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Abstract
The emerging multi-queue solid state drives (SSDs) impose two challenges on I/O scheduling in the host operating sys-

tem. First, the I/O scheduler should give a scalable performance in the number of processor cores to exploit the massive

parallelism within the SSD. Second, it should provide performance isolation between the cores so that each core can

schedule application I/O streams with a reserved bandwidth share. To cope with these challenges, we propose a novel I/

O scheduler called mqFlashFQ. In mqFlashFQ, for every core to make a scheduling decision in parallel, we use a ran-

domization technique to decentralize the existing FlashFQ algorithm, consequently, significantly reducing the inter-core

synchronization overheads. Moreover, to provide a fair bandwidth share on a per-core basis, we present an accurate cali-

bration method that determines the cost of each I/O request in terms of its direction and size. This method is distin-

guished in that it enables to provide a minimum bandwidth guarantee to each core with no garbage collection. Through

our experiments with non-volatile memory express (NVMe) SSD products, we demonstrate that the proposed

mqFlashFQ and calibration method give a scalable performance and a fair share of the bandwidth to each core for vari-

ous I/O workloads.
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I. INTRODUCTION

Solid state drives (SSDs) are now widely used in servers

with high bandwidth requirements such as databases,

service clouds, and virtual machine servers [1, 2]. The

traditional SSDs use the Advanced Host Controller

Interface (AHCI) [3] on Serial ATA (SATA) bus, which

allows a single I/O queue to interface between the host

operating system (OS) and the SSD controller. As more

flash chips are embedded within an SSD for higher

bandwidth, the single queue quickly becomes a bottleneck

between multiple processor cores that try to exploit the

bandwidth with multiple I/O threads. To overcome this

limitation, a new storage interface called non-volatile

memory express (NVMe) [4] has been proposed on the

peripheral component interconnect express (PCIe) bus.
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This new interface allows multiple I/O queues between

the host OS and the SSD controller, thus enabling

multiple cores to dispatch I/O requests in parallel through

their respective queues. As a result, the theoretical limit

on the SSD throughput has been increased to about 10

times, i.e., from several hundred megabytes to several

gigabytes per second (the maximum transfer rate of

SATA version 3 is 768 MB/s while that of PCIe version 3

is about 8 GB/s assuming that eight lanes of the PCIe bus

are used for an NVMe SSD, each lane having a maximum

transfer rate of about 1 GB/s).

However, the emerging multi-queue SSDs impose two

challenges on I/O scheduling in the host OS. First, the I/O

scheduler should give a scalable performance in the number

of processor cores to exploit such a high bandwidth of the

SSD. For example, for a server supporting several virtual

machines, to fully utilize the potential bandwidth, the

scheduler needs to allow each core to dispatch I/O requests

in parallel. However, if the parallel dispatch requires

inter-core synchronizations in accessing global variables

associated with a system-level QoS metric, such as the

amount of service received by each core, it may not fully

utilize the bandwidth due to the non-negligible synch-

ronization overheads. Thus, we need to eliminate the

synchronization overheads as much as possible.

Second to address application-level QoS requirements

[5, 6], the I/O scheduler should provide core-level QoS

first. That is, it needs to provide performance isolation

between the cores so that each core can be guaranteed a

fair bandwidth share. This core-level bandwidth partitioning

is not a trivial problem for two reasons. First, it requires

inter-core synchronizations. Second, the effective SSD

bandwidth experienced by the system may greatly vary

depending on the I/O workload types generated by the

cores and the SSD internal activities such as garbage

collection (GC) [7].

There have been a few efforts to cope with the above

challenges [8, 9]. In [8], a new block layer for the Linux

OS called block-mq has been proposed, which allows

parallel dispatch of I/O requests between a filesystem and

an NVMe-specific block driver. This framework demon-

strates the scalable performance in the number of processor

cores while leaving the scheduler implementation open to

the developer’s choice. In [9], an I/O scheduler called

WABC, for use within NVMe SSDs, has been proposed.

