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Abstract
Identification of signal waveforms is highly critical in 5G communications and other state-of-the-art radio technologies

such as cognitive radios. For instance, to achieve efficient demodulation and spectrum sensing, cognitive radios need to

implement automatic modulation recognition (AMR) of detected signals. Although many works have been reported in

the literature on the subject, most of them have mainly focused on the additive white Gaussian noise (AWGN) channel.

However, addressing the AWGN channel, only, does not sufficiently emulate real-time wireless communications. In this

paper, we created datasets of six modulation schemes in GNU Radio. Wireless signal impairment issues such as center

frequency offset, sample rate offset, AWGN, and multipath fading effects were applied for the dataset creation. After-

ward, we developed AMR models by training different artificial neural network (ANN) architectures using real cepstrum

coefficients (RCC), and minimum-phase reconstruction coefficients (MPRC) extracted from the created signals.

Between these two features, MPRC features have the best performance, and the ANN architecture with Levenberg-Mar-

quardt learning algorithm, as well as logsig and purelin activation functions in the hidden and output layers, respectively,

gave the best performance of 98.7% accuracy, 100% sensitivity, and 99.33% specificity when compared with other algo-

rithms. This model can be leveraged in cognitive radio for spectrum sensing and automatic selection of signal demodulators.

Category: Network and Communications

Keywords: Cognitive radio; Cepstrum analysis; GNU Radio; Modulation schemes; MPRC; RCC 

I. INTRODUCTION

Current research in the automatic modulation recognition

(AMR) field began with the military due to the need to

securely transmit and receive friendly signals and at the

same time detect, track, and jam hostile signals. The

AMR has recently been applied to civilian applications

by exploiting recent developments in cognitive radio

systems [1, 2]. To effectively transmit information from a

transmitter to a receiver, the receiver must recognize the

modulation of the radio signal so that it can effectively

demodulate it, thus making the transmission possible.

The conventional approach which involves an inclusion

of the modulation information in each signal frame suffers

a significant drawback on spectral efficiency. Therefore,

the spectral inefficiency problem has contributed to the

recent shift towards AMR, as it is more bandwidth-

efficient because the transmitted signal element does not

need to carry information about the types and order of its

modulation. The 1 ms end-to-end (E2E) latency of ultra-

reliable low latency communication technology amongst

other technologies driven by 5G wireless communications

will be easily achieved if AMR is deployed [3]. While the

AMR algorithms help to control the bandwidth, the

receiver requires more computational power during signal

processing. Nevertheless, the corresponding increase in

computing power and microprocessor size in recent times

has substantially addressed this problem.

In general, some literatures classify AMR algorithms

into two broad categories, namely likelihood-based (LB)

and feature-based (FB) [4, 5]. Although the LB methods

work by measuring the probability of a received signal

belonging to candidate constellations and selecting the

signal with the highest probability, the FB methods work

by extracting characteristics from high-order statistics and

cyclostationary characteristics. Artificial neural network

(ANN) is a commonly used FB machine learning (ML)

approach for AMR [4, 6, 7]. ANN has the unique chara-

cteristic of an information or data processing system,

which is not programmed but can autonomously adapt

itself to changing conditions of the information environ-

ment. This is usually achieved by performing a nonlinear

mapping of the outputs to a set of inputs. Like the human

neurological system, they consist primarily of neurons

which are network nodes consisting of numerous nonlinear

functions, links between the neurons which are weighted

and can be adjusted automatically using a training

algorithm. As an ML technique, the reason for ANN

dominance includes its advantages such as generalization,

parallel processing, centralized memory, redundancy, and

learning. Several authors have leveraged these attributes

for the field of AMR [4-7].

The authors in [8] used a fourth-order cumulant-based

approach on multiuser AMR. The shortcomings of their

work lie in assumptions such as a specific number of

transmitters, transmitting at the same transmission power,

and their choice of an additive white Gaussian noise

(AWGN) channel. Their method was further limited to

the identification of four modulation schemes—binary

phase shift keying (BPSK), quadrature phase shift keying

(QPSK), 4-level pulse amplitude modulation (4PAM),

and 16-state quadrature amplitude modulation (16QAM)—

likely present in the frequency band. 

As identified above, in [9], the authors addressed the

shortcomings of [8] by developing a multiuser AMR

algorithm based on fourth-order cumulants for real-

multipath fading environments and without the assumption

of a specific transmit power. Their algorithm was also

effective in determining the precise modulation type. With

the advantages of diversity and recent developments in
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MIMO schemes, research on multiuser AMR recognition

schemes will continue to increase.

It has been established that the signal cepstrum has rich

characteristics and can be used to estimate signal

waveform parameters that can be utilized to immediately

identify and classify signals based on their modulation

schemes [10]. The authors extracted the cepstrum of

signals with orthogonal frequency-division multiplexing

(OFDM) and utilized these distinct features to detect and

classify the signals using the Neyman-Pearson detection

strategy. The modeled AMR system is robust to noise and

outperforms the energy detector instances of low noise

uncertainty. However, the fact that it was limited to only

one modulation scheme, OFDM, stood out as a drawback.

