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Abstract
The activity diagram (AD) is one of the UML 2.0 diagrams. Research has sought a precise semantic representation for

the AD, partly because such representations can help to verify whether a specific AD is semantically consistent with

other corresponding UML diagrams. In this study, we propose the Action Transition Graph (ATG) for semantic represen-

tation of the AD. The ATG represents the AD behavior as a finite state machine. One benefit of the ATG is that it is

derived from process algebra equations, according to a precise procedure that will be formally presented. The grammar

of the process algebra is also given, including an extension for representing parallel steps. This grammar allows the AD’s

behavior to be described by algebraic equations. Writing simple-text equations can help to simplify and structure the pro-

cess of constructing ADs. In addition, these process algebra equations can be parsed by the grammar to obtain an over-

view diagram for ADs. The proposed overview diagram contains meaningful high-level information for the AD, and it is

also shown to be directly relatable to both the underlying AD and the corresponding ATG that defines its semantic meaning.

Category: Information Retrieval / Web
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I. INTRODUCTION

The activity diagram (AD) is one of the modeling

diagrams defined in the UML 2.0 [1]. The AD is a

flowchart-like diagram with added features for the nested

definition of activity nodes by their own ADs, and for the

parallel execution of nodes between fork and join-bars.

In this study, we propose a process-algebra-based

formalization of the semantics of ADs. Since algebraic

equations follow a precise grammar, they can be

grammatically parsed into trees. Such parse trees are

equivalently representable by a diagram of nested boxes.
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We refer to this diagram of nested boxes as the AD

overview diagram (AOD), because we hypothesize that it

is a useful high-level representation of the AD. Moreover,

the AOD derives directly from the process algebra that

describes the AD, which means that the AOD has dual

advantages; it is directly relatable to the AD and directly

relatable to the precise semantic meaning defined by the

process algebra.

The formal procedure for obtaining precise semantics

is a core idea of the structure-behavior coalescence (SBC)

approach [2, 3], and has been successfully applied by our

team to UML sequence diagrams (SDs) [4] and UML

state machine diagrams (SMDs) [5]. The SD has a visual

similarity with the overview diagram proposed in [4], so

the SD’s representation in process algebra was straight-

forward. The key contribution of [4] was to use the SBC

approach to obtain a labelled transition system (LTS) with

the low-level formal semantics of the SD-like overview

diagram. The SMD has a visual similarity with the LTS

proposed in [5]—notably the proposed LTS is a valid

SMD. The key contribution of [5] was therefore to use

the SBC approach to provide an automatic procedure for

creating an SMD-compliant LTS from a new overview

diagram. 

In comparison to our work in [4] and [5], UML’s AD is

a harder challenge, because the AD is not visually similar

to either an SBC overview diagram or its derived LTS.

This study presents a nontrivial example, in which the

AD will be compared to its overview diagram and its

semantic meaning, as represented by its LTS. Also, the

procedure to automatically create an AD from either its

overview diagram or its derived LTS is discussed.

Another reason why ADs are more challenging than

the other UML diagrams considered in [4] and [5] is that

ADs usually contain fork-join regions. Such regions

describe parallel activity pathways, with the rule that

actions cannot proceed beyond the join until all paths have

either terminated or reached the join. This synchronization

requires adding a rule to our grammar, and being novel to

the field of process algebra, the precise semantic meaning

of this new rule will be described in detail.

The proposed approach offers several advantages to

UML ADs users. First, a process algebra representation

of the AD allows a meaningful overview diagram to be

created; the diagram contains important high-level infor-

mation that can assist designers in understanding the

general structure of a potentially complex system. Second,

creating a process algebra description can ease the

designing process of ADs, as the user can start with a

simple text file of process algebra equations and then

construct the AD from that file, using software that could

be developed in accordance with the procedure in this

paper. Third, the automatic construction of the AD yields

a structured and consistent layout. Fourth, the proposed

process algebra is formally shown, which gives a precise

semantic meaning of the AD—this has been a goal of

earlier researchers [5-9]. Fifth, using an LTS to represent

semantic meaning can facilitate analysis by the existing

LTS solvers (e.g. [10]). Moreover, our LTS representation

for the AD is quite similar to the LTS representations we

have previously proposed for the SD and SMD, in [4] and

[5], respectively. This similarity may facilitate future

work in the field of consistency checking between these

diagrams.

