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Abstract
Anatomical differences between people restrain the accuracy of appearance-based gaze estimation. These differences can

be taken into account with few-shot approaches for further optimization. However, these approaches come with addi-

tional computational complexity cost and are vulnerable to corrupt data inputs. Consequently, the use of accurate gaze

estimation in real-world scenarios is restricted. To solve this problem, we introduce a novel and robust gaze estimation

calibration framework called personal transformer-based gaze estimation (PTGE), utilizing a deep learning network that

is separate from the gaze estimation model to adapt to new users. This network learns to model and estimate person-spe-

cific differences in gaze estimation as a low-dimensional latent vector from image features, head pose information, and

gaze point labels. The expensive computational optimization process in few-shot approaches is removed in PTGE

through our separate network. This separate network is composed of transformers, allowing self-attention to weigh the

quality of calibration samples and mitigate the negative effects of corrupt inputs. PTGE achieves near state-of-the-art

performance of 1.49 cm on GazeCapture with a small number of calibration samples (≤16) and no optimization when

adapting to a new user, only a 2% decrease from the state-of-the-art achieved without the hour-long optimization process.

Category: Human-Computer Interaction

Keywords: Gaze estimation; Transformer; Artificial intelligence; Human computer interaction; Personal

calibration

I. INTRODUCTION

Gaze tracking is the process of measuring where a

person is looking at. Gaze estimation is a valuable tool in

several fields, including human-computer interaction,

augmented/virtual reality, and behavioral analysis. The

recent performance and popularity of machine learning

models has caused the field of gaze estimation to adopt

appearance-based approaches in favor of the conventional

model-based approaches. Appearance-based approaches

provide better results for in-the-wild settings, yet still

have room for improvement in providing highly accurate

predictions.

One of the main difficulties in accurately estimating

gaze is representing person-specific differences. Not only

do people look different from one another, but the structure

of their eyes are all unique. This uniqueness impacts the

line of sight and eye appearance. Anatomically, factors
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such as the size and shape of the eye, kappa (the angle

between the visual and pupillary axis), and weights are

different from person to person. These factors must be

considered to deliver a more consistent and accurate gaze

estimation model. In other words, a gaze estimation model

must be calibrated to the user.

Recent approaches to personal calibration employ few-

shot learning to adapt to a new person with minimal

information. For example, some researches show that the

difference in characteristics between people can be modeled

as a low-dimensional latent vector space and adjusted for

through few-shot learning in [1, 2]. However, the compu-

tational cost of meta-learning/fine-tuning alone places

limitations on the use of accurate gaze estimation tools on

mobile devices. Moreover, these approaches are vulnerable

to contaminated samples because the loss function they

target is very sensitive to such samples.

To overcome these challenges, we propose a light and

robust calibration framework, called personal transformer-

based gaze estimation (PTGE). In PTGE, we employ a

concept of preference vector, a low-dimensional vector

representing user-specific differences. In particular, to

model the preference vector in the training phase, we

train subject-wise embedding which is concatenated with

image features before fully connected layers. At the same

time, we train a calibration model which predicts preference

vector from a small number of user image features and

gaze label pairs. In the inference phase, only one forward

pass in the calibration model is needed to estimate the

preference vector for a user, which requires no special

optimization process unlike previous approaches, e.g., [2].

We adopted transformer [3] as an architecture for the

calibration model because of its outstanding properties:

permutation invariance, ability to solve relationships

between inputs, ability to handle arbitrary length of inputs

and robustness. In particular, we presume the robustness

that the attention mechanism exhibits can greatly reduce

dependency on corrupted samples (e.g., mislabeled images,

closed eyes) by suppressing them with low weights.

We conducted two main experiments to prove the

excellence of our proposed method. First, we evaluated

PTGE in two public gaze estimation datasets—GazeCapture

[4], MPIIGaze [5]—where PTGE achieves near state-of-

the-art performance despite its computational efficiency.