The authors in [11] presented one of the earliest

applications of ANN for recognition of both analog and

digital modulation schemes, which included amplitude

modulation (AM), frequency modulation (FM), amplitude

shift-keying (ASK), QPSK, BPSK, frequency shift-

keying 1 (FSK1), frequency shift-keying 2 (FSK2), and

continuous wave (CW). They selected a collection of 21

features obtained by finding the standard deviation,

kurtosis, and skewness of signal characteristics such as

envelope amplitude A, and instantaneous frequency F,

and their combinations (i.e., dot products A.F, F.A, A.A,

A.A', etc.). Each feature was selected either because it

had been successfully used in the past or because

statistical modeling suggested that they are good AMR

feature descriptors. The 21 characteristics were grouped

to create a single 21-dimensional vector of features for

each signal. A multilayer perceptron (MLP) ANN

architecture with one hidden layer was trained using the

backpropagation learning algorithm to classify the

extracted feature vectors according to their modulation

types. Their results showed that for over 80% of the time,

their MLP classifier was able to identify the AM, FM,

ASK, QPSK, and BPSK modulation schemes, while it is

found difficult to classify the FSK1, FSK2, and CW

modulation schemes. 

A different approach in [12, 13] proposed a method for

AMR by extracting cepstral features referred to as mel-

frequency cepstral coefficients (MFCCs) from signals

and their transforms from which the modulation type and

order of digital modulation schemes such as PSK, MSK,

FSK, and QAM were determined. From the results obtained

by the authors, it is evident that some digital modulation

scheme detection was effective with the cepstral feature

extraction approach. However, the fact that the simulation

was limited to the (AWGN) channel stood out as a

drawback, which could hinder real-world implementation.

This is because some other severe channel impairments

like center frequency offset (CFO), sample rate offset

(SRO), AWGN, multipath, and selective-fading were not

considered in their proposed AMR model. 

We aim to address some of the previous limitations,

where authors were restricting channel impairments to

AWGN in their models, leaving out some other severe

impairments like CFO, SRO, multipath, and selective

fading, which could hinder real-world implementation. In

addition, existing works such as [8-13] limited their work

to certain modulation types and order, thus presenting a

limited view of the problem in the literature. We experi-

mented with six digital modulation schemes, namely

BPSK, QPSK, 8PSK, 16QAM, 64QAM, and Gaussian

minimum shift keying (GMSK). The real cepstrum

coefficients (RCC) and the minimum-phase reconstruction

coefficients (MPRC) [14-16] obtained from signals

modulated with these six schemes culminated in the

feature vectors used to train a single-layered feed-forward

neural networks and fine-tuned to produce 18 different

AMR models. Thus, the primary contribution of our paper

is the MPRCs extracted from signals modulated with

BPSK, QPSK, 8PSK, 16QAM, 64QAM, and GMSK

signals as an alternative descriptor for modulation

recognition using ANN. The MPRC descriptor improved

the existing performance of the shallow classifier by

enhancing the classification accuracy with reduced

computational complexity and memory space requirement

needed for efficient AMR systems.

The rest of the paper is organized as follows. Section II

is a presentation of the materials and methods. Section III

follows this, where we present the results. The discussion

is presented in Section IV, while the conclusion of the

work is in Section V.

II. MATERIALS AND METHODS

A. Problem Formulation

AMR is an intermediate step between detecting and

demodulating a signal [6]. The generic form of a modulated

signal s(t) received is given as [4]:

(1)

where C(t) is the complex envelope of the modulated

signal, n(t) is a band-limited noise, fc is the carrier

frequency, α is the channel amplitude, β is the phase

offset, Δfc is the carrier frequency offset, and Re{.}

denotes the real part. It is possible to categorize the most

widely used AMR features into five classes: instantaneous

time domain, transform domain, statistical, constellation

shape, and zero-crossing features. In this paper, we used

transform domain features obtained by converting signals

into Fourier domains with various operations for pre-

processing and post-processing. Some of these processes

include smoothing, normalization, median filtering, and

cepstrum analysis. This current study obtained N-

dimensional feature vectors (RCCs and MPRCs) from

modulated signals through cepstrum analysis.

Unique classification of the transform domain features
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of each modulation scheme is a supervised learning

problem [12, 13]. In supervised learning, the training

dataset is {(xk, ck)} with k ε {1, ..., N}, where each xk is a

training sample, N is the total number of samples in the

dataset, and the corresponding set of class labels is ck ε

{1, ..., m}, where m is the number of classes in the

dataset. Therefore, the supervised learning task involves

the development of a model with a set of N samples as

inputs, and a developed model is used to predict a class

label during training (or unknown samples during testing)

as the outputs. Thus, in this study, xk represents the RCCs

and MPRCs obtained from created samples of each of the

six modulation schemes, where the total sample size N =

300 and m = 6 classes (i.e., 16QAM, 64QAM, BPSK,

QPSK, 8PSK, and GMSK).

ANN is a supervised machine learning technique that

can closely approximate linear and nonlinear functions

[14, 15]. However, the mapping function represented by a

network is not perfect because of the local minima

problem, suboptimal network architecture, and finite

sample data in neural network training. Typically, the

network is designed to minimize a loss function, such as

the mean squared error (MSE). Based on the popular

statistical least squares estimation theory [14], the mapping

function F : x → y that minimizes the expected squared

error:

(2)

is the conditional expectation of y given x

(3)

Thus, the least-squares calculated in a classification

problem for the mapping function is precisely the posterior

probability. Theoretically, to get a reasonable estimate, it

can require an extensive network as well as large sample

data. For instance, Funahashi [17] reveals that neural

networks with at least 2D hidden nodes can estimate the

posterior probability with arbitrary accuracy for the two-

group d-dimensional Gaussian classification problem when

unlimited data is available, and the training continues

perfectly. Experimentally, the number of samples is crucial

in learning [18, 19]. 