The contents of this paper have been presented as

follows. Section II discusses previous approaches for

deriving the precise meaning of UML ADs. Section III

presents the SBC process algebra for ADs, the resulting

overview diagram (the AOD), and the corresponding

semantic representation as an Action Transition Graph

(the ATG). Section IV evaluates the proposed approach

with a specific example. Section V offers conclusions.

II. RELATED WORK

Various representational models for defining the precise

semantic meaning of UML ADs have been proposed. In

most cases, the reason for defining a precise semantic

meaning is to allow for consistency checking. This is also

the reason why our proposed ATG representation for

UML ADs is designed to closely match our previously

presented LTS representations for UML SDs and SMDs.

One method that has been used for the semantic

specification and validation of ADs is to convert them

into equivalent abstract state machines (ASMs) [6]. An

ASM specifies pseudocode to precisely describe the

system behavior so that it can be validated by testing in a

virtual environment. On its own, the ASM representation

is not graphical, but the ASM representation is often

converted into some form of the finite state machine

(FSM) [6, 7]. Then, the FSM formats are compared to the

format of the LTS formed by our algebraic approach.

The FSM presented in [7] uses statechart-like semantics

to model ADs for workflow applications. Although limited

to UML 1.0, a key feature of [7] is the use of a special

FSM format that achieves parallel path execution through

a path-merging mechanism that allows transitions out of

states to be restricted by multiple in-edges. This merging

mechanism is then used to implement the fork-join

regions of UML ADs. This idea was extended by [8] to

cover all the features of the UML 2.0 ADs. Although

these works do create FSMs, their primary goal generally

is model checking, not the idea that users would directly

view the FSM. In [9], a different pseudocode algorithm is

presented to create a similar form of FSM to represent all

of the structures of UML ADs.

In contrast to these studies, our proposed approach

builds the FSM from process algebra rather than from

pseudocode. Another difference is that our proposed ATG

tends to have fewer states than in the related studies

because the edges in the ATG have more expressivity.
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One feature that is similar between our approach and [7–

9] is that our proposed FSM format (the ATG) also defines

a special mechanism (parstep, described below), to

implement the join node of ADs.

Defining AD behavior using compositional temporal

logic (cTLA) is similar to the ASM approach [10]. TLA

uses a program-like representation of system behavior via

transfer protocols. Composable processes are added in

cTLA. The ASM-based works, the FSM created by [10]

is larger than our proposed LTS, and is not intended for

direct user inspection.

Aside from FSMs, various forms of Petri nets are also

often used to represent ADs. Petri nets define transitions

between nodes, and the transitions can require multiple

inputs to trigger. This means that Petri nets easily handle

the fork-join regions of ADs. In [11], an example is

provided to illustrate the intuitive way that a Petri net

representation can be visually compared to the AD.

Similarly, we present a visual side-by-side comparison of

the AD to our representation, in Section IV. In fact, the

example in [11] also presents the process algebra description

of the system, although it does not use that representation

in its analysis. In [12], a specific type of colored Petri net

is used to represent the AD, and in [13] a specific

modular Petri net is used for the representation. Although

our ATG format is sufficient for analysis with an LTS

solver, it is also a trivial matter to convert an LTS into a

Petri net, if it were desired to perform model checking,

with an existing tool for Petri nets.

A very different representation for AD semantics is to

use institutions [14, 15]. Institutions represent facts about

a system. By describing the behavior of each component

of the AD in the syntax of institutions, the behavior can

be compared for consistency checking against the behavior

of the other UML diagrams that have also been represented

as institutions. 

One approach that is more relatable to our process-

algebra-based representation is to use a similar pi-calculus

representation. Despite the similarity of these representations,

the related works in this area focus on solving a different

problem: how to formalize the process of representing an

AD with pi-calculus [16, 17]. Such a pi-calculus repre-

sentation could then be used to derive our process algebra.

We propose the reverse, however: not deriving the process

algebra, but starting with it and deriving the AD from it.

III. STRUCTURE-BEHAVIOR COALESCENCE
FOR FORMALIZING UML 2.0 ACTIVITY
DIAGRAMS

This section discusses the details of the SBC method

used to specify the formal semantics of the UML 2.0

ADs. This method is termed the SBC activity diagram

(SBC-AD). In SBC-AD, each action flow is regarded as a

process.

