applied strategy

and the type of the extracted features as well as the

classification method. From this comprehensive review,

we can notice that the deep learning methods outperform

previous methods based on statistical models and

dimensionality reduction. This performance was achieved

due to the suitable architecture of the deep models,

especially the pre-trained ones, to extract meaningful and

high discriminative features from MRI images. Future

challenges raised by the studied methods aim to initialize

the deep models through training on large AD datasets,

and fine-tune them using similar AD images. Moreover,

generative models using the GANs was one of the future

solutions due to their high accuracy achieved with other

image classification applications.
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