It is budget-based and uses a regression-based I/O cost

estimation to provide QoS to each I/O queue. However,

neither of the approaches directly addresses how to

schedule I/O requests at the host level for the multi-queue

SSDs. So far, for single-queue SSDs, several host-level I/O

schedulers have been presented [5, 10-12]. For example,

the FIOS [10] and FlashFQ [11] schedulers have been

proposed to provide a fair bandwidth share to each I/O

stream while the OIOS scheduler [5] has been proposed to

satisfy multi-metric QoS requirements for virtual machines,

including the fair bandwidth sharing. A similar fair-share

scheduler called BCQ is also proposed in [12], but the

multiple queues assumed by BCQ are for multiple

channels within the SSD, not for multi-queue SSDs.

This paper proposes a novel host-level I/O scheduler

called mqFlashFQ for the multi-queue SSDs. The

proposed scheduler extends the existing FlashFQ [11] to

the multi-queue structure, which is based on the depth-

controlled start-time fair queuing called SFQ(D) [13]. In

the mqFlashFQ, we use a randomization technique to

decentralize the FlashFQ algorithm, thus achieving

scalable performance in the number of processor cores

while reducing the inter-core synchronization overheads.

Moreover, we present an accurate calibration method to

determine the cost of each I/O request in terms of its

direction and size, which is necessary to provide per-

formance isolation between the cores even with the

varying SSD bandwidth. This calibration method is

distinguishable from the previously proposed methods

[9-12, 14] in that it makes it possible to provide a

minimum bandwidth to each core while allowing any

accidental extra bandwidth to be shared by all the cores

assuming that the bandwidth demand by SSD internal

activities such as GC can be estimated [15, 16]. Through

our experiments with real NVMe SSD products, we

demonstrate that the proposed mqFlashFQ and cost

calibration method give a scalable performance and a fair

bandwidth share to each core for various I/O workloads.

The rest of this paper’s sections are as follows. In

Section II, we summarize the NVMe specification and

the FlashFQ. In Section III, we explain our proposed

scheduler and calibration method in detail and present the

experimental results in Section IV. In Section V, we

describe the related work and in Section VI, the conclusion

and future research directions.

II. PRELIMINARIES

A. Non-volatile Memory Express

The NVMe [4] is a recently proposed storage interface

that allows the host OS to directly communicate with

SSDs attached to the PCIe bus. This interface defines a

set of standard commands and registers to be used

between an NVMe driver of the host OS and the NVMe

controller of an SSD. It features multiple I/O queues

shared between the driver and the controller, as shown in

Fig. 1, which is scalable in terms of the number of queues

and the number of queue entries. The driver submits an I/O

request to the controller through an I/O submission queue

(SQ), and is notified of the request completion through an

I/O completion queue (CQ) associated with the SQ. The

interface supports up to 65,535 I/O SQs and CQs with up

to 65,536 outstanding commands per I/O queue while it

allows multiple SQs to share a CQ. To enable multiple

cores to handle I/O queues in parallel, each I/O queue is
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dedicated to a core possibly with a unique MSI/MSI-X

interrupt assigned. Recently, to make use of NVMe SSDs,

a next-generation block layer called block-mq [8] has

been proposed for the Linux OS, which bridges between a

filesystem and an NVMe-specific block driver. This new

block layer replaces the existing single-queue structure with

a multi-queue structure, which has become a bottleneck

due to heavy lock contentions for the single queue by the

multiple cores. It also proposes to use multiple software

queues, each possibly associated with an application I/O

stream, on top of multiple hardware queues, i.e., I/O sub-

mission queues, assuming that a set of software queues is

scheduled on a dedicated hardware queue. This approach

is promising as can be combined with various I/O schedulers

to pursue application-level or system-level QoS metrics.

For this approach to be successful, however, we should

be able to provide a fair bandwidth share to each hardware

queue, which is the scope of the paper.

B. FlashFQ Preliminaries

The FlashFQ is based on the depth-controlled start-

time fair queueing SFQ(D) [13], which deals with single-

queue storage with a certain degree of internal parallelism.

That is, it allows up to D outstanding requests in service

to better utilize the internal parallelism of the SSD while

the original SFQ [17] allows one single request in service.

