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Abstract
Federated learning (FL) is a new machine learning paradigm, where multiple clients learn their local models to collabora-

tively integrate into a single global model. Unlike centralized learning, the global model being integrated cannot be tested in

FL as the server does not collect any data samples, further, the global model is often sent back and immediately applied to

clients even at the middle of training such as Gboard. Therefore, if the performance of the global model is not stable, which

is, unfortunately, the case in many FL scenarios with non-IID data, clients can be provided with an inaccurate model. This

paper explores the main reason for this training instability of FL, that is, what we call temporary imbalance that happens

across rounds, leading to loss of knowledge from previous rounds. To solve this problem, we propose a dataset condensation

method to summarize the local data for each client without compromising on privacy. The condensed data are transmitted to

the server with the local model and utilized by the server to ensure stable and consistent performance of the global model.

Experimental results show that the global model not only achieves training stability but also exhibits a fast convergence speed.
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I. INTRODUCTION

Recently, deep learning has shown remarkable growth

in many fields using large datasets, but training models

on millions of data require enormous storage capacity

and computational costs.  In addition, existing centralized

learning methods store and learn entire data in a data

server, whereas in the real environment, data are generated

or collected in several Internet of Things (IoT) devices,

mobile devices, and autonomous vehicles, and as such

exist in a distributed form. Therefore, collecting and

storing distributed data in a server incurs significant

collection costs and causes privacy problems. However,

there is insufficient data on personal devices for

application users to train their deep learning models. To

solve this gap between the distributed data environment

and centralized learning methods, “federated learning”

[1-3], which uses distributed data to learn without

transmitting clients’ data, has emerged.

Federated learning is a machine learning paradigm that

enables privacy protection by having clients train local

models on their data, and a server to aggregate the trained

local models. Thus, clients can have a model with good

performance while protecting their personal information,

and companies that operate parameter servers have the

advantage of reducing data collection and computing

costs required for model training. It can be claimed that

federated learning is a win-win strategy that satisfies both

service users and providers. However, unlike traditional

centralized learning methods, which divide the entire

data on the server into training, validation, and test

datasets, the model is fully trained and evaluated (i.e., a

pretrained model). In the federated learning scenario,

data is unlikely to exist for validating the performance of
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the parameter server. Therefore, in federated learning, the

performance of the model being trained cannot be estimated,

making it difficult to optimize the hyperparameters. The

unstable performance of a model can lead to various

problems, such as deploying the erroneous model.

Existing federated learning methods place test datasets

on the server and confirm model performance during the

learning process. This is a non-realistic setting and is only

possible in an experimental environment using public

data. Alternatively, there is another way that prohibits

particular clients from participating in the learning and

makes them validation clients or generates validation

data using some data from all clients [3]. However, this

method is not practical if the number of participating

clients is small or the amount of data is too less and

cannot be divided for validation.

A sudden deterioration in model performance can

cause serious problems when the model performance

cannot be precisely evaluated. For example, in keyboard

applications [4] such as next-word prediction or emoji

prediction, poor performance only causes inconvenience

to clients, but in medical fields such as brain tumor

identification [5] or predicting the clinical outcome of

patients with coronavirus disease 2019 (COVID-19) [6],

rapid degradation of model performance can lead to more

serious side effects. Therefore, the training stability of the

federated learning model must be guaranteed.

The main problem with federated learning is data

heterogeneity, where each client follows a different local

data distribution (e.g., mobile users and hospitals). Due to

data heterogeneity, the global model, which aggregates

local models trained on heterogeneous distributions,

suffers from poor performance and slow convergence [7].

In this paper, our focus is on the fact that a global model

gets more unstable in the middle of training when data

becomes more heterogeneous.

In Fig. 1, the parameter α controls the data distribution

of the clients, and if α is small, the clients have a more

biased data distribution. A detailed description of α is

provided in Section V. The three graphs in Fig. 1 show

that the higher the non-IID setting (i.e., the smaller α), the

greater is the variation in model performance. Therefore,

it is observed that non-IID not only impairs the overall

performance or slows down the convergence rate of the

model but also degrades the stability. As mentioned

earlier, the instability problem is a serious disadvantage

in federated learning, where the performance of the

model cannot be validated, and the model needs to be

deployed even in the middle of training. A more specific

cause of the instability problem is that when collecting

models from the server, only a fraction of the clients,

participate in each round, and the distribution of

heterogeneous data from participating clients causes class

imbalance problems in that round. The analysis of the

causes is discussed in more detail in Section III. 