A. The Entities of SBC-AD

As shown in Table 1, C refers to a set of guard

conditions, H is a set of actions, Π is a set of code

snippets, R is a set of prefixes, Ψ is a set of action flows

and Φ is a set of action flow constants. The elements of

these sets are respectively written as c1, c2, …
 ; h1, h2, …

 ;

π1, π2, …
 ; r1, r2, …

 ; AF1, AF2, …; and A1, A2….

B. The Prefix Specification of SBC-AD

SBC-AD is an LTS that provides a single diagram for

UML, to unify structural and behavioral constructs. In

SBC-AD, each transition is labelled with a prefix that is

defined as follows.

DEFINITION (PREFIX). A prefix PX = (C, H, Π, R)

consists of:

● a finite set C of optional guard conditions,
● a finite set H of actions,
● a finite set Π of optional code snippets,
● a relation  × H × Π, and (c, h, π)

The above definitions describe the labels for the ATGs

edges. For any transition ti there will be an associated

relation ri that is defined as a 3-tuple (ci, hi, πi). The above

definition states that the ci and πi fields are optional; when

not needed, a nil is used. For a system that currently is in

some state where ti is an outgoing transition, the guard ci

will first be evaluated; if it evaluates to False, then the

guard will prevent the transition from triggering -the

condition of nil evaluates to True.

Next, if the decision is made to trigger the transition ti,

then the action hi will be performed by the system. In

special cases, if no action is to be taken then an ε action is

specified (in finite state machines, epsilon transitions

occur instantaneously). Finally, the code snippet πi will

be executed, if it was provided.

C. The Syntax of SBC-AD

As a formal language, SBC-AD is syntactically specified

by the Backus-Naur Form (BNF) grammar shown in

Fig. 1.

R C  R.

Table 1. Entitles of SBC-AD

Entity set Entity name Entity type

 C c1, c2... Guard conditions

 H h1, h2... Actions

 Π π1, π2... Code snippets

 R r1, r2... Prefixes

 Ψ AF1, AF2... Action flows

 Φ A1, A2... Action flow constants
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Rule (1) describes that the inactive action flow is

denoted in SBC-AD by “ ”.

Rule (2) describes that the action flow of executing, in

sequence, a prefix “r” and then an action flow “AF1” is

denoted in SBC-AD by the expression “r●AF1.”

Rule (3) describes that the action flow of executing, in

sequence, a partially-defined action-transition graph (PATG)

and then an action flow “AF1” is denoted in SBC-AD by

adding the designator “parstep()” to the sequence expression

“parstep(PATG)●AF1”. parsteps are used for modeling

the fork-join regions of ADs. The format of the PATG

will be discussed in Section III-F.

Rule (4) describes that the action flow of executing an

alternative of either an action flow “AF1” or an action

flow “AF2,” is denoted in SBC-AD by the expression

“AF1 alt AF2.” The condition that determines whether

AF1 or AF2 will be executed can be specified with the

prefixes internal to AF1 and AF2. The condition can also

be left unspecified, to indicate non-deterministic execution

behavior.

Rule (5) describes that the action flow of executing, in

parallel, both the action flow “AF1” and the action flow

“AF2” are denoted in SBC-AD by the expression “AF1

par AF2.”

Rule (6) describes that the action flow of executing a

loop is denoted in SBC by the designator “loop()” in the

expression “loop(LATG).” LATG is defined as an ATG

that contains a cycle back to its entry node. The format of

ATGs will be discussed in Section III-E.

Rule (7) describes that the action flow for executing an

elsewhere-specified process “A” is denoted in SBC-AD

by “ A.” Such a process “A” is referred to as a constant

or as a library process.

D. The Action/ATG Overview Diagram

A process can be described in SBC-AD by an algebraic

expression conforming to the grammar presented in

Fig. 1. Applying this grammar to such an expression creates

a parse tree. The parse tree is equivalently represented by

a diagram of nested boxes. Displaying this nested

diagram can provide an intuitive visual representation of

the overall behavioral structure of the process that the

UML AD is describing. The nested diagram will be

termed the AOD, standing for either the ATG overview

diagram or the activity overview diagram.