Apart from this tunable parameter D, the FlashFQ

behaves the same as the SFQ. That is, to manage the pro-

gress of each I/O stream ai in proportion to its assigned

weight wi, it maintains a virtual time VTi for ai, which is

assumed to be initially set to a so-called system virtual

time, explained later. Then, whenever a request ri,j from ai

is dispatched (or completed), it increases the VTi by the

weight normalized amount of the (storage) service time si,j
that is received by the request ri,j, i.e., VTi = VTi + si,j/wi.

At this point, we define the start tag of ri,j as the value of

VTi before the increment and the finish tag to be the value

after the increment. Then, when a new request ri, j+1

arrives at ai, the start tag of ri, j+1 is determined depending

on whether the previous request ri,j is in service or not at

the arrival time of ri, j+1. That is, if ri,j is in service, the

start tag of ri, j+1 is set equal to the finish tag of ri, j. If ri,j is

otherwise completed, meaning that ai stays idle for a

while, the virtual time VTi for ai is adjusted to the system

virtual time SVT(t), which is observed at the arrival time t

of ri,j+1. Therefore, the start tag of ri,j+1 is set equal to the

SVT(t). The rationale behind this adjustment is that the

SFQ recognizes a stream ai that just becomes busy (or

backlogged) after an idle period as a newly started one,

thus treating the ai to the same as busy streams by

adjusting the VTi to their VTj’s. However, the VTj(t)’s of

all the other busy streams observed at time t are not

necessarily equal because not all the busy streams can be

in service at every instant in real-world storage.

Therefore, the system virtual time SVT(t) is usually

defined as the minimum of the VTj(t)’s of all the busy

streams observed at t, i.e., SVT(t) = min{VT1(t), VT2(t), ...,

VTN(t)}, and the newly backlogged stream ai is treated as

having the same progress as another busy stream with the

minimum VT by setting VTi(t) = SVT(t). In this case, the

start tag of ri, j+1 in ai, set to SVT(t), is always greater than

the finish tag of ri,j because ai has made no progress for

the idle period while other busy streams have.

With the above SFQ behavior in mind, we can now

understand the FlashFQ. The FlashFQ concurrently dis-

patches a total of up to D requests from the busy streams.

Fig. 2 shows a scheduling example of FlashFQ with

depth D = 1, 2, 4. Each time one outstanding request is

completed, another request can be dispatched to maintain

D outstanding requests, which should be the first request

in a stream with the minimum VT (or a request with the

smallest start tag) among the busy streams. The main

issue in the FlashFQ is how to compute the SVT(t) with

multiple outstanding requests in service, which will be

used to determine the start tag of a new request arriving at

Fig. 1. The multi-queue structure of the NVMe inteface.

Fig. 2. An example of FlashFQ scheduling.
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an idle stream. According to [11], one version of FlashFQ

called Min-SFQ(D) takes the SVT(t) as the minimum start

tag of all the requests in service at time t while another

version called Max-SFQ(D) takes their maximum start

tag. As a side effect, the Min-SFQ (D) slowly advances

SVT(t) and may cause temporary unresponsiveness to

other streams when a burst of requests arrives at a stream

with a smaller virtual time. On the contrary, the Max-

SFQ(D) quickly advances SVT(t) and may cause a certain

degree of unfairness between the newly backlogged and

continuously backlogged streams.

One common limitation of the FlashFQ versions; however,

is that they are a centralized decision algorithm where

every dispatch requires all the values in the VT list of

busy streams, shown in Fig. 2, not to be changed while

determining a stream with the minimum VT (or a request

with the minimum start tag). This is problematic in a

multi-queue architecture because each core should acquire

a global lock to access the VT’s whenever it tries to

dispatch a request, thus resulting in non-negligible inter-

core synchronizations.

III. PROPOSED SCHEDULER

As seen from the related work, a flash I/O scheduler

requires a scheduling mechanism and cost calibration

method. In this section, we first describe the preliminaries

of the FlashFQ and then detail the proposed mqFlashFQ

and cost calibration method.