To address this challenge, previous works identified

the cause of performance decline as data heterogeneity in

biased client model updates, which is referred to as

“client drift.” Research papers, attributing the problem to

overall updates and out-of-line client updates, have

proposed methods to limit the client updates [8-10].

However, because these methods aim to update the model

of the previous round as much as possible, the model may

continue to learn in the wrong direction if the learning

efficiency is poor or if the update of the previous model is

biased. Therefore, several studies have revealed that client

update regularization theoretically alleviates heterogeneity

problems, but does not work well in practical deep

learning problems [11-13], especially when only some of

the many clients participate in each round. We also

confirm that these regularization-based methods do not

work well through our experimental study. Another

solution to data heterogeneity is to utilize a public dataset

shared by all clients to prevent learning in extremely

heterogeneous data situations; however, this is also an

impractical method that does not fit the real world.

To match the imbalanced data distribution that varies

each time, in this paper, the class data of each client are

somehow undersampled and transmitted to the server.

The server uses this class-balanced dataset to fine-tune

the biased global model, thereby obtaining a more

generalized model, ensuring training stability. However,

privacy issues preclude personal data transfer to the server,

and even if allowed, the randomness causes information

loss during the selection of data samples. Therefore, we

propose a method to minimize the loss of information and

ensure privacy by compressing the original local data into

an extremely smaller form by training to the point that we

cannot recognize its original privacy information. Through

experiments, it was demonstrated that the proposed method

ensures faster convergence and more stable performance

than other methods in various experimental settings.

Furthermore, we also observe that the more heterogeneous

the setting, the greater the gap is with the other algorithms.

Fig. 1. Performance of federated learning depending on data
heterogeneity on CIFAR-10.
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II. RELATED WORK

A. Federated Learning

Federated learning was first proposed in [1] as a learning

model for a distributed mobile device environment, and

FedAvg was devised by applying the existing distributed

stochastic gradient descent (SGD) algorithm. Research to

improve the performance of federated learning algorithms

can be divided into two categories: local regularization

algorithms and alternative model aggregation algorithms.

In local regularization, a loss term is added to limit the

difference between local and global updates. FedProx [8]

uses the proximal term, which is the difference between

the parameters of the previous global model and the client

model parameter, as a regularization term. SCAFFOLD

[9] uses the difference between the entire local gradient

direction (i.e., the global direction) and the local gradient

direction as a regularization term. Moon [10] regularizes

the model through contrastive learning by introducing the

previous client model as a negative term and the global

model as a positive term.

In the model aggregation improvement algorithm

FedNova [11], it was determined that the general averaging

method causes objective inconsistency, thus, a normalized

averaging method was proposed. FedAdam [12] interprets

the existing model aggregation algorithm as a pseudo

gradient and applies the conventional adaptive optimization

algorithm to server updates. In [13], an optimized aggregation

method, FedMa, was proposed through neuron matching

for each layer of the model, not just a weighted averaging

of the model parameters.

B. Dataset Compression

Large datasets consisting of millions of samples are

becoming the norm in deep learning models, but storing

and using this scale of data for learning requires enormous

costs and infrastructure. Accordingly, dataset compression

has emerged, which ensures maximum performance of

the learned model on the original dataset while reducing

the size of the dataset. The first proposed data distillation

(DD) method [14] learns the model using synthetic noise

data and then optimizes synthetic data to minimize the

learning loss of real data. Dataset condensation (DC) was

proposed [15] as a training method to match the gradient

when real and synthetic data are passed through the same

model for the same problem. Differentiable Siamese

augmentation (DSA) [16] further boosts the performance

of DC by utilizing data augmentation techniques. In this

work, DC [15] is exploited for federated learning to

minimize the loss of information by compressing the

original local data into synthetic data, which are not

recognizable by humans, to ensure privacy protection.

C. Class Imbalance

In contrast with the experimental dataset, where the

number of data samples in all classes is equal, real data

distributions often have long-tails [17] with highly imbalanced

volumes of class-wise data. This class imbalance problem

causes the performance of the minority class to be

extremely poor, compared to that of the majority class

with a large number of data samples. Consequently, the

overall performance is dominated by a particular class

[18]. To solve the class imbalance problem, oversampling

[19] and undersampling [20] methods train the model by

rebalancing the data distribution. In addition, instead of

the cross-entropy loss function, a class-balanced loss is

used to assign different loss values to each class sample

[21], and some approaches attempt to rebalance the

distribution of the classifier [22].