The output objective of neural networks are the least

square the approximation of the Bayesian posteriori

probability, of the cost function minimization [19, 20].

This is true for other forms of cost or error functions, such

as the cross-entropy function. However, in [21], it was

proved that neural networks trained with a generalized

MSE cost function could satisfy the optimal Bayes rule

and demonstrate that the relationship between neural

networks and the optimal Bayes rule is both in theory and

experiments a statistical decision problem.

For modulation recognition with ANN, the MSE, which

is the loss function (cost function), is often engaged

during supervised training to evaluate the difference

between the expected and actual predictions [22]. Given

N as the number of the training dataset, y is a vector of

true labels (y = [target (x1), target (x2)…target (xn)]), and

 is a vector of the predictions, the loss function L is

represented as Eq. (4) and there is a need to find the slope

to the loss (or cost) function in order to minimize it.

(4)

Fundamentally, in AMR workflow, after signal pre-

processing, discriminatory features are extracted as des-

criptors of the signal modulation, after which the AMR

problem is reduced to a pattern classification problem

[11, 22].

B. Simulation and Dataset Creation

GNU Radio has many in-built tools to create a reliable

and robust dataset in the software-defined and cognitive

radio domain of wireless communication. It includes

libraries for modulators, signal sources, data visualization,

data sinks, encoders, demodulators, and a rich collection

of channel simulation modules for the application of

simulating channel propagation models to synthetic and

real-world signals [11, 23]. As a high-level end-user

applications software, the modules in GNU Radio were

logically linked together in a flow graph as shown in

Fig. 1 to create our dataset for this study.

We selected a random source of GNU Radio as the

data source for signals. The BPSK, QPSK, and 8PSK are

implemented using the PSK Mod blocks as a transmitter

model to achieve each modulation scheme at a sample

rate of 32,000 samples per second as recommended by

the Audio Engineering Society for transmission-related

applications [24]. Also, the sampling rate is at least twice

the highest frequency of the signal, consistent with the

Nyquist theorem. For 16QAM and 64QAM, QAM Mod

blocks were used, and for the GMSK modulation scheme,

the GMSK Mod block, as illustrated in Fig. 2, was used to

achieve the desired modulation. Several compact stochastic

models were used to simulate different propagation

effects in modeling a wireless channel [23, 25, 26].

Furthermore, many more real-life propagation effects

can be synthetically modeled. Thus, in order to realize the

core objective of this study, we used the GNU Radio

Dynamic Channel block to simulate some desired effects

such as random processes for CFO, SRO, AWGN, multipath

propagation, and selective fading in the creation of our

dataset. The dynamic channel also implements the random

E y F x( )–[ ]
2

F x( ) E y x[ ]=

ŷ

L
1
N
----Σk 1=

N
yk ŷk–( )

2

=

Fig. 1. A high-level block diagram for dataset generation.
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phase noise sum-of-sinusoids approach to simulate Rayleigh

fading processes on the modulated signal with random

time-varying channel response taps [25]. To mimic real-

life propagation effects, we set the maximum CFO and

SRO at 1 kHz and a standard deviation of 0.01, the

maximum Doppler frequency used in fading simulation

was set at 2 Hz and an AWGN of 100 µV for a signal of

1 V, thus, setting the signal-to-noise-ratio (SNR) at 80 dB

[23-25]. We collected 50 samples for each modulation

scheme to obtain a total of 300 samples for all the six

schemes considered. Fig. 3 shows sample plots of the

signal generated for each modulation scheme.

C. Dataset Processing and Features Extraction

We pre-processed the data obtained from the GNU

Fig. 2. The GNU Radio GUI showing the GMSK signal generation.

Fig. 3. Sample plots of each modulation scheme used in dataset creation: (a) BPSK, (b) 8PSK, (c) QPSK, (d) 16QAM, (e) 64QAM, and (f )
GMSK.
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Radio file sink to make them usable in ML environments

outside of the cognitive radio ecosystem by converting

them from data files in .dat to .mat files as N-dimensional

vectors using MATLAB R2020a [25]. These vectors are

the in-phase and quadrature components of the transmitted

signal. Operations in the radio domain are largely

considered in complex baseband representation, which is

not currently suitable for many ML toolbox operations;

thus, we performed cepstrum analysis on the datasets to

extract the RCC and MPRC features.

D. Cepstrum Analysis for Features Extraction

The term “cepstrum” in the literature was derived by

reversing the first four letters of the term spectrum.

Quefrency analysis (or quefrency alanysis), liftering, and

cepstrum analysis are all terms used to describe

operations on cepstra. The terms “quefrency,” “alanysis,”

and “cepstrum” were coined by rearranging the letters in

frequency, analysis, and spectrum. These invented terms

are defined in this analogy to the older terms [27, 28].