To show the usefulness of AODs for high-level visuali-

zation, Fig. 2 presents an example of a simple ATM that

uses a variety of process algebra operators. Each nested

box has a label on its upper-left corner (the operator) and

a dashed line (separating the operands). The AOD is built

using Fig. 1’s rules to parse the algebraic expression:

AFATM  parstep(getPin)
 • (parstep(getTask) • ((rreduceBal

• parstep(giveItems) • itemCollect) alt (rdispBal
 • rejectCard •

itemCollect))). The designer provides the “itemCollect”

ATG, as well as the parstep parameters of “getPin,”

“getTask,” and “giveItems.” The semantic meaning of

this ATM example will be presented in Sections IV-A and

IV-B. 

E. The Action Transition Graph of SBC-AD

In SBC-AD, the precise semantic meaning of a UML

2.0 AD is specified using an ATG. The ATG is a single

diagram for the full system. Also, since it is based on

process algebra, it is therefore a LTS [18].

DEFINITION (Action Transition Graph). An action

transition graph (ATG) = (Ψ, (π0, AF0), R, ATGR) consists

of:

● a finite set Ψ of action flows, including an initial

action flow AF0Ψ,
● an optional code snippet π0 for the initial transition

AF0, where π0Π,
● a finite set R of prefixes,

Fig. 1. BNF grammar of SBC-AD.

Fig. 2. An illustration of the high-level overview provided by the
AOD. The semantic meaning of this example is covered in Section
IV.
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● a transition relation ATGR  Ψ×R×Ψ, where (AFi, rj,

AFk)ATGR is written as AFi  AFk.

Fig. 3 gives a sample ATG, for AF11  (r11
 ● r12)

 
alt

 (r13

● ). The names in the nodes of the graph are action

flows, and the labels on the edges between nodes are

prefixes. There is also an initial transition into AF11. Such

initial transitions have a target but no source, and they are

labelled with only a code snippet (“A = 8000; B =

2000”). The transition relations are ATGR11 =
 {(AF11,

 (A >

5000, h11, nil), AF12), (AF11, (A
 ≤ 0, h12, nil), ), (AF12,

(nil, h13, B = B + 1000), )}, so the action transition

graph presented in Fig. 3 is expressed as ATG11
 = (Ψ, ((A

= 8000; B = 2000), AF11),
 R, ATGR11). In this example, the

transitions from AF11 have mutually exclusive guard

conditions, but this is not a general requirement. If the

conditions for multiple transitions are all met, the choice

of a trigger will be arbitrary and fair [10].

In ATGs, when AF  ...  AF', then we call (r1… rn,

AF' ) a derivative of AF. For an initial action flow AF0, a

path AF0  ...  AF0 would indicate a cycle back to the

initial node. Thus, the ATG would meet the definition of

an LATG, described by Rule (6) of Fig. 1 as AF0  loop

(LATG0).

For example, Fig. 4 presents the ATG for the action

transition relation ATGR21 = {(AF21, (Lcount > 0, h21,

Lcount--), AF22), (AF22, (nil, h22, nil), AF21), (AF21,

(Lcount ≤ 0, h41, nil), )}, which defines ATG21 = (Ψ,

((Lcount = 100), AF21), R, ATGR21). The path AF21 
 ...

 AF21 exists, so the action flow is represented as AF21

 loop (LATG21).

F. The Transitional Semantics of SBC-AD

The semantics of SBC-AD is obtained by precise

composition rules for each action flow operator. Fig. 5

gives the rules for all operators except for the parstep

sequence (which is covered later).

1) The First Transition Rule for Sequence Composition

Sequence composition Rule (1) from Fig. 1 is interpreted

as: for any situation, describable by r●AF1, the occurrence

of the activity represented by prefix r infers (r●AF1) 

AF1. To be precise, for any sequential action flow with a

prefix that is prefixed to it, this prefix “r” is used to fulfill

the transition. 

Consider “AF2”, defining the action flow expression

“r●AF1”, written as “AF2  r●AF1”. The sequence com-

position rule for generating the code snippet of the initial

transition of the action flow “AF2” is for the initial

transition of “AF2” to acquire its code snippet from the

initial transition of the action flow “AF1.” “AF1” will not

be the initial state in the new ATG, so it will no longer

have its own initial code snippet.