Also, we evaluated PTGE in partially corrupted scenarios,

where some of the calibration samples are corrupted, to

check if our method handles such samples in a robust

manner. The results showed that the performance drop is

small when even a large portion of the calibration samples

are corrupted, proving our conjecture that transformers

can efficiently handle corrupted samples.

Our contributions can be summarized as follows:

(1) We suggested a gaze calibration framework called

PTGE that does not require any optimization

process during inference, which makes it feasible

to be deployed in a low-resource environment

(e.g., mobile devices). To achieve this, we train a

calibration model which predicts user-specific

differences in one forward pass. To the best of our

knowledge, this is the first work to adopt an

additional neural network for the calibration phase. 

(2) By exploiting the robust property of a transformer,

our proposed method achieves remarkable per-

formance in partially corrupted scenarios. This is

meaningful because such scenarios are similar to

real-world calibration where users are prone to

make mistakes.

II. RELATED WORKS

A. Appearance-Based Method

Prior approaches to gaze estimation were predominantly

based on model-based methods [6-8] which utilize a

geometric model of the eye. Initial approaches generated

corneal reflections (glints) from an external infrared light

source to measure geometric information including eye

orientation and eyeball radius [9]. This approach relies on

dedicated infrared devices, decreasing its availability to

the general public. To address this issue, model-based

approaches adopted RGB cameras to obtain features of

the eye, such as the region of the iris and its center [10,

11]. However, these methods require high-resolution

images of the eye to accurately extract eye features and

are vulnerable to a multitude of factors, including head

pose variation and illumination.

In contrast, appearance-based methods directly predict

gaze estimation through images of the eye and/or face.

Recent improvements have allowed for accurate results

from a wide range of cameras and in-the-wild conditions

[12]. The adoption of deep neural networks in appearance-

based methods has contributed to this improvement and

has led to a 5°–6° increase in accuracy [13, 14].

As appearance-based methods use neural networks to

infer gaze points, it needs a large amount of dataset to

leverage its general prediction performance compared to

the model-based methods. With the introduction of large

real-world gaze datasets like [12] which contains images

from 15 participants (MPIIGaze) and [15] from 110

participants with various head poses and gaze angles

(ETH-XGaze), the robustness of gaze estimation models

was enhanced.

In previous appearance-based approaches, eye and face

images are directly applied to train neural networks

assuming that the raw facial image contains information

of head pose variations. Krafka et al. [4] proposed a

convolutional neural network (CNN) architecture that

inputs cropped eyes images, face images and face location

masks. Zhang et al. [14] have proposed a network that

takes the face image only to estimate gaze.

On the other hand, learning head pose variations from
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hidden layers can lead to overfitting of its dataset. Other

studies consider combining or removing geometric

information like head pose vectors and eyeball rotation

angles. Zhu and Deng [16] have designed a network that

gets head pose and eyeball rotation angles as input. Zhang

et al. [17] have proposed a face image normalization

method to remove head pose variations and scale factors

which improve model robustness in wild condition.

B. Personalization Approach

Previous model-based gaze estimation methods usually

include the personal parameters as a part of the three-

dimensional geometric model. They estimate the subject-

specific factors like eyeball radius [9] or fovea offsets

[18] through a personalized calibration to enhance the

performance of these unified models.

When the appearance-based methods are executing the

calibration, they need to incorporate the process without

the explicit eye model [2]. Usually, we consider the

calibration problem as domain adaptation problem, where

the models trained from the source domain should be

adapted to the target domain [19]. The calibration samples

from the target domain are comprised of images from

unseen environmental conditions or of unknown subjects.

Therefore, we categorize the personalized calibration

process in terms of how to adapt the general gaze

estimation model to the test set properly and how to get

sufficient calibration samples of unseen subjects efficiently.