Cepstrum analysis is a nonlinear signal processing

technique with vast application in speech and image

processing. In AMR, it is used in extracting signal

envelopes since these envelopes have some information

about the modulation of such a signal [8, 9]. To get the

RCCs and MPRCs of the signal, we performed cepstrum

analysis, which is the inverse Fourier transform of the

real logarithm of the magnitude of the Fourier transform

of the modulated signal s(t). RCC is, therefore, a vector

resulting from the implementation of Eq. (5) [28].

(5)

Appropriate windowing of RCC is carried out in the

cepstral domain to form MPRC of the signal, as represented

in Eq. (6) [28]:

(6)

where W is the Fourier transform of windowed RCC of

the modulated signal S(ω). It is implied that for the phase

sequence in Eq. (6) to be a minimum phase sequence, its

complex cepstrum  must be causal, thereby satisfying

Eqs. (7) and (8) [29]:

for n = 1,2, ... (7)

and

= 0 for n < 0 (8)

It has been established that truncating real and complex

cepstral coefficients at different frequency scales preserves

different amounts of spectral details [30]. Thus, we

extracted the first 45 (i.e., N = 45) and first 60 (i.e., N =

60) coefficients of the N-dimensional RCC and MPRC

vectors obtained from the .mat files created for each of

the six modulation schemes, respectively. These coefficients

were then utilized as feature vectors (or descriptors) to

train different shallow ANN architectures to evolve the

appropriate descriptor (between the RCC and MPRC)

with the number of coefficients for the most accurate

AMR model.

E. ANN Model Design and Development

After feature extraction, creating an AMR model was

formalized as a classification problem earlier in this

paper with ANN as a viable classification method [8].

ANN is a collection of processing nodes called artificial

neurons interlinked to model the human neurological

framework in a biological brain using mathematical

operations. A neural network is defined by the pattern of

links (architecture) among the neurons, the methods,

which specify the weights on the connections (learning

algorithms), and the mathematical equations that deter-

mine the output (activation functions) [31]. This study

leveraged the MLP, also known as ANN (a feed-forward

architecture) for the classification task.

The real cepstrum coefficients are herein coded as

RCCs-45 and RCCs-60, for the first 45 and the first 60

elements, respectively. At the same time, the first 45 and

the first 60 elements of the extracted MPRC are coded as

MPRCs-45 and MPRCs-60, respectively. Each of RCCs-

45, RCCs-60, MPRCs-45, and MPRCs-60 form unique

feature vectors that represent the outputs of the cepstrum

analysis performed on each of the 50 samples per

modulation scheme. This culminates into a total of 300

samples for the six modulation schemes considered.

Notably, these feature vectors form the training dataset to

the MLP-ANN. Thus, as shown in Fig. 4, the MLP-ANN

architectures for RCCs-45 and MPRCs-45 have 45 input

neurons (i.e. N = 45) in the input layer while the MLP-

ANN architectures for RCCs-60 and MPRCs-60 (i.e. N =

60) contains 60 input layer neurons. A single hidden

layer architecture is employed for model simplicity. The

output layer of the MLP-ANN consists of six neurons

which map the inputs to each class probability, as shown

in Table 1. Each class is a unary encoded vector [29].

Extensive experiments were carried out to identify the

most accurate network architecture for automated

modulation recognition. For the hidden and output layers,

pure linear (P), log-sigmoid (L), and tan-sigmoid (T)

activation functions were utilized at different times with

two learning algorithms: Levenberg-Marquardt (LM) and

Scale Conjugate Gradient (SCG). Thus, a total of 18

MLP-ANN architectures were experimentally trained and

evaluated. These architectures are coded as PPLM,

LPLM, TPLM, PLLM, LLLM, TLLM, PTLM, LTLM,

TTLM, PPSCG, LPSCG, TPSCG, PLSCG, LLSCG,

TLSCG, PTSCG, LTSCG, and TTSCG [29]. The first two

letters in the code represent the transfer functions at the

RCC
1

2π
------ S e

jω
( )log

π–

π

∫ e
jω–

dω=

MPRC
1

2π
------ W e

jω
( )exp

π–

π

∫ e
jω–

dω=

ŝ n( )
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hidden and the output layers, respectively, while the

remaining letters represent the learning algorithm. The

number of neurons in the hidden layer was also varied

from 1 to 50 for each architecture. The ANN model

implementation, training, validation, and testing were

performed using the Neural Network Toolbox in MATLAB

2020a running on an Intel Core i5-3210M CPU@2.50

GHz speed with 4 GB RAM and 64-bit Windows 7 oper-

ating system. To achieve better generalization, the MATLAB

the MATLAB script was programmed to randomize the

sample distribution, while dividing the training data into

three subsets for training, validation, and testing in the

ratio 80:10:10, respectively. Fig. 5 captures a sample of

the ANN architecture training visualizations.

F. ANN Models Performance Evaluation

Adequate steps were taken to ensure that the models

built were consistent. To achieve this, we fine-tuned each

ANN model and trained for 20 iterations. In essence, we

trained, tested, and evaluated 18,000 network configurations.

The evaluation of ANN models was based on the following

standard Key Performance Indices (KPIs): accuracy,

sensitivity, and specificity. The accuracy, sensitivity, and

specificity indices were calculated from four parameters,

which are true positives (TP), false negatives (FN), true

negatives (TN), and false positives (FP). TP represents

correct positive prediction, FP represents incorrect positive

prediction, TN represents correct negative prediction, and

FN incorrect negative prediction of the modulation

schemes. The KPIs are mathematically represented as

Eqs. (9)-(11):

  (9)

(10)

(11)

Also, the MSE, mean absolute error (MAE), and

standard deviation were computed to measure the errors

and to decide which architecture is best suited for the

AMR.