A. mqFlashFQ

The proposed mqFlashFQ extends the FlashFQ to the

multi-queue architecture while eliminating the need for

global locks. Since it is based on the SFQ, our scheduler

inherits the good property [17] that it provides a fair

bandwidth share even if the bandwidth varies as long as

the cost for each request is accurate. This implies that if

we can estimate the minimum bandwidth of the SSD, we

may be able to guarantee a share of the minimum bandwidth

to each core. For SSDs, the bandwidth variations result

from two factors. One is the I/O workload types generated

from the host system, which utilize different components

within the SSD to different degrees. For example, read

workloads typically bring much higher throughputs than

write workloads because the induced flash operations of

read requests require smaller resource usages than those

of write requests. In the next subsection, we will

investigate this aspect for various workload types in

determining the cost of each I/O request. The other is

SSD internal activities such as GC, which steal a certain

portion of the SSD bandwidth intermittently. In this

regard, we assume that an upper bound of the bandwidth

used by GC can be identified for a finite time interval

because within the SSD it is possible to estimate and

inform the host OS of the bandwidth demand by the GC

for that interval. This demand can be computed from the

currently remaining free pages and the expected page

consumption rate of the host workload during that interval

[15, 16].

The main idea of the mqFlashFQ is to use a rando-

mization technique so that each core can access the VT’s

of other cores in a lock-free manner, whenever needed.

That is, assuming that each core i produces an aggregated

I/O stream i, every backlogged core i randomly chooses

any other backlogged core j and approximates SVT(t) as

the VTj(t) of core j at time t instead of searching for the

minimum value in the VT list. This approach eliminates

the need for a global lock to access the VT list, thus

significantly reducing the inter-core synchronization

overheads. Consequently, the proposed scheduler enables

every core to make a scheduling decision in parallel,

better exploiting the SSD bandwidth with an increasing

number of cores. As a side effect, the above approach

may compromise short-term fairness across the cores

because some cores may repeatedly sample a value close

to the maximum of the VTj(t)’s, thus delaying a request

dispatch. At the same time, other cores may repeatedly

sample a value close to the minimum, thus encouraging

an immediate dispatch. However, as shown in Section IV,

despite such possibilities, long-term fairness across the

cores will still be guaranteed because every core has

equal chances of request dispatch in the probabilistic

sense that it will sample the SVT(t) under a uniform

probability over the range between the minimum and

maximum of VTj’s observed at the sampling moment t.

Therefore, the proposed mqFlashFQ can achieve both

scalable performance and performance isolation between

the cores.

Fig. 3 shows the data structures used in our imple-

mentation of mqFlashFQ. In this figure, each core i has a

dedicated pair of a submission queue SQi and a

completion queue CQi and the CQi’s are omitted for the

sake of brevity. We assume that on top of a SQi there exist

two additional software queues, RQi and WQi, where RQi

is a queue for read requests and WQi is a queue for write

requests generated from the core. For each of the three

queues on core i, a set of variables is associated, i.e., wi,

Fig. 3. Data structures used by mqFlashFQ.
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VTi, BSi, NOSi, NOQi, and Tmouti, although the set is not

shown for RQi and WQi, for brevity. wi is the weight

assigned to a queue Qi. VTi is the virtual time defined in

the previous subsection, representing the progress of Qi.

BSi is the maximum batch size of a single dispatch in

terms of the SSD bandwidth on Qi. That is, each core i is

allowed to dispatch as many requests ri,k’s as possible at

once as long as the total cost of the requests, i.e., k si,k , is

less than or equal to BSi where si,k is the cost of the kth

request ri,k to be dispatched in the batch by core i. This

batch size is set proportional to the weight wi, i.e., wi × C,

where C is a tunable parameter called the base batch size.

The value of C should be large enough to exploit the SSD

bandwidth to the fullest extent. NOSi is the total bytes of

outstanding requests in service, dispatched from Qi,

which is defined as the difference between the total bytes

of the requests dispatched and those completed. NOQi is

the total bytes of queueing requests in Qi. Finally, Tmouti
is a timeout value used to determine the status of Qi. That

is, Qi is determined to be idle if both NOSi and NOQi

remain zero for a longer period than Tmouti. Otherwise,

Qi is determined to be backlogged. In our implementation,

we use the same timeout value for all the queues, which

is 1 ms. The features of our scheduler can be summarized

as follows.