1) Domain Adaptation

Domain adaptation methods can be classified into two

types.

a) Domain adaptation via fine-tuning to a target

domain: The simplest approach to calibration is to train

the general gaze estimation model into a person-specific

model. Zhang et al. [20] fine-tune their CNN model in

each target domain to enable the adapted model to track

the gaze direction in multiple devices. On the other hand,

Krafka et al. [4] used a general model as a feature extractor

and train an additional support vector regression to predict

each subject’s gaze points. These methods improve

performance and are easy to implement, but they cannot

fully use the potential of the personalized calibration.

b) Domain adaptation via the use of user embedding

vector: To process the calibration by adapting the whole

model or adding a post-processing procedure means a

high-dimensional calibration parameter space, followed

by a requirement for a several calibration samples. So,

recent studies introduced the low-dimensional vectors

which represent person-specific features. They show that

the personal features can be learned during fine-tuning

these user embedding vectors and stabilize the calibration

process with little resources. Linden et al. [2] proposed a

spatial adaptive model and show that personal variations

are well-modeled by a three-dimensional latent vector for

each eye.

2) Collection of Calibration Samples from Unknown

Subjects

We also consider how to obtain an adequate number of

calibration samples efficiently. If a gaze estimation

application requires many test sets for a subject, it can

degrade the user experience and lower the availability.

Park et al. [1] make their model learn a rotation-aware

latent representation of gaze and adapt to a new subject

with very few calibration samples. From an empirical

point of view, various studies [21-23] propose calibration

data collection methods. Although using a human-labeled

calibration sample can be accurate, it is challenging to

acquire enough samples in a practical situation. Salvalaio

and de Oliveira Ramos [21] collect samples when the

subject uses an input device like a mouse. They enable

their model to self-adapt to a new person rapidly with these

calibration samples by online transfer learning method.

C. Transformer and Attention

Since transformer networks were introduced as an

efficient approach to processing sequential problems in

natural language processing [3, 24-27], they have expanded

their scope to alternatives to traditional structures, including

CNNs and recurrent neural networks (RNNs). One of the

notable advantages of a transformer is that it is parallel

and has a longer learning range than CNNs and RNNs.

As a result, not only has transformer become mainstream

in the field of natural language processing, but the field

of computer vision has also seen benefits with transformer-

based models for better expressiveness. Dosovitskiy et al.

[28] introduced vision transformer (ViT) to apply the

transformer to image classification tasks without relying

on CNNs. Touvron et al. [29] have achieved similar

performances to those of the ViT with their approach,

data-efficient image transformer (DeiT), using only a

much smaller data set (around 1/300). Liu et al. [30]

proposed shifted window (Swin) transformer to improve

the ViT by applying hierarchy with shifted windows.

Park and Kim [31] analyze the opposite characteristics

of ViT and CNN. They show that conventional CNNs work

as high-pass filters and ViTs as low-pass filters. From this

observation, the authors propose a novel combined network

structure (AlterNet).

One of the transformer’s essential engines for imple-

menting the mentioned benefits is the multi-head attention

(MHA) mechanism [3]. The attention value is defined as

a linear combination of each value vector and its probability.

The probabilities are calculated as the softmax values of

the similarities between a given query and multiple keys.

The similarity is defined as a dot product operation between

a query and a key (often after a linear transformation
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operation).

As many researchers and practitioners understand that

attention mechanisms make important differences in

transformer networks, several researchers have tried to

unravel the underlying principles of attention mechanisms.

To better understand the principle of attention, Tsai et al.

[32] interpreted the Attention operation as a process of

applying a kernel that calculates the similarity between

two input data to design an improved Attention mechanism

by better understanding the principle of Attention. Mickus

et al. [33] mathematically analyze the transformer network,

focusing on additional properties of the MHA.

III. METHOD

We present a new method, illustrated in Fig. 1, to

accurately estimate gaze by calibrating new users to a

general gaze estimation model utilizing transformers.

The method consists of two main parts. The gaze model

that takes in normalized images, head pose and rotation

information, and subject-specific embeddings to predict

the gaze point and create the input for the calibration

model. The calibration model takes in both the gaze point

and image features extracted within the gaze model to

predict calibration parameters used to adapt the gaze

model. When in use, the calibration parameters are

estimated once by the calibration model and used by the

gaze model afterward.