III. RESULTS

To illustrate the dissimilarities of the MPRCs and

Accuracy TP TN+( ) TP TN FP FN+ + +( ) 100×⁄=

Sensitivity TP TP TN+( )⁄ 100×=

Specificity TN TP TN+( )⁄ 100×=

Fig. 4. Network architecture of the ANN model.
Fig. 5. ANN training visualization.

Table 1. MLP-ANN target outputs

Class Bit1 Bit2 Bit3 Bit4 Bit5 Bit6

BPSK 0 0 0 0 0 1

8PSK 0 0 0 0 1 0

QPSK 0 0 0 1 0 0

16QAM 0 0 1 0 0 0

64QAM 0 1 0 0 0 0

GMSK 1 0 0 0 0 0
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RCCs feature vectors, their histogram distributions are

presented in Figs. 6-9 for MPRCs-45, RCCs-45, MPRCs-

60, and RCCs-60, respectively. Through visual inspection,

it can be observed that there are considerable differences

in the shapes and distributions of the histograms for the

two different descriptors. However, the MPRCs-45 and

MPRCs-60 exhibit similar shapes or distributions for the

same modulation scheme since both are derived from the

Fig. 6. Histogram plots for MPRCs-45 feature vectors extracted from the modulated signals: (a) BPSK, (b) 8PSK, (c) QPSK, (d) 16QAM, (e)
64QAM, and (f ) GMSK.

Fig. 7. Histogram plots for RCCs-45 feature vectors extracted from the modulated signals: (a) BPSK, (b) 8PSK, (c) QPSK, (d) 16QAM, (e)
64QAM, and (f ) GMSK.
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same descriptor. The marginal difference is, however,

based on the fact that MPRCs-60 has additional 15

coefficients. The same scenario is observed for RCCs-45

and RCCs-60. Nonetheless, there are remarkable differences

between the histograms of MPRCs and RCCs even for

the same scheme. From the histograms, we identified

Fig. 9. Histogram plots for RCCs-60 feature vectors extracted from the modulated signal: (a) BPSK, (b) 8PSK, (c) QPSK, (d) 16QAM, (e)
64QAM, and (f ) GMSK.

Fig. 8. Histogram plots for MPRCs-60 feature vectors extracted from the modulated signals: (a) BPSK, (b) 8PSK, (c) QPSK, (d) 16QAM, (e)
64QAM, and (f ) GMSK.
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potential outliers and investigated them. It can be inferred

that they are legitimate data points that accurately

describe the variation in the distribution of the studied

descriptors. In such a case, knowledge is gained from the

class distribution, which may explain why MPRCs with

fewer outliers and disparities performed better in the final

classification task. These clear-cut dissimilarities among

the descriptors further provide an empirical basis for the

application of MLP-ANN to realize modulation recognition

tasks.

Fig. 10 illustrates the performances of the MLP-ANN

architectures that were trained using the LM learning

algorithm and MPRCs-45 descriptor. It shows the effects

of varying the number of neurons in the hidden layer and

the impacts of different combinations of activation

functions used at the hidden and output layers on the

performances of different MLP-ANNs. Generally, the

ANNs’ classification accuracy improves as the number of

neurons increases [29]. While LLLM, PLLM, and TLLM

fluctuate throughout, significant accuracies were achieved

in LTLM, TTLM, PTLM, PPLM, LPLM, and TPLM. As

we increased the number of neurons from 1 to 5 by adding

one at a time, the accuracies of LTLM, TTLM, PTLM,

PPLM, LPLM, and TPLM swiftly improved to 92.9%,

95.1%, 88.2%, 88.0%, 87.5%, and 92.6%, respectively

[26, 28, 29]. Increasing the number of neurons from 5 to

50, adding one at a time, the performances of PPLM did

not show any significant improvement. However, the

performances of TTLM, LTLM, and PTLM slightly

increased with the increasing number of neurons but not

as much as observed in LPLM and TPLM. There are

gradual but inconsistent improvements in the trends of

accuracies in TTLM, LTLM, and LPLM compared to

TPLM. Meanwhile, LPLM reached a peak accuracy of

98.7% (and MSE of 0.0075) at 47 neurons, thereby

outperforming the others.

Fig. 11 illustrates the performances of the MLP-ANN

models that were trained using the LM learning algorithm

and MPRCs-60 descriptor. It had a similar pattern as

Fig. 7, showing that using the first 60 coefficients as

feature vectors performs no better than using the first 45

coefficients. Generally, the MLP-ANNs’ classification

accuracies improved as the number of neurons increased.

While LLLM, PLLM, and TLLM fluctuated throughout,

significant accuracies were achieved in LTLM, TTLM,

PTLM, PPLM, LPLM, and TPLM. As we increased the

number of neurons to 5, adding one at a time, the

accuracies of LTLM, TTLM, PTLM, PPLM, LPLM, and

TPLM swiftly improved to 94.5%, 91.7%, 76.1%, 89.4%,

92.3%, and 92.9%, respectively. Increasing the number of

neurons from 5 to 50, adding one at a time, the performances

of PPLM did not show any significant improvement.