The next sequential process can be any process. The

simplest case is when it is , as shown in Fig. 6. Here, it

is ATGR31 = {(AF31, (nil, h31, nil), )} and ATG31 = (Ψ,

rj


r1


rn


r1


rn


r21


r22


r


Fig. 3. The ATG for AF11  (r11●r12● ) alt (r13● ), where r11 =
(A>5000, h11, nil), r12 = (nil, h12, B=B+1000), r13 = (A≤5000, h13, nil),
and where the code snippet of the initial transition is (B=8000;
C=2000).

Fig. 4. A loop example defining ATG21. As shown, an LATG is an
ATG with a cycle to the entry node (in this case, AF21). Every LATG
is an ATG, so the SBC-AD representation of this example process
is: AF21  loop(ATG21).

Fig. 5. The transition rules of the operators of SBC-AD. These
rules provide precise semantics for the composition across the
operators in an action flow algebraic expression. The transition
rule for a parstep sequence is more complex, however, and is
presented separately, in Fig. 10.
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(nil, AF31), R, ATGR31). The case of a loop is shown in

Fig. 7, where AF41 = r41●AF21 (and where AF21 has been

defined as a loop, in Fig. 4). Defining r41 as in the figure,

ATGR41 = {(AF41, (nil, h41, credit = 9000), AF21), (AF21,

(Lcount > 0, h21, Lcount--), AF22), (AF22, (nil, h22, nil),

AF21), (AF21, (Lcount ≤ 0, h41, nil), )} and ATG41 = (Ψ,

((Lcount=100), AF41), R, ATGR41).

2) The Transition Rules for Alternative Composition

The two alternative composition rules respectively,

show that AF1  AF1' infers (AF1 alt AF2)  AF1' and

that AF2  AF2' infers (AF1 alt AF2)  AF2'. Defining

AF3 as AF3  AF1 alt AF2, the rule to create the code

snippet of AF3’s initial transition is to concatenate the

initial-transition code snippets of AF1 and AF2.

To illustrate the usage of the alternative composition

rules, Fig. 8 applies them to the previously defined action

flows, AF21 and AF31, written as AF51  AF21
 

alt
 AF31.

The obtained action transition relation is ATGR51={(AF51,

(Lcount > 0, h21, Lcount--), AF22),
 (AF51, (Lcount ≤ 0, h41,

nil), ), (AF51, (nil, h31, nil), ), (AF22, (nil, a22, nil),

AF21), (AF21, (Lcount > 0, h21, Lcount--), AF22), (AF21,

(Lcount ≤ 0, h41, nil), )}, which constitutes the graph

ATG51 = (Ψ, ((Lcount = 100), AF51), R, ATGR51).

3) The Transition Rules for Parallel Composition

The two rules for parallel composition shows, respec-

tively, that AF1  AF1' infers (AF1 par AF2)  (AF1' par

AF2) and that AF2  AF2' infers (AF1 par AF2)  (AF1

par AF2'). Defining AF4  AF1 par AF2, the code snippet

of AF4’s initial transition is created by concatenating AF1

and AF2 initial transitions’ code snippets.

To illustrate the transition rules of parallel composition,

Fig. 9 presents “AF61  AF21
 

par AF31.”

r


r


r


r


r


r


r


Fig. 6. An example of an ATG constructed from a sequence
transition. The presented ATG31, is defined as AF31  r31 ● .

Fig. 8. An example of an ATG constructed from an alternate
transition. (a) shows the AOD. (b) defines the components
referenced in (a), as obtained from Figs. 4 and 6. (c) obtains the
complete ATG51 from the transition rule of Fig. 5.

Fig. 7. An ATG constructed from a sequence transition going to
a loop. ATG41 is defined as AF41  r41●AF21, and where AF21 is itself
defined in Fig. 4.