In federated learning, there are some studies to address

the overall class imbalance problem by considering the

real heterogeneous data environment [23, 24]. However,

in this paper, we solve the problem of class imbalance

that more temporarily happens due to the randomly

selected participating clients. The solution applies even

when all the classes are evenly distributed globally.

III. ANALYSIS ON TRAINING INSTABILITY OF
FEDERATED LEARNING

As mentioned in Section I, we first observe and analyze

the fact that the performance of federated learning gets

more unstable if the data becomes more heterogeneous.

To this end, Fig. 2 presents two specific rounds (i.e.,

120th and 121st) in our federated learning experiment of

Fig. 1 to investigate why the performance gets most

unstable when α = 0.05 in Fig. 1. In particular, we focus

on the 120th round (accuracy 43.9%) and 121st round

(accuracy 21.3%), where the performance degradation of

the FedAvg algorithm is noticeable.

First, we examine the round-wise class distribution. As

the clients participating in each round are different, the

round-wise class distribution can differ greatly, even

between two consecutive rounds. This is a type of class

imbalance problem that temporarily occurs when each

client has a different distribution (i.e., non-IID), even if

the classes are evenly distributed with respect to the

entire dataset. The above temporary imbalance problem

occurs as the number of data samples varies for each

class and client. For example, in the 120th round, only

three classes have more than 1,000 data samples, and the

remaining seven classes have less than 400 data samples.

In the 121st round, the number of data samples in the first

class is over 4,000, but the other three classes have less

than 50 samples. Since the performance of FedAvg is

dominated by the majority class of each round, the

overall performance becomes severely biased in the 121st
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round than in the 120th round. This is because the first

class in the 121st round, which has excessively more data

than the other classes, leads to a global model biased to

this majority class. Therefore, standard federated learning

algorithms suffer from a catastrophic forgetting phenomenon

of the knowledge learned in the previous round, which

happens every round, resulting in training instability.

This paper proposes a solution to this temporary class

imbalance problem in federated learning, called FedDC,

which effectively alleviates such round-wise catastrophic

forgetting. The basic idea of FedDC is that clients send a

small amount of undersampled data for each class to the

server along with the locally updated model. Thus, the

server can receive data samples proportional to the

number of classes from the clients, and therefore obtain a

balanced dataset regardless of whether the client has

imbalanced data. Subsequently, the generalization perfor-

mance of the model can be restored by fine-tuning the

global model with this balanced dataset. The challenge

here is that we should not send raw data samples to the

server due to privacy issues. Furthermore, even if we can,

the performance of the global model can vary depending

on which data samples are selected. Thus, the global

model in this time can overfit the selected dataset, which

may not represent the entire local data. 

To achieve both stable performance and for privacy

protection, FedDC compresses local data into a form of

personal information not being revealed, and thereby the

server receives the amount of compressed data propor-

tional to the number of classes. With FedDC, a stable

global model can be obtained by effectively rebalancing

the round-wise class distribution with the compressed

and balanced dataset in the server. As shown in Fig. 2,

FedAvg and FedDC display similar performance in the

120th round, but FedDC improves the overall accuracy

by fitting more minority classes well. In summary, unlike

FedAVG, the accuracy of FedDC remains at 51.4% in the

121st round, that is approximately the same as the

accuracy of 51.7% in the previous round.

IV. METHOD 

In this section, we present FedDC, which is a balanced

fine-tuning method that exploits a data compression

scheme to solve round-wise class imbalance. General

federated learning is described in Section IV-A, and the

data compression techniques based on [15] are explained

in Section IV-B. Based on these, the whole FedDC

framework is finally proposed in Section IV-C.

A. The Framework of Federated Learning 

In federated learning scenarios, the common objective

is to minimize the following equation:

(1)

such that: ,

where  refers to the deep learning model, M is the

number of clients, pi is the weight assigned to the ith

client, Fi is the local objective function of the ith client,

and fi is the loss function. Pi is the data distribution of the

ith client, which may be very diverse across clients.

Let Di be the local dataset of the ith client such that

D = D1 D2 ... DM is the entire dataset from all clients.

Then, the standard FedAvg algorithm uses the following

equations to solve the optimization problem of Eq. (1).