Random sampling for SVT(t): As explained above,

whenever each core i needs to determine SVT(t), the

mqFlashFQ takes the VTj(t) of a randomly chosen core j

(or SQj) among the backlogged cores. From each core’s

perspective, SVT(t) needs to be determined in two cases.

First, where a new request arrives at an idle queue, thus

the start tag of the request should be determined from

SVT(t). Second, where a core i needs to determine

whether it is eligible for dispatching a batch of requests

from the SQi by checking if VTi(t) SVT(t) In our

scheduler, each core takes this test whenever (1) a request

arrives at SQi, (2) a request dispatched from SQi is

completed, or (3) a periodic timer associated with each

core expires, which is responsible for periodic invocation

of the scheduler with a period of 200 μs. In this test, each

core references a randomly chosen busy core j in a lock-

free manner, allowing the VTj to be updated concurrently.

Type-wise cost accounting for each request: As

indicated in [14], at the host level, it is difficult to

accurately determine the SSD service time si, j of a request

ri,j, only available within the SSD. This service time si, j is

required to calculate the VTi of SQi (or the finish tag of

the request ri,j) for every request ri,j dispatched. Therefore,

some host-level schedulers [10, 11] use the SSD response

time of ri, j as an approximation of the service time, which

is defined as the difference between its dispatch time and

completion time. However, this makes the VT computation

inaccurate because the SSD response time does not take

into account parallel service times due to the parallel flash

chips and may change depending on the I/O workload types

generated by the host system. In the next subsection, we

present an accurate calibration method to pre-estimate the

cost of every request in terms of the storage resource

usage, which can safely be used in the VT computation

for any arbitrary workload. In our method, the cost of

each request is estimated relative to that of a reference

request, which is defined as a request of a certain direction

and size under a reference access pattern.

Per-core queue separation between read and write

requests: In the host OS, there are many cases where we

may want to preferentially service read requests over

write requests or vice versa. For example, synchronous

read requests should be serviced with priority over

asynchronous write requests because a synchronous read

stream cannot generate any request without the comple-

tion of its previous request. Moreover, if we only use a

single queue SQi for each core, there exist possibilities

that read requests may be blocked by write requests in the

queue, which is called read-blocked-by-write interference.

To avoid this type of interference and preferentially service

read or write requests, we use two software queues, i.e.,

RQi and WQi, on top of SQi and assign a weight value to

each queue for another level of fair-share scheduling.

Per-queue handling of the deceptive idleness: In

[18], the problem of deceptive idleness with storage

devices has been addressed. That is, if an I/O scheduler

hastily assumes that a stream has no further request when

the stream is about to issue a request, and dispatches a

request from another stream, the scheduler may violate

the fair share guarantee. This is because whatever appro-

ximation used to determine SVT(t) for real-world storage

is essentially inaccurate compared to the ideal fluid

server [17]. To alleviate this problem, our scheduler does

not recognize as idle an idle period shorter than a

threshold, thus not adjusting the VTi(t) of the associated

SQi to SVT(t) when a new request arrives. The threshold

is a timeout value used for Tmouti.

B. Accurate Cost Calibration

In this subsection, we describe our proposed cost

calibration method, which is necessary for our scheduler

to provide a fair-share guarantee to each core under

various workload conditions. In the proposed method, the

cost of every request is estimated in terms of storage

resource usage, not in terms of the storage response time.

This is based on an observation from our experiments

with real multi-queue SSD products that the effective

SSD bandwidth received by the cores can be factored into

two: (1) a guaranteed minimum bandwidth determined

under the condition that all possible sources of accidental

extra bandwidth are identified, and (2) an accidental

extra bandwidth obtained from opportunistic utilization

of or opportunistic optimizations from SSD internal

components. As can be seen in Section IV, the cost values

obtained from our method still hold even when an

arbitrary I/O workload other than the workload assumed

  
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in the calibration is generated and/or mixed with a

background workload generated within the SSD, e.g., GC.