However, the performances of TTLM, LTLM, and PTLM

slightly increased with the increasing number of neurons

but not as much as observed in LPLM and TPLM. There

are gradual but inconsistent improvements in the trends

of accuracies in TTLM, LTLM, and LPLM compared to

TPLM. LPLM reached a peak accuracy of 98.3% at 32

neurons outperforming others.

Fig. 12 illustrates the performances of the MLP-ANN

models that were trained using the LM learning algorithm

and RCCs-45 descriptor. It shows the effects of varying

Fig. 10. Performance of MLP-ANN Architectures trained using
the LM learning algorithm and MPRCs-45 descriptor.

Fig. 11. Performance of MLP-ANN Architectures trained using
the LM learning algorithm and MPRCs-60 descriptor.
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the number of neurons in the hidden layer and the

impacts of different combinations of activation functions

used at the hidden and output layers on the performance

of different MLP-ANNs. Generally, the MLP-ANNs’

classification accuracies improve as the number of neurons

increases. While LLLM, PLLM, and TLLM fluctuate

throughout, significant accuracies were achieved in

LTLM, TTLM, PTLM, PPLM, LPLM, and TPLM. As

we increased the number of neurons to 5, adding one at a

time, the accuracies of LTLM, TTLM, PTLM, PPLM,

LPLM, and TPLM swiftly improved to 88.7%, 90.0%,

81.8%, 90.4%, 86.5%, and 92.1%, respectively. Increasing

the number of neurons from 5 to 50, adding one at a time,

the performances of PPLM did not show any significant

improvement. Nevertheless, the performances of TTLM,

LTLM, and PTLM slightly increased with the increasing

number of neurons but not as much as observed in LPLM

and TPLM. There were gradual but inconsistent improve-

ments in the trends of accuracies in TTLM, LTLM, and

LPLM compared to TPLM. However, TPLM reached a

peak accuracy of 96.1% at 34 neurons, thereby outper-

forming the others.

Fig. 13 illustrates the performance of the MLP-ANN

models that were trained using the LM learning algorithm

and RCCs-60 descriptor. It had a similar pattern as Fig. 9,

showing that using the first 60 coefficients as feature

vectors does not perform better than the first 45 coeffi-

cients. Generally, the MLP-ANNs’ classification accuracies

improved as the number of neurons increased. While

LLLM, PLLM, and TLLM fluctuated throughout, signi-

ficant accuracies were achieved in LTLM, TTLM, PTLM,

PPLM, LPLM, and TPLM. As we increased the number

of neurons to 5, adding one at a time, the accuracies of

LTLM, TTLM, PTLM, PPLM, LPLM, and TPLM swiftly

improved to 83.2%, 88.0%, 88.0%, 90.0%, 87.3%, and

94.6%, respectively. Increasing the number of neurons

from 5 to 50, adding one at a time, the performances of

PPLM did not show any significant improvement despite

increasing the number of neurons. However, the

performance of TTLM, LTLM, and PTLM slightly

increased with the increasing number of neurons but not

as much as observed in LPLM and TPLM. There were

gradual but inconsistent improvements in the trends of

accuracies in TTLM, LTLM, and LPLM compared to

TPLM. TPLM reached a peak accuracy of 96.7% at 23

neurons outperforming others.

For each of the real cepstrum descriptors (i.e., RCCs-

45 and RCCs-60) from the confusion matrix, after the

training, testing, and validation of the ANN training

phase were completed, TPLM gave the best accuracies of

96.1% and 96.7% at 34 and 23 neurons, respectively. On

the other hand, for the minimum phase reconstruction

MPRCs-45 and MPRCs-60 descriptors, LPLM gave the

best accuracies of 98.8% and 98.3% at 47 and 32

neurons, respectively. This clearly shows that the MPRCs

are a stronger cepstrum descriptor than the RCCs. It also

reveals that choosing between the first 60 coefficients, i.e.,

RCCs-60 and MPRCs-60, and the first 45 coefficients, i.e.,

RCCs-45 and MPRCs-45, is a trade-off between

achieving accuracy and the number of neurons in the

hidden layer. 

Fig. 14 illustrates the performances of the MLP-ANN

models that were trained using the SCG learning algorithm

Fig. 12. Performance of MLP-ANN Architectures trained using
the LM learning algorithm and RCCs-45 descriptor.

Fig. 13. Performance of MLP-ANN architectures trained using
the LM learning algorithm and RCCs-60 descriptor.
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and MPRCs-45 descriptor. It shows the effects of varying

the number of neurons in the hidden layer and the

impacts of different combinations of activation functions

used at the hidden and output layers on the performance

of different MLP-ANNs. Generally, the MLP-ANNs

classification accuracies improved as the number of

neurons increased, similar to what was observed with

LM. While LLSCG, PLSCG, TLSCG, PTSCG, LTSCG,

and TTSCG fluctuated throughout, significant accuracies

were achieved in TTSCG, LPSCG, and TPSCG. As we

increased the number of neurons to 5, adding one at a

time, the accuracies of TTSCG, LPSCG, and TPSCG

swiftly improved to 65.9%, 80.6%, and 83.8%, respectively

[28]. Increasing the number of neurons from 5 to 50,

adding one at a time, the performance of PPSCG did not

show any significant improvement despite increasing the

number of neurons. But, the performance of LPSCG and

TPSCG slightly increased with the increasing number of

neurons, however, not as much as observed in TPSCG.