Fig. 9. An example of an ATG for a parallel transition. (a) A sample AD containing a fork, a loop, and three unspecified actions h21, h22, and
h31. (b) The corresponding AOD. (c) The corresponding orthogonal-format ATG. (d) The equivalent non-orthogonal ATG.
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The action transition relation is ATGR61={(AF61,

(Lcount > 0, h21,
 Lcount--), AF22 par AF31), (AF61, (Lcount

≤ 0, h41, nil),  par AF31), (AF61, (nil, h31, nil), AF21 par

), (AF22 par AF31, (nil, h22, nil), AF61), (AF22 par AF31,

(nil, h31, nil), AF22 par ), (AF22 par , (nil, h22,
 nil),

AF21
 
par

 ), (  
par

 AF31, (nil, h31,
 nil), 

 
par

 ), (AF21

par , (Lcount ≤ 0, h41, nil),  par ), (AF21 par ,

(Lcount > 0, h21, Lcount--), AF22 par )}, which con-

stitutes ATG61 = (Ψ, ((Lcount = 100), AF61), R, ATGR61),

as shown in Fig. 9(d).

The set of action flow possibilities for parallel

composition is the Cartesian product of its two action

flow operands. The size of this product increases signi-

ficantly when both operands have many states. Hence,

the orthogonal form of the finite state machine may be

preferred, as shown in Fig. 9(c). The various FSMs pro-

posed in the related works do not provide an orthogonal

form, partly because those works are not aimed at

allowing the users to directly view the FSM.

Yet the concept of orthogonal FSMs is natural to UML

users because UML state machine diagrams also have

this property. Compared to our approach, however, UML

provides no explicit formalism to create a nonorthogonal

FSM (e.g., Fig 9(d)) from an orthogonal one (e.g., Fig. 9(c)).

4) The Transition Rule for Parstep Sequence Composition

To illustrate parstep-sequence composition, Fig. 10

gives example “AF71  parstep
 

(PATG71)
 ● AF31”. The

definitions of PATG71 and AF31 are given in Fig. 10(b). AF31

is from Fig. 6, but PATG71 is a new example illustrating

the syntax of partial ATGs. As shown, PATGs are used

for fork-join regions of UML ADs, so PATGs begin with

a fork-bar and end with a join-bar. Between these bars are

parallel process threads (in this example: r71
 ● r72

 ● r73 and

r74
 ● r75). As shown, each thread reaches the join-bar, so

the execution cannot progress further until both threads

finish.

Fig. 10(c) shows the procedure for constructing the

ATG for a parstep sequence transition. The procedure

involves separately converting the PATG’s fork and join-

bars. To highlight these two conversions, the figure shows

one in green and the other in red.

As shown, the green fork-bar of Fig. 10(b) is converted

to an orthogonal format ATG. The initial code snippets of

the PATG’s parallel threads concatenate for the orthogonal

ATG region’s initial code snippet (as was also the case in

the parallel composition). In this example, however,

neither parallel thread of PATG71 has a code snippet to

concatenate. Nonetheless, a code snippet c=0 is seen in

Fig. 10(c). Setting c to 0 indicates that no threads are

finished at the time of entering the orthogonal region.

As also shown in Fig. 10(b)’s, the red join-bar is

converted to a new state, AFbarrier, put at the exit of the

orthogonal region. For each thread, the transition into

AFbarrier has a C++ code snippet, to indicate that that

thread has completed. Thus, the transition out of AFbarrier

is guarded by c==2, and both of PATG’s branches must

finish before progressing to AF31. The transition out of

Fig. 10. Example of an ATG constructed from a parstep-sequence
transition. (a) Overview diagram. (b) Definitions of the components
referenced by (a). The PATG has parallel threads running between
fork and join bars. (c) This example’s semantic meaning. The green
fork-bar of (b) has produced a green dashed orthogonal line in
(c), and the red join-bar of (b) has produced a barrier state in (c),
as well as code snippets (C++) and a guarded condition (c==2).

Fig. 11. A complex ATG example constructed from a parstep transition: (a) the components and (b) the corresponding orthogonal-
format ATG.
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AFbarrier also has an action of ε, which is standard state

machine syntax for an instantaneous transition.

PATGs can be more complex than PATG71; in Fig. 11,

three parallel threads leave the fork. As shown in Fig. 11(a),

the rightmost thread (comprising AF84 – AF87) has four

alternative paths (r84
 ● r85

 ● r86
 ● join, r84

 ● r88
 ● join, r89

 ●

r87
 ● join, and r89

 ● r90
 ● ). Only three reach the join-bar,

but in Fig. 11(b), each path ends with C++, including the

r89
 ● r90

 ● 
 path. The middle thread (AF81

 – AF83)

illustrates parallelism within a thread. Parallel paths r81
 ●

r82
 ● join and r81

 ● r83
 ● join, and both reach the join-bar.