To explain our observation, we give an analogy for

multi-queue SSDs. In this analogy, we regard an SSD as a

box and a request being serviced in the SSD as a ball in

the box. A request with a different size and direction is

treated as a ball with a different diameter. Then, the SSD

bandwidth can be understood as the total space occupied

by all the balls in the box. The amount of the occupied

space is smaller than the box volume because there

always exists a certain amount of empty space not

occupied by the balls in the box. The occupied space can

be increased or decreased depending on the combination

of balls of different diameters. For example, it will shrink

if we put only the largest balls into the box, and it will

expand if we put only the smallest balls into the box.

There may be certain combinations of different sizes of

balls that maximally utilize the box volume, which we

think may happen by chance.

In addition to the above analogy, in practice, we do not

know either the box volume or the balls volume (or the

occupied space by each ball). It is only possible for us to

count how many balls of a size can be put into the box by

taking a ball of a different size out of the box. With the

above analogy and assumption in mind, let us think about

how to fairly distribute the box volume to M users (or

cores). For users to claim fair shares of the box volume,

they need to accurately measure the real space occupied

by the balls they put into the box. To this aim, given a ball

of a reference size (or volume), the sizes of other balls are

measured relative to the reference size. Note, however,

that this measurement may result in different sizes for the

same ball according to the ball combination in the box. If

the box is full of large balls of the same size, and one is

taken out of the box, the number of small balls of the

same size that can be put into the box will be greater than

expected with the actual occupied space by the large one

because there exists a large amount of unoccupied space

by the large balls. In this case, the size of the small ball

would be underestimated. On the other hand, if the box is

full of both large and small balls with the unoccupied

space minimized, the number of small balls that can be

traded for one large ball could be accurately measured.

Thus, to accurately calibrate the cost of each request in a

multi-queue SSD, we explore various combinations of

requests being serviced in the SSD by synthetically

generating requests of particular size and direction from

each core.

Table 1 gives a cost calibration example with an Intel

DC P3700 SSD [19] and a six-core processor (M = 6).

Using Table 1, we want to determine the relative cost of a

16 kB read request (denoted by RD16) to that of a 16 kB

write request (denoted by WR16), assuming the cost of

WR16 is one. To saturate the SSD bandwidth, we run a

synthetic I/O benchmark called FIO [20] on each core

consequently, continuously generating as many requests

as possible in a random access pattern and the asynchronous

I/O mode. In Table 1, for each configuration K, K cores

generate RD16 streams in a random access pattern

(denoted by rRD16) while the remaining (M – K) cores

generate WR16 streams (denoted by rWR16).

Table 2 shows the resulting throughput received by

each core and the relative cost of RD16 determined for

each of the seven configurations. In Table 2, for each

configuration K, we denote the total throughput received

by the K cores with RD16 streams by RD16put(K) and

that received by the (M – K) cores with WR16 streams by

WR16put (K). Thus, WR16put(0) gives the maximum total

write throughput, i.e., 1065.1 MB/s, while RD16put(6)

gives the maximum total read throughput, i.e., 2214.1

MB/s. From Table 2, we can see that configuration 5

gives the maximum relative cost of an RD16 request to a

WR16 request, i.e., 0.6674, which we think is closest to

the case where the unoccupied space in the box is

minimized.

Fig. 4(a) shows the resulting throughput for each

configuration K, received by each core after the maximum

cost value is applied to the VT computation in our

scheduler. From Table 2, we can see that every core

receives exactly the  of the total SSD bandwidth in terms

of the cost-normalized throughput, which is obtained by

summing up the cost of every request dispatched on each

1

6
---

Table 1. Workload configurations for Table 2's calibration 

K Core1 Core2 Core3 Core4 Core5 Core6

0 rWR16 rWR16 rWR16 rWR16 rWR16 rWR16

1 rWR16 rWR16 rWR16 rWR16 rWR16 rRD16

2 rWR16 rWR16 rWR16 rWR16 rRD16 rRD16

3 rWR16 rWR16 rWR16 rRD16 rRD16 rRD16

4 rWR16 rWR16 rRD16 rRD16 rRD16 rRD16

5 rWR16 rRD16 rRD16 rRD16 rRD16 rRD16

6 rRD16 rRD16 rRD16 rRD16 rRD16 rRD16

r=random access, WR16=16 kB write, RD16=16 kB read.
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core, multiplied by 16,384. On the contrary, from Fig. 4(b)