A. Gaze Model

With the premise that an adaptable gaze estimation

model requires a base model to adapt, we began our

process with a person-independent gaze estimation model

[1]. We created the person-independent gaze model to

recognize basic patterns from people’s facial features that

translate to where the users are looking at.

Taking inspiration from previous approaches, the gaze

model consists of two main CNN models, defined as geye

for images of the eyes and gface for images of the entire

face. Given an input image x, we extracted the normalized

face image xface and normalized eye images, xrighteye and

xlefteye. We also estimate the head rotation matrix R, and

three-dimensional eye coordinates, peye. This process is

described in the experiments section. As shown in Fig. 2,

the feature extractor creates both the face features

gface(xface) and eye features geye(xeye). We concatenate the

extracted features with the head rotation matrix and

three-dimensional eye coordinates along with subject-

wise embeddings, E to input an multi-layer perceptron

(MLP) we call Gaze Extractor, gex, to get the final gaze

estimation result, G.

The subject-wise embeddings are a separate layer created

to represent person-specific differences and separated

them from the gaze model. Each subject has a separate

embedding vector of length n. This vector is trained to

minimize the Euclidean distance between the estimated

gaze point and ground truth per person. Note that the

embeddings found during the training process are not

used in the final evaluation. 

Most works calculate the translation of the yaw and

pitch estimation to a two-dimensional gaze coordinate

Fig. 2. Gaze model architecture.

Fig. 1. Overview of the entire gaze-calibration pipeline.



Looking to Personalize Gaze Estimation Using Transformers

Seung Hoon Choi et al. 45 http://jcse.kiise.org

separately without the help of a deep learning model.

However, we input the head rotation matrix along with

the three-dimensional coordinates for each eye and lets

the model learn the process. We found the head pose

estimation algorithm in the image preprocessing process

to be fragile to outside noise. We hypothesized that the

head pose estimation and three-dimensional eye coordinates

calculated are also affected by person-specific differences.

Experimentally, we found that inputting these values into

the gaze extractor allowed the subject-wise embeddings

and model to tweak the results as needed. Hence, instead

of predicting a gaze vector and geometrically calculating

the gaze point on the screen with the head rotation and

three-dimensional eye coordinate information, we input

all of these values into our gaze model.

We optimized this model with the following loss

function,

(1)

where  is the ground truth gaze point and B is the

number of batches. The Hubber loss LH is defined as

follows:

(2)

The parameter δ in (2) determines where two functions

(linear and quadratic) are exchanged. We set δ = 1.5 for

our implementation.

B. Calibration Model

The objective of the calibration model is learning to

predict person-specific calibration parameters from the

image features extracted by the gaze model, head pose

information and ground truth gaze labels. These person-

specific calibration parameters are set as inputs to the

gaze estimation model to personalize it to a user and

increase its overall accuracy.

Previous approaches use few-shot learning, a meta-

learning method to train models to make predictions

given a limited number of examples, to adapt the gaze

estimation model to different people. However, the few-

shot adaptation process has a large computational cost

which is not feasible for use on mobile devices. We show

that gaze estimation does not require the few-shot process

to adapt to new people due to the degree of similarity

between different subjects. Instead, the person-specific

calibration parameters can be learned for estimation

given the features extracted from our gaze model, giving

inspiration to the idea of our calibration model. To the

best of our knowledge, this is the first approach to estimate

person-specific calibration parameters without any opti-

mization using a deep learning model for gaze estimation.

1) Architecture Overview

As illustrated in Fig. 3, our calibration model consists

of a stack of transformer encoders between MLPs. This

model learns to predict an embedding vector that

represents person-specific differences given a small

number of calibration samples.

We concatenate the features extracted by the gaze

model, gface and geye, geometric information, R and peye,

and gaze ground truth to create the calibration query,

defined at q. This query is set as the input to an MLP to

create our calibration model transformer input. Our query

is then put into a stack of transformer encoders. The

outputs of the transformer are then passed into another

MLP to get the final subject-wise calibration parameter

estimation.