, (2)

where ,

Thus, FedAvg assigns a weight for each client to be

proportional to the amount of its local data. (i.e., ).

Then, the weighted average of the local parameters is

computed, and finally the global parameters are obtained.

Fi(θ ) is the empirical risk minimization objective function;

ce is the cross-entropy loss commonly used in classification.

Some variants of FedAVG add a regularization term to

θ R
d

∈

Di

Fig. 2. Comparison of class-wise accuracy after learning (a) the 120th round and (b) 121st round, and the round-class distribution.
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ce for the local model not to be far different from the

global model.

The global model θ is trained for T rounds, and each

round consists of the following three steps. First, the

server broadcasts the global model to some randomly

selected clients. Second, each selected client trains a local

model with its own data, and then sends the trained

model back to the server. Finally, the server updates the

global model by aggregating the received local models.

In the FedAvg framework, clients perform several mini-

batch SGDs on their local model: 

, (3)

where xi,k is the randomly selected data from Di, η is the

learning rate, and  is the local model updated by the

ith client after E iterations at the tth round.

Even if the global model θ converges to the minima of

(1), such a minima could be different from the counterpart

obtained by a centralized model. This problem is mainly

caused by data heterogeneity. In centralized training, the

global model is trained by selecting (or generating) each

batch under the IID assumption from the whole dataset

D = Di. Thus, each mini-batch is drawn from the

same distribution as the overall data distribution P.

Recently, deep learning models trained on these IID

datasets (i.e., centralized training) perform even better

than humans on the corresponding IID test data [25].

Contrary, in federated learning, it is assumed that the

training dataset Di of each client follows the client’s own

data distribution Pi, which would not be the same as the

overall data distribution P. Therefore, each mini-batch of

Di is also assumed to be non-IID, meaning that its

distribution does not follow P. Consequently, the global

model aggregated with local models  does not

have the same minima as that of the centralized model,

which is trained under the IID assumption.

B. Dataset Condensation 

To solve the problem mentioned in Sections III and IV-

A, we propose a synthetic dataset learning method that

summarizes and compresses the original dataset of

clients. 

Let  be the training dataset of the

mth client; the proposed dataset compression aims to

obtain a synthetic dataset  smaller

than the original dataset Dm. More formally, the goal of

our dataset compression method can be represented as:

(4)

such that: ,

,

where θ Dm and θ Sm denote the deep learning models

trained on Dm and Sm, respectively. Our expectation here

is that if the model θ Sm is trained with much fewer data

samples it can be generalized as θ Dm in the real data

distribution of x* ~ Pm. Note that the generalization

performance is measured based on the hidden data x*.

Thus, to obtain a synthetic dataset satisfying Eq. (4), we

minimize the gradient difference between the losses of

synthetic and original data through the following training

process [15].

(5)

(6)

,

where  and  are the gradients of

Sm and Dm, respectively, using a single model θ, which is

randomly initialized to the distribution Pθ . We use (1-

cosine similarity) for the matching loss function D(.,.).

The loss is calculated in a layer-wise manner, where

 is the index of each layer, and  is

a simple formulation of Eq. (5).

θi,k 1+

 t

Σi 1=

M D
i 

D
-----Fi θ( )

Algorithm 1. FedDC

l 1, L[ ]∈
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C. FedDC: Stable Federated Learning 

A detailed description of the proposed FedDC method

is summarized in Algorithm 1. Basically, FedDC includes

the following two additional processes to the three

primitive steps of the standard federated learning method:

(1) the data compression process for each client and (2)

the balanced fine-tuning process with the compressed

dataset for the global model in the server. For each client,

the compressed dataset is trained for K iterations, and in

each iteration, as mentioned earlier; the model θ is

randomly initialized from the distribution Pθ . Note that

this does not affect the performance of federated learning

because θ is only used during the data compression

process. During one iteration, the mini-batch  is

sampled only from the same class c of the local data of

each client, and the loss is then calculated using Eq. (6)

with respect to the condensed dataset  of the same

class c.

Next, after clients send their local model along with

the compressed form of local data to the server, the server

aggregates the client models and then fine-tunes the

aggregated global model with the condensed and balanced

dataset as follows:

 (7)

such that ,

where S = Si is the condensed dataset collected from

the clients. Note that the condensed datasets generated in

the previous rounds are no longer used. Furthermore, in

federated learning, clients often need an efficient and fast

training method because it is important for each client to

quickly learn local data with limited computing resources.