TPSCG reached a peak accuracy of 92.6% at 47 neurons

outperforming the others.

Fig. 15 illustrates the performance of the ANN models

that were trained using the SCG learning algorithm and

MPRCs-60 descriptor. It shows the effects of varying the

number of neurons in the hidden layer and the impacts of

different combinations of activation functions used at the

hidden and output layers on the performance of different

MLP-ANNs. Generally, the MLP-ANNs classification

accuracies improved as the number of neurons increased,

similar to what was observed with LM. While LLSCG,

PLSCG, TLSCG, PTLM, LTSCG, and TTSCG fluctuated

throughout, significant accuracies were achieved in TTSCG,

LPSCG, and TPSCG. As we increased the number of

neurons to 5, adding one at a time, the accuracies of

TTSCG, LPSCG, and TPSCG improved to 66.5%, 82.6%,

and 92.9%, respectively. Increasing the number of neurons

from 5 to 50, adding one at a time, the performance of

PPSCG did not show any significant improvement

despite increasing the number of neurons. But, the

performance of LPSCG and TPSCG slightly increased

with the increasing number of neurons, however, not as

much as observed in TPSCG. TPSCG reached a peak

accuracy of 91.9% at 48 neurons outperforming the others.

Fig. 16 illustrates the performance of the ANN models

that were trained using the SCG learning algorithm and

RCCs-45 descriptor. It shows the effects of varying the

number of neurons in the hidden layer and the impacts of

different combinations of activation functions used at the

hidden and output layers on the performance of different

ANNs. Generally, the ANNs classification accuracy

improved as the number of neurons increased, similar to

what was observed with LM. While LLSCG, PLSCG,

TLSCG, PTLM, LTSCG, and TTSCG fluctuated throughout,

significant accuracies were achieved in TTSCG, LPSCG,

and TPSCG. As we increased the number of neurons to 5,

adding one at a time, the accuracies of TTSCG, LPSCG,

and TPSCG swiftly improved to 73.5%, 82.5%, and

82.0%, respectively. Increasing the number of neurons

from 5 to 50, adding one at a time, the performance of

PPSCG did not show any significant improvement

despite increasing the number of neurons. But, the

performance of LPSCG and TPSCG slightly increased

Fig. 14. Performance of MLP-ANN architectures trained using
the SCG learning algorithm and MPRCs-45 descriptor.

Fig. 15. Performance of MLP-ANN architectures trained using
the SCG learning algorithm and RCCs-45 descriptor.
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with the increasing number of neurons, however, not as

much as observed in TPSCG. TPSCG reached a peak

accuracy of 90.4% at 46 neurons outperforming the

others.

Fig. 17 illustrates the performances of the MLP-ANN

models that were trained using the SCG learning algorithm

and RCCs-60 descriptor. It shows the effects of varying

the number of neurons in the hidden layer and the

impacts of different combinations of activation functions

used at the hidden and output layers on the performance

of different MLP-ANNs. Generally, the MLP-ANNs

classification accuracies improved as the number of

neurons increased, similar to what was observed with

LM. While LLSCG, PLSCG, TLSCG, PTLM, LTSCG,

and TTSCG fluctuated throughout, significant accuracies

were achieved in TTSCG, LPSCG, and TPSCG. As we

increased the number of neurons to 5, adding one at a

time, the accuracies of TTSCG, LPSCG, and TPSCG

improved to 62.0%, 79.5%, and 80.0%, respectively.

Increasing the number of neurons from 5 to 50, adding

one at a time, the performance of PPSCG did not show

any significant improvement despite increasing the number

of neurons. Meanwhile, the performances of LPSCG and

TPSCG slightly increased with the increasing number of

neurons but not as much as observed in TPSCG. Thus,

TPSCG reached a peak accuracy of 90.9% at 48 neurons,

thereby outperforming the other configurations.

For each of the real cepstrum RCCs-45 and RCCs-60

descriptors, from the confusion matrix, after the training,

testing, and validation of the ANN training phase were

completed, TPSCG gave the best accuracies of 90.4% and

90.9% at 46 and 48 neurons, respectively. On the other

hand, for the minimum phase reconstruction MPRCs-45

and MPRCs-60 descriptors, TPSCG gave the best

accuracies of 92.6% and 91.9% at 47 and 48 neurons,

respectively. A similar trend is seen in the performance of

the MLP-ANN architectures trained using the SCG

learning algorithm to what was obtained using LM, but

the results show clearly that the LM learning algorithm

outperformed the SCG learning algorithm. 

It also confirmed that the MPRCs as a cepstrum

descriptor consistently performed better than RCCs.

Notably, choosing between the first 60 coefficients, i.e.

RCCs-60 and MPRCs-60, and the first 45 coefficients,

i.e. RCCs-45 and MPRCs-45, did not have a significant

difference in terms of accuracy of the architectures. Thus,

based on previously reported experimental results, MPRCs

are deemed a better descriptor for the recognition of

signal modulation schemes than RCCs; hence, new

knowledge has been revealed with this study. Comparing

the number of coefficients extracted, 60 coefficients of

the MPRCs have the highest recognition accuracy of

98.3% with a lower number of neurons in the hidden

layer of the MLP-ANNs. Though the 45 coefficients

MPRCs have the best recognition accuracy of 98.7%, this

was achieved with 47 neurons in the hidden layer, which

is higher than the 32 neurons utilized by the 60 coefficients

MPRCs (as shown in Table 2). A similar trend is observed

between RCCs-45 and RCCs-60. 