Thus, in Fig. 11(b), both have C++ on their edges to

AFbarrier, and both contribute to the guarded condition’s

bound, c==4. In other words, the bound is calculated as

the number of swimlanes that reach the join, rather than

the number that start at the fork.

Concerning the leftmost thread of Fig. 11(a), it is the

LATG of Fig. 4, and shows the composition of loops in

PATG threads. This capability of placing a LATG within

a PATG is useful even if there is no parallelism in the

PATG, because it allows for process algebra descriptions

of action flows after loop exits in LATGs. Fig. 12 will

give an example to clarify such a usage. When used this

way, the bound on the guarded condition will be c==1,

which means that the guard is unnecessary and can be

removed along with the code snippets for c=0 and C++.

IV. EVALUATION OF THE SBC METHOD

The proposed approach offers two key benefits for AD

design and validation. First, an AD overview diagram is

given. This AOD corresponds directly to the AD and can

simplify the process of building the AD. Further, the

AOD offers meaningful high-level information and its

format is similar to (and easily compared to) the UML

sequence and state machine overview diagrams presented

in [1] and [2]. Second, a formal procedure is given for the

precise semantic meaning of the AOD (and so for the AD

it represents), as an LTS. The format of this LTS is

consistent with the rules of UML SMDs, so it can be used

to create that diagram. To best understand these benefits,

an example will now be given.

A. Comparing the AOD to the AD

Fig. 12 gives the AOD of Fig. 2, but in grey with its

ATG overlaid on it (so, for a clear view, see Fig. 2). Fig.

12(b) gives the AD. All the complexity of Fig. 12(b) is

summarized as: AFATM 
 

parstep(PATGgetPin)
 ● 

(parstep

(PATGgetTask)●((rreduceBal●parstep(PATGgiveItems)
 ●AFitemCollect)

alt
 (rdispBal●rejectCard●AFitemCollect))), where AFitemCollect

 

((ritemsRetrieved
 ● ) alt (rtimeout

 ● rwarningOff
 ● ). 

ADs can derive from these expressions (except PATG

Fig. 12. An illustration of the correspondence between the AOD, ATG, and AD, for a simple ATM. In (a), the AOD from Fig. 2 is
reproduced, with its ATG in the foreground. The ATG has been arranged so as to let each ATG region to overlay the AOD action flow
producing it. (b) The corresponding AD. Note that actions occur within AD states, but on ATG transitions.
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parts). Expression operators define the AD’s shape and

operand prefixes define its labels. Thus, Fig. 12(b)’s

decision diamonds map to alt operators. Eg, the two

outgoing edges from AFitemCollect
 has prefixes ritemsRetrieved

 =

(citemsRetrieved,
 hdispWelcome,

 nil) and rtimeout
 = (ctimeout,

 hsoundWarning,

nil), and the matching decision diamond (at the bottom of

Fig. 12(b)) has edge labels items Retrieved and timeout.

So, the decision diamond labels derive from guard

conditions in the prefixes of operands to alt operators.

Besides edge labels, ADs have node labels that map to

expression prefix actions. For example, the above rtimeout

prefix contains the action hsoundWarning, and the matching

node of Fig. 12(b) is labeled Sound warning. 

As shown in Fig. 12, AODs offer useful high-level

information that is easy to visually compare to ADs.

Also, AODs are expressible in algebraic equations that

succinctly capture the information in ADs. So, software

can be used to automate constructing UML ADs from a

text file of equations.

B. Comparing the AOD to the AD

Fig. 12(a) also shows the ATG overlaid on the AOD.

This ATG matches to the algebraic description: AFATM

parstep(getPin) ● (parstep(getTask) ● ((rreduceBal ● parstep

(giveItems)●itemCollect) 
alt

 (rdispBal
 ● rejectCard

 ● itemCollect))),

where the parstep elements (PATGgetPin, PATGgetTask, and

PATGgiveItems) must be supplied by the user. The ATG

presented in Fig. 12(a) is a fully-defined, full-system

description, as all references are replaced with their ATG

representations. One feature to note in Fig. 12 is that

there are four separate accesses to the AFitemCollect library,

and those four access pathways are why state AF109 has

four in-edges.