The existing dataset compression methods, however,

train θ for a certain number of iterations [15] in the

middle of matching gradients. In our experiments, it is

confirmed that this supplement training of θ does not

make significant difference in terms of the quality of the

resulting condensed data. Thus, we observe that how well

θ is trained is not essential for the task of dataset

condensation, but it suffices to vary the value of θ across

epochs just like the random initialization of models. To

speed up the dataset condensation process, we discard

this supplement training process of θ when each client

compresses local data.

Moreover, we increase the learning rate (e.g., η = 0.1

to η = 3.0) to further improve the training efficiency of

dataset condensation. Because this high learning rate can

cause another training instability, we additionally perform

gradient clipping in the optimization process as follows:

. (8)

Gradient clipping effectively prevents the gradient

vanishing problem by normalization when the norm of

the gradient g exceeds a certain threshold.

D. FedDC: Stable and Privacy-Protecting
Federated Learning

It is important to recall that the goal of our dataset

compression for federated learning is not generating

synthetic data that are visually similar to real data, but

rather disclosing the visual appearance of real data while

effectively summarizing important features for fine-

tuning. This is different from the normal dataset

compression method in the sense that the more visually

realistic the compressed resulting images, the more

effective the method shows. Thus, there is a trade-off

between the quality of compressed data and the degree of

privacy protection. The better we train the synthesized

data to compress real data, the more difficult it is to

protect privacy information.

In order to address this trade-off issue, we suggest

using momentum and weight regularization during training

of the synthesized data. This way, the condensed image is

transformed into one with noise so that it is not visually

distinguishable. To be shown in our experiments, the

algorithm using this noisy dataset, which we call FedDC+,

still maintains a similar performance when compared to

the algorithm using the normally compressed dataset.

Thus, FedDC+ can achieve both training stability and

privacy protection.

V. EXPERIEMENTS 

A. Experimental Setup

We conduct our experiments using the CIFAR-10

dataset [26]. CIFAR-10 consists of 50,000 training images

and 10,000 images of 10 different classes, and the sizes

of all the images is 32×32. To simulate a non-IID

scenario, local data of the clients are assigned using the

Dirichlet distribution [11, 13]. More specifically, the ratio

pc,m of the training data of class c is sampled from

pc ~ DirM(α) and assigned to the mth client. If the

concentration parameter α of the Dirichlet distribution is

small, the client may have very little data or even no data

for some classes. Thus, the smaller the α, the more biased

the data distribution of the client is. In this way, we can

simulate a non-IID environment, where clients have a

biased class ratio, and hence have different quantities of

training data.

Fig. 3 displays the number of classes per client and the

amount of data per class. We set α to three different

values, namely 0.05, 0.1, and 1, each of which considers

a different level of non-IID scenario. Most of the existing

works deal with either the non-IID environment, where

BD
c

Si

c

g
gv

g 

------ if g
 

v>←
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the amount of local data are all equal across clients even

if the number of classes are different, or a weak non-IID

scenario (e.g., α = 0.1) where the local data volume of a

client can slightly be different from those of the other

clients. In this paper, we also test a more extreme non-IID

case with α = 0.05 in order to consider many real-world

applications, where 80% of the data often originate from

only a small number of clients, approximately 20%,

according to Pareto’s law. 

For the neural network architectures, we use a three-

layered convolutional neural network (CNN), which is a

model frequently adopted by a typical federated learning

experiment [10-12], and also VGG-11 is tested to see

whether our FedDC method works well in a deeper

architecture.

FedDC is compared to local regularization-based

federated learning methods, all of which aim to resolve

data heterogeneity, namely FedAvg [1], FedProx [8], and

SCAFFOLD [9]. All the algorithms were implemented in

PyTorch and trained on a machine with NVIDIA Quadro

RTX 6000 and Intel Core Xeon Gold5122. In all the

federated learning scenarios, 10 were randomly selected

out of 50 clients to participate in each round, and the

algorithms run for 500 communication rounds in total

with local training epochs of 5 and 10, the learning rate of

0.01, the weight decay of 10−3, and using the SGD

optimizer. To create the condensed dataset, 500 iterations

are performed with the SGD optimizer and the learning

rate of 3.0, to generate one condensed image per class of

clients. When fine-tuning with synthetic data on the

server, we proceed 10 epochs with the learning rate of

0.01, which is the same as the client's learning rate. The

momentum for FedDC+ is 0.9, and the weight decay is

4 × 10−5.