We choose the transformer as our main architecture in

the calibration model to increase speed and improve

calibration robustness. This approach speeds up the

calibration process by removing any optimization when

seeing a new user and creates a more robust calibration

result by being permutation-invariant and utilizing self-

attention. We believe that the performance of the calibration

should not be dependent on the order of the inputs and

Ĝ

Fig. 3. Overview of the calibration model.



Journal of Computing Science and Engineering, Vol. 17, No. 2, June 2023, pp. 41-50

http://dx.doi.org/10.5626/JCSE.2023.17.2.41 46 Seung Hoon Choi et al.

should recognize corrupted input data (e.g., closed eye

images, mislabeled data, etc.). Few-shot learning approaches

are vulnerable to corrupted inputs as they base their

predictions on the new, limited inputs and do not have the

capability to filter out corrupted ones. In contrast, self-

attention has the capability to weigh the importance of its

inputs, mitigating the negative effects of those that are

corrupted.

2) Training the Model

We trained the calibration model to estimate the learned

preference vector in the gaze model. We input B different

batches of s calibration samples of one user’s features to

get B results from the calibration model. To train a

calibration that is cohesive with the gaze model, we set

the ground truth of the calibration parameters as the

preference vector trained in the gaze model. We set the

self-constraint loss function as the mean squared error

between the two.

(3)

Here, C is our calibration model,  is the preference

vector layer in the gaze model, and qn is the calibration

query for batch n.

We also encourage our calibration model to find the

same embedding for one person. To achieve this, we also

utilized an embedding consistency loss similar to the one

proposed by [1]. This loss takes the sum of the angle

difference of each preference vector estimation.

(4)

Here, d is a function measuring the angular difference

between the two inputs.

(5)

3) Final Adaptation

When calibrating, both the gaze model and calibration

model are used. The gaze model must provide the query

for the calibration model. With just a few calibration

samples, the gaze model creates s calibration queries for

the calibration model. The calibration model takes in the

s calibration inputs and one forward step, estimates the

subject’s calibration parameters. Then, the estimated

calibration parameters are set as the preference vector

input for the gaze model. The gaze model has adapted to

the new user and the calibration model is no longer

needed after this. Our method provides a fast and accurate

calibration with no optimization.

IV. EXPERIMENTS

A. Datasets

1) MPIIGaze

MPIIGaze [5] is the most widely used benchmark for

appearance-based gaze estimation. It consists of around

2,500 images from 15 subjects each taken randomly for

several days. We used the images and data from the

MPIIFaceGaze subset for training and evaluation. We

train on MPIIFaceGaze using the leave-one-out strategy.

Following previous approaches, we used the last 500

images of each for evaluation and selected k calibration

samples for the calibration model from the remaining

images.

2) GazeCapture

GazeCapture [4] is the largest public gaze estimation

dataset that contains around 2.5 million photos from over

1,450 people. To use the preprocessing pipeline proposed

in [17], we gathered the camera intrinsic parameters of

the iPhones and iPads used from the web. We change the

face detector to BlazeFace for a model that can be used

outside of iOS devices. Following [4], we report our gaze

estimation error in centimeters.

B. Image Preprocessing

From the normalization approach proposed in [17], we

retrieved normalized images and geometric information

from an RGB image to promote easier learning and

generalization. We flipped the left eye image to match the

overall shape of the right eye and train the feature extractor

with shared weights. To create a symmetric network for

the left and right eye, we paired the flipped left eye image

with a flipped face image. In other words, the gaze model

has four image inputs: right eye, flipped left eye, cropped

face, and flipped cropped face.

C. Implementation Details

1) Gaze Model

All models, including the gaze model, are trained with

an Adam optimizer with default β and ε values (β1 = 0.9,

β2 = 0.999, ε = 10−7).