As AODs were meaningfully compared to ADs (Section

IV-A), so too can ATGs be meaningfully compared to

ADs. As can be seen in Fig. 12(a), the ATG edges are

labelled with prefixes (3-tuples of a condition, an action,

and a code snippet). In Fig. 12(a), there are eleven prefixes

with non-ε actions, each displayed in the enlarged text; in

Fig. 12(b), the AD has eleven nodes (i.e., ellipses), each

labeled with text from a corresponding action in Fig.

12(a). Similarly, each nonnil guard condition in Fig.

12(a) corresponds to one of the decision-diamond edge

labels in Fig.12(b)—with the two caveats. In the first

caveat, the AFbarrier3’s c==4 guard is subsumed into the

AD’s join-bar, and in the second caveat the compound

guard conditions (e.g., wrongPin and try ≤ 3) have been

split into separate decision diamonds in Fig. 12(b).

The most important observation to draw from Fig. 12

is that the AD can be automatically extracted (potentially

by software) from the ATG, and the ATG is itself

automatically extracted from the AOD. Thus, a simple set

of process algebra equations (along with some PATG

and/or LATG information) is enough to generate the AD.

Not only does this simplify the process of creating an

AD, but it also allows summarizing with an overview

diagram. In addition, note that the level of detail in the

AD is controlled by the number of prefixes with non-ε

actions, so the user has a way to control the size and

detail of the AD.

C. Comparison of SBC-AD to Other Approaches

Table 2 summarizes the capabilities of various approa-

ches. As shown in the table, previous methods do not

consider providing an overview diagram for the AD. The

lack of such an overview has two consequences for all of

the related works. First, these works do not assist the user

either to design the AD or to understand its top-level

overall behavior. Second, techniques that do not start

with an overview will need added formalism to handle

those ADs that may not have been designed in a

hierarchical manner. In contrast, ADs that have been

designed with process algebra will naturally exhibit a

simple hierarchical control flow.

Table 2 also presents a rough guideline of which AD

component cases are handled by various techniques. This

Table 2. A comparison of AD representations

Top-level 

overview 

of the AD

Assists with 

construction 

of the AD

A clear procedure to represent 

complex AD cases involving Formal semantics 

representation format
Loop Fork Join Composition

SBC-AD √ √ √ √ √ √ Process algebra+ATG (an FSM)

Knieke et al. [8] √ √ √ √ Executable ASM

Raschke et al. [9] √ √ √ √ FSM

Kaliappan et al. [10] √ √ √ cTLA

Staines [12] √ √ Colored Petri net

Rahim et al. [13] √ √ √ Modular Petri net

Achouri et al. [15] √ √ Institutions

Belghiat et al. [17] √ √ √ Pi-calculus
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checklist is only approximate. For one, a given technique

might be adaptable to handle some component, but such

as an adaptation was not formally discussed. For another,

a technique may be able to handle simple cases for a

given AD component, but not complex ones (e.g., a loop

inside of a fork-join AD region). 

Finally, Table 2 describes the various representation

formats. Comparing the usefulness of these formats, one

issue to consider is if the representation has a user-

understandable, intuitive correlation to the AD, such as

the one presented in Fig. 12. Another issue is whether the

representation is well suited for use with analysis tools

and to compare for consistency with other UML diagrams.

In the case of the ATG, it can be analyzed with an LTS

analyzer, and we have designed it to be very similar to the

transition graphs that we have previously provided for

UML sequence diagrams and state machine diagrams [4, 5].

V. SUMMARY AND CONCLUSION 

A process algebra for describing UML ADs has been

presented, and has been shown to naturally generate an

overview diagram (AOD). The AOD provides useful

high-level information about the AD. A simple formal

procedure to create a precise semantic meaning of the AD

is also presented. The format of the semantic repre-

sentation is termed the ATG. The ATG is an FSM format

that allows parallel execution paths. The ATG is com-

parable to our previously proposed semantic representations

of UML SDs and SMDs.

In comparison to our previous works, the grammar

proposed in this study introduces a parstep operator to

model the fork-join regions of ADs. The precise semantic

meaning of this operator is presented, so that the procedure

for constructing the ATG from process algebra equations

containing parsteps is fully presented. Moreover, the

parstep operator is also shown to be useful in allowing

partially-defined processes, even outside of fork-join

regions.
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