where we use the average cost value, i.e., 0.5282, of the

RD16 costs obtained for K = 1, 2, ..., 6, we can see that

the minimum guarantee of the WR16 throughput of

177.52 MB/s is not possible. In the paper, we extend the

above idea of using the maximum cost value of a request

type to any arbitrary workload beyond the M + 1 workload

configurations used to obtain the maximum values.

In our approach, to cover all the request types found in

a real system, we used the proposed calibration method

for each request type with a power-of-two size observed

in the system, i.e., RD16, RD32, RD64, RD128, WR32,

WR64 and WR128, assuming that WR16 is the common

reference type. Below, we will explain how the reference

type has been selected.

● A write request is selected as the reference type

because it consumes more resources within SSDs

than a read request of the same size due to the

characteristics of flash memory [7], thus expected to

be less sensitive to estimation errors.
● The I/O unit size used in the SSD, e.g., the size of a

flash page, is selected as the reference size because

requests smaller than the unit size are usually

buffered or cached into a RAM buffer within the

SSD to be serviced in a whole unit [7, 21]. Thus, for

example, we assume that the cost of a WR4 (or RD4)

request is simply set to × the cost of a WR16 (or

RD16) request calibrated above.
● Any request with a non-power-of-two size is assumed

to be split into requests with power-of-two sizes by

our scheduler.
● The access pattern is selected as random because in

general random streams are known to give no better

performance than sequential streams of the same

type [7].

Finally, note that the minimum bandwidth to be

guaranteed by the maximum cost values can be reduced

by SSD internal activities such as GC stealing the

bandwidth intermittently. However, in the next section,

our experiments show that our scheduler still provides

each core with a fair share of the reduced SSD bandwidth.

Therefore, if we want to provide an absolute bandwidth

guarantee, not the relative share guarantee, multi-queue

SSDs should be designed in such a way that they can

inform the host OS of the expected bandwidth consumption

for each finite time interval [15, 16], so that the host OS

1

4
---

Fig. 4. Effect of the cost values on bandwidth partitioning
under no GC. (a) The maximum cost value applied (RD16cost =
0.6674). (b) The average cost value applied (RD16cost = 0.5282).

Table 2. A cost calibration example of RD16 relative to WR16 for Intel DC P3700 SSD (throughput: MB/s)

K Core1 Core2 Core3 Core4 Core5 Core6 WR16put(K) RD16put(K) WR16traded(K) rate(K) RD16cost(K)

0 177.52 177.52 177.52 177.52 177.52 177.52 1065.10 0 0 - -

1 197.45 197.45 197.45 197.45 197.45 197.45 987.25 197.45 77.85 253.63% 0.3943

2 215.68 215.68 215.68 215.68 215.68 215.68 862.73 431.37 202.37 213.16% 0.4691

3 229.17 229.17 229.17 229.17 229.17 229.17 687.50 687.50 377.60 182.07% 0.5492

4 240.28 240.28 240.28 240.28 240.28 240.28 480.57 961.13 584.53 164.43% 0.6082

5 245.60 245.60 245.60 245.60 245.60 245.58 245.60 1227.98 819.50 149.85% 0.6674

6 369.02 369.02 369.02 369.02 369.02 369.02 0 2214.10 1065.10 207.88% 0.4811

Bold font indicates that the value of RD16cost(K) obtained with the minimum rate(K) is chosen as the final cost.