B. Experimental Results

In Fig. 4, it is well observed that FedDC shows the

most stable performance across rounds, compared to the

other methods. To precisely quantify the training stability,

we also measure the (largest) average accuracy drop and

the average accuracy increase over the rounds, which

together indicate round variance. As shown in Table 1,

FedDC and FedDC+ always show the smallest round

variance. For instance, when alpha is 0.05 and E is 1 in

Table 1, the maximum accuracy drop is around 21% for

both FedAvg and FedProx, but FedDC only shows at

most a 5.9% accuracy drop. Also, in the same setting, the

Fig. 3. Label distribution of CIFAR-10 across clients in different data partitions: (a) α = 0.05, (b) α = 0.1, and (c) α = 1.

Fig. 4. Comparison of the accuracy for each non-IID on CIFAR-10 using E = 1: (a) α = 0.05, (b) α = 0.1, and (c) α = 1.
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average accuracy of both FedAvg and FedProx decrease

to 5.59% and 5.40%, respectively, but FedDC and

FedDC+ maintain stable performance with an average

accuracy drop of about 1%. Thus, the maximum drop in

accuracy of FedDC is almost as small as the average

accuracy drop of the compared methods. SCAFFOLD is

somewhat more stable than FedAvg and FedProx, but its

learning curve is much worse than the other algorithms

due to its strong constraints on training.

FedDC not only shows the most stable performance,

but also achieves the best accuracy in most of the rounds.

The earlier the rounds and the more extremely non-IID

the data, the better FedDC works than the other algorithms.

For instance, when α = 0.05 (i.e., highly non-IID) for 100

rounds (i.e., earlier rounds), FedDC shows about 7%

higher best accuracy than the other algorithms for both E

= 1 and E = 10, exhibiting a faster convergence speed as

well as the superior performance. The fastest convergence

Table 1. Comparison of accuracy, average class variance, and average round variance on CIFAR-10

Local 

epochs
Non-IID Method

 Top-1 accuracy (%) Class 

variance

(Max accuracy drop) 