Table 2 shows the MLP-ANNs models with the best

performances in each scenario based on the rigorous

experimentations conducted in this study. Overall, LPLM

architecture with 47 neurons in the hidden layer trained

with MPRCs-45 gave the best result (accuracy = 98.7%,

Fig. 16. Performance of MLP-ANN architectures trained using
the SCG learning algorithm and RCCs-45 descriptor.

Fig. 17. Performance of MLP-ANN architectures trained using
the SCG learning algorithm and RCCs-60 descriptor.
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MSE = 0.007479), as shown in Table 2. The selection of

hidden neurons using neural networks is one of the most

challenging problems that researchers face. In the ANN

training process, there is a problem with overtraining.

Overtraining is similar to the problem of data overfitting.

The model may have a significant training error due to

overfitting if it has a higher number of hidden neurons.

The top-ranked models were also evaluated using two

loss metrics vis-a-vis MSE and MAE. The number of

hidden neurons is fixed in AMR based on minimum error

efficiency. It is therefore recommended as the MLP-ANN

architecture for accurate AMR.

Furthermore, the confusion matrix and receiver operating

characteristic (ROC) curve were plotted as shown in

Figs. 18 and 19. With the ROC curves, we were able to

compute the sensitivity (100%) and specificity (99.3%)

of the AMR model in recognizing and classifying the

modulation schemes.

In order to test the AMR model (MPRCs-45) that posted

the best performance of 98.7% accuracy and 0.0075 MSE,

we randomly selected five samples for each modulation

scheme out of the training data to carry out in-sample

testing on the AMR model. It accurately recognized them

all with an accuracy of 100%. Further tests with out-of-

sample over-the-air datasets suggested that the synthetic/

simulated signals required further signal pre-processing

to fit into the curated real signal perfectly. This provides

an open question and a basis for further research studies

in this domain.

IV. DISCUSSION

The current study presented the results of a new

cepstral method [3, 11] for AMR using MPRC. The

experimental results show that modulation schemes can

be identified by extracting MPRCs from signals and

using these as descriptors for modulation recognition

similar to MFCCs [12, 13]. The MLP-ANN with LPLM

architecture having 47 hidden neurons trained with

MPRCs descriptor posted the best performance of 98.7%

accuracy, 0.0075 MSE, 100% sensitivity, and 99.3%

specificity, which outperformed the descriptors (e.g.,

MFCCs and RCCs) previously used in the literature [3, 8-

10]. The MPRCs provide a realistic way for all

distinguishable band-limited signals to be decoded when

Table 2. ANN architecture with the overall best performances

Feature vector ANN architecture Number of neurons Accuracy (%) MSE SD MAE

MPRCs-45 LPLM 47 98.7 0.007479 0.623844 0.0390

MPRCs-60 LPLM 32 98.3 0.015988 0.675382 0.0544

RCCs-45 TPLM 34 96.1 0.015896 2.201209 0.0573

RCCs-60 TPLM 23 96.7 0.015991 2.094270 0.0628

Fig. 18. All confusion matrix of the best MLP-ANN architecture
trained with MPRCs-45 and LM algorithm.

Fig. 19. ROC Plot of the best MLP-ANN architecture trained with
MPRCs-45 and LM algorithm.



Automatic Modulation Recognition Using Minimum-Phase Reconstruction Coefficients and Feed-Forward Neural Network

Sunday Adeyinka Ajala et al. 39 http://jcse.kiise.org

the detector is sensitive to the signal field strength and

phase but less sensitive to noise. Furthermore, the creation

of the dataset for our experiments in this study factored in

wireless communication random processes such as CFO,

SRO, AWGN, multipath propagation, and selective fading.

This is a major improvement in dataset creation for

related studies in the literature [12, 13] and an effort to

extend the incorporation of cognitive capability in our

earlier works [32, 33]. The created dataset in this study

and the best MPRC-based AMR model with a .m script

for the testing phase are available as open research

resources on the Advanced Signal Processing and Machine

Intelligence Research (ASPMIR) laboratory GitHub

repository at (https://github.com/aspmirlab/ModRecCorpus.

git) for interested researchers to explore.

V. CONCLUSION

This paper presents the development and experimentation

results on AMR using a dataset created with GNU Radio

Companion for six different modulation schemes, MPRC

and RCC descriptors, and MLP-ANN architectures of

different configurations. The MLP-ANN architecture with

logsig activation function in the hidden layer neurons,

purelin in the output layer neuron, LM backpropagation

algorithm and trained using MPRC descriptor of 45

coefficients gave the best performance results. This compact

MPRC descriptor provides an enhanced alternative and

vital contribution to the FB AMR literature. Thus, modern

wireless communication engineers and researchers can

leverage the MPRC-based AMR model to implement

dynamic spectrum sensing in cognitive radio systems and

for automatic selection of appropriate signal demodulators.

In the future, we hope to extend this study for more

modulation schemes that capture different SNRs. We also

hope to explore state-of-the-art deep learning pipelines for

AMR tasks in real-time deployment scenarios.
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