We used a base learning rate of 3 × 10−4 for the first 40

epochs. During this phase, gradients are not passed to the

preference vector layer embedding. After the first 40

person-independent gaze training epoch is completed, the

learning rate is decreased to 10−4 with a cosine decay

schedule. Moreover, the preference vector layer embedding

uses l2 regularization of 0.01.

Ĉ
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2) Calibration Model

The calibration model is also set with a learning rate of

10−4 with a cosine decay schedule. There are a total of six

transformer blocks in the calibration model, each with

four heads. The batch size N is set to 8 and s is set to 16.

We set the preference vector to a length of 6 as we

experimentally found that it provides the most optimal

performance.

D. Comparison with state of the art

1) GazeCapture

As shown in Fig. 4, PTGE accuracy is comparable to

SPAZE [2], the current state-of-the-art appearance-based

gaze estimation model. SPAZE is a CNN-based model that

adapts to new users using BFGS optimization. SPAZE

shows better uncalibrated accuracy compared to PTGE.

However, on a small number of calibration samples (≤4),

PTGE shows almost identical performance. With four

calibration samples, both SPAZE and PTGE reach a

mean test error of 1.61 centimeters. This, combined with

the fact that PTGE requires no optimization to calibrate

lowers the computational cost substantially compared to

previous methods. In other words, PTGE allows for state-

of-the-art performance gaze estimation on mobile devices.

Even when 16 calibration points are utilized, the difference

of 0.02 cm, or a 2% drop in accuracy is almost negligible.

2) MPIIGaze

On MPIIGaze [5], we compare our model with FAZE

and SPAZE, the two most recent state-of-the-art adaptable

gaze estimation models. Both FAZE and SPAZE require

further optimization during calibration, MAML for FAZE

and BFGS for SPAZE. Table 1 displays the comparison

of our results along with FAZE and SPAZE. For within-

MPIIGaze training, PTGE shows an angular error of

3.76°, a 3% improvement compared to FAZE. However,

due to the small number of subjects and amount of data,

PTGE is unable to separate person-specific embeddings

to the fullest extent. Training with GazeCapture offers a

solution to this problem. GazeCapture is a much larger

dataset compared to MPIIGaze and contains almost 1,450

more subjects.

Training on MPIIGaze along with GazeCapture offers

the best performance of PTGE, decreasing its angular

error to 2.81°. This metric has a difference of only 4%

from SPAZE.

E. Robustness

Experimenting on MPIIGaze, we found that PTGE is a

robust model that can filter out corrupt data. Illustrated in

Fig. 5, we see that our model can retain up to 95% of its

original performance when even 20% of the calibration

samples are corrupt. Experiments with preference vectors

of length 1, 3, 6 all achieve similar results while those

with a length of 9 become less robust. We hypothesize

that this is because the larger the preference vector, the

more information can capture. The preference vector in the

gaze model begins to capture person-independent factors.

F. Number of Calibration Parameters

To find the optimal preference vector length, we ran

experiments on MPIIGaze. As shown in Table 2, a

preference vector of length 6 appears to be the most

optimal. As stated above, we hypothesize that a length of

9 performs worse as it begins to take over the role of the

person-independent gaze estimation model. Hence, in all

the experiments where the preference vector length is not

explicitly stated the preference vector length is 6.

Fig. 5. Robustness of calibration model on MPIIGaze with
varying preference vector length.

Fig. 4. Accuracy of GazeCapture.

Table 1. Comparison of PTGE with other calibration models on
MPIIGaze [5]

Method Error (°)

FAZE 3.88

PTGE 3.76

PTGE (GazeCapture pretrained) 2.81

SPAZE 2.70
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V. CONCLUSION

In this paper, we presented PTGE, the first calibration

approach in gaze estimation using deep learning models,

to predict calibration parameters. PTGE achieves near

state-of-the-art performance without any optimization

during calibration, providing almost the same performance

while decreasing the computational cost significantly. We

display that the personal variations can be represented as

a latent vector and predicted from image features and

geometric information.
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