Avg. accuracy drop / Avg. accuracy increase100 rounds 500 rounds

E = 10 0.05 FedAvg 46.09 55,91 29.17 (-22.64) -6.22 / 5.74

FedProx 47.11 56.31 27.47 (-18.82) -5.13 /4.97

SCAFFOLD 33.71 38.04 33.26 (-16.49) -5.65 / 5.08

FedDC (ours) 52.72 56.63 18.61 (-9.04) -2.11 / 2.30

FedDC+ (ours) 51.12 56.35 18.67 (-8.22) -2.02 / 1.91

0.1 FedAvg 57,17 61.38 23.82 (-21.05) -4.25 / 4.13

FedProx 56.77 61.55 22.54 (-18.98) -3.76 / 3.54

SCAFFOLD 40.10 45.4 31.75 (-17.38) -4.77 / 4.64

FedDC (ours) 58,34 61.65 17.04 (-7.47) -1.88 / 1.78

FedDC+ (ours) 57.80 61.80 16.74 (-6.79) -1.68 / 1.57

1 FedAvg 65.59 67.37 15.07 (-8.78) -1.76 / 1.92

FedProx 64.76 67.54 13.13 (10.46) -1.23 / 1.25

SCAFFOLD 50.79 51.57 20.42 (-11.58) -1.90 / 1.95

FedDC (ours) 64.76 67.78 13.12 (-5.46) -1.24 / 1.25

FedDC+ (ours) 64.24 67.10 13.03 (-7.25) -1.02 / 1.06

E = 1 0.05 FedAvg 34.89 49.9 30.74 (-21.71) -5.59 / 5.65

FedProx 34.89c 50.02 30.58 (-21.23) -5.40 / 5.60

SCAFFOLD 20.86 23.85 31.14 (-11.76) -3.24 / 3.26

FedDC (ours) 42.73 53.06 15.36 (-5.9) -1.36 / 1.35

FedDC+ (ours) 41.44 52.17 16.08 (-6.32) -1.05 / 1.16

0.1 FedAvg 42.62 56.54 27.04 (-22.06) -4.89 / 4.48

FedProx 42.63 56.61 26.92 (-21.89) -4.75 / 4.53

SCAFFOLD 23.83 25.28 29.69 (-13.53) -3.5 / 3.67

FedDC (ours) 44.43 57.60 15.34 (-3.65) -1.03 / 1.08

FedDC+ (ours) 43.81 57.50 15.61 (-3.38) -0.97 / 1.00

1 FedAvg 48.52 65.67 18.12 (-9.59) -1.96 / 2.18

FedProx 48.52 65.62 18.10 (-9.41) -1.95 / 2.16 

SCAFFOLD 30.57 31.78 24.47 (-8.0) -2.20 / 2.35

FedDC (ours) 48.49 65.06 12.72 (-3.53) -0.83 / 0.91 -

FedDC+ (ours) 47.86 64.09 12.62 (-3.51) -0.61 / 0.70

The best results are highlighted in bold.
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of our FedDC method is highly beneficial for federated

learning so that we can reduce the communication cost by

early stopping the training process. 

Over the 500 rounds, even if FedAvg and FedProx

occasionally achieved a higher accuracy than FedDC in a

particular round, they cannot maintain such accuracy

even in the next round due to their training instability.

Many times, it is observed that they show 10%–20%

accuracy drop in the next round after achieving the best

performance. In other words, we cannot trust the

performance of these existing algorithms in practice in

the sense that their performance can decrease by 20% in

the worst case of a strong non-IID scenario. Meanwhile,

FedDC is managed to achieve accuracy within 1% of the

best performance for all 500 rounds, regardless of the

data distribution of clients.

In Fig. 5, the overall performance and class variance of

FedAvg and FedDC are presented. For each round, class

variance is defined as the average of the variances of all

the classes, which measures how dispersed the performance

of each class is compared to the average performance.

Note that the class variance in Table 1 is the average of

the class variances of all rounds, whereby the changes in

the class variance of the model being trained by each

method can be observed. Likewise, FedDC shows not

only the lowest round variance (i.e., overall performance

change of the round) but also the lowest class variance

(i.e., performance difference for each class). By contrast,

other algorithms maintain neither constant performance

between classes nor constant overall performance within

the round. As described in Section III, this is because

there are classes with extremely low performance in

federated learning due to the round-wise class imbalance.

Therefore, even if the global model has a good average

performance, some clients can perform extremely poorly

if they have only classes with low performance. Meanwhile,

FedDC achieves balanced as well as stable performance

across classes.

Unlike centralized learning, existing federated learning

algorithms cannot take advantage of deeper architectures,

and hence they show similar or even worse performance

when the model gets deeper [27]. This is also observed in

our experiments as FedAvg and FedProx do not show

much difference in accuracy for VGG and CNN, both

exhibiting an accuracy of approximately 50%. However,

FedDC achieves 57% accuracy on VGG under the same

highly non-IID situation with α = 0.05, which is higher

than that of the three-layer CNN with 53% accuracy.

Thus, FedDC is not only more stable but also shows even

higher performance when the deep architecture VGG is

used, as shown in Fig. 6.

Fig. 7 presents a condensed image generated from the

real data of the 5th client. The 5th client has 33 airplane

Fig. 5. Comparison of the round-wise class variance: (a) FedAvg
(E = 1), (b) FedDC (E = 1), (c) FedAvg (E = 10), and (b) FedDC (E = 10).

Fig. 6. Comparison of the accuracy in VGG.

Fig. 7. Visualization of raw data and condensed images by DC
and DC+ of the 5th client.
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images, 509 cat images, 31 deer images, and 29 frog

images. It is impossible to visually distinguish to which

class each condensed image of DC belongs even though

the condensed image is still effective for making the

global model more stable. In the case of DC+, as

explained in Section IV, by adding additional momentum

and weight attenuation, it is possible to obtain a

condensed image with noise, which is even more difficult

to recognize its class by human eyes. However, the actual

performance is not much different from that of FedDC in

Table 1, and even there are cases where the round

variance of FedDC+ is lower than FedDC.

VI. CONCLUSION 

In this paper, a new federated learning method, FedDC,

was proposed to solve the temporary class imbalance

problem with a non-IID dataset by dataset condensation.

Through various experiments, it was demonstrated that

FedDC achieves stable yet balanced performance as well

as fast convergence. Based on the proposed method, it is

expected that a stable model can always be provided in a

federated learning application even when the intermediate

performance of the model cannot be validated.
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