WR16traded(K) = WR16put(K) – WR16put(K), rate(K) = RD16put(K)/WR16traded(K), RD16cost(K) =1/rate(K).
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can compute the amount of bandwidth that can be

guaranteed to each core during that interval.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the proposed mqFlashFQ and cost calibration

method, we implemented them in the Linux 3.16.0 kernel

using the plain open-source NVMe driver [22]. Our test

bed is a deca-core computer system, which consists of an

Intel Xeon processor E-2650v3 running at 2.3 GHz, 25

MB cache memory, 32 GB main memory and PCIe 3.0 ×

16 lanes. All the target SSDs used in the experiments use

four lanes, which are Intel DC P3700 of 400 GB [19],

Intel 750 series of 400 GB [23] and Samsung 950 Pro of

256 GB [24], but we do not show the results of Intel 750

here, since there is not much difference between Intel DC

P3700 and 750 in the performance behavior. To demonstrate

the scalable performance and performance isolation between

the cores, we use the synthetic I/O benchmark, i.e., FIO

(Flexible I/O Tester) 2.2.10 with the libaio library, for the

experiments shown in Sections IV-2 and IV-3. In this

case, prior to each experiment, we perform a pre-

conditioning on the target SSD so that every experiment

can start from the same storage condition. Moreover, we

configure the FIO jobs (= I/O threads) with a tunable FIO

parameter, called the I/O depth, set to 64 per job, meaning

the number of outstanding requests at the job level, and

make them directly communicate with the NVMe driver

bypassing the Linux ext4 filesystem. However, for the

experiments shown in Section IV-4, we use real I/O

workloads on the ext4 filesystem without any pre-

conditioning. Finally, note that we ran the FIO workloads

for 60 seconds for each experiment in Sections IV-2 and

IV-3, which could avoid GC during the experiment on

Intel DC P3700 but could not on Samsung 950 Pro, while

we ran the real workloads for 20 minutes for the experiment

in Section IV-4, which was accompanied by GC with

Intel DC P3700. 

B. Performance Scalability

In this subsection, we show that the proposed mqFlashFQ

gives a scalable performance and outperforms a straight-

forward multi-queue extension of the FlashFQ using the

shared VT list with a global lock. While the FlashFQ uses

the simple cost calibration based on the storage response

times, we use the cost values determined with our

calibration. In this comparison, we vary the number of I/

O threads per core, not the number of cores, to mimic an

environment where a large number of cores contend for

the global lock to access the VT list. In the experiment,

we use six cores to generate I/O streams of the same type

and a small base batch size of 49,152 for every SQi to

cause more scheduler invocations, which corresponds to

a batch of 3 WR16 requests or 4.5 RD16 requests.

Fig. 5(a) shows the throughput received by each core

generating RD16 streams while varying the number of I/

O threads per core (TPC) from 4 to 32. The FlashFQ

shows a lower throughput with an increasing number of

threads than the mqFlashFQ, while the latter shows

almost no performance degradation in comparison with

the case where no scheduler is applied, i.e., NoSched. We

can observe a similar tendency from Fig. 5(b), which

shows the throughput received by each core generating

WR16 streams with a varying number of TPC. From this,

we can conclude that the proposed mqFlashFQ gives a

scalable performance with little inter-core synchronization

overheads. 

C. Performance Isolation

In this subsection, we demonstrate that the proposed

mqFlashFQ and cost calibration method provide performance

isolation between the cores under various workload

Fig. 5. Throughput comparison between FlashFQ and mqFlashFQ
on Intel DC P3700 (TPC: Threads Per Core). (a) Total throughput
obtained with RD16 streams. (b) Total throughput obtained with
WR16 streams.
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conditions on Intel DC P3700 and Samsung 950 Pro

SSDs. In this experiment, we use six cores to generate

composite workloads shown in Table 3, which include

both random and sequential accesses for various request

sizes. We used a large base batch size of 1,310,720 bytes

for every SQi to saturate the allocated bandwidth to each

core with a single I/O thread, which corresponds to a

batch of 80 WR16 requests for both SSDs. For each core

generating an RD or WR stream, we run only one I/O

thread using FIO, but for each core generating an RW
stream, we run two I/O threads, i.e., one for RD requests

and the other for WR requests. Regarding the weight

values of the cores, we apply two different settings to the

scheduler. One is w1:w2:w3:w4:w5:w6 = 1:1:1:1:1:1 (symm-

Table 3. Composite workloads used in Section IV-3 

Config Core1 Core2 Core3 Core4 Core5 Core6

A rWR16 rWR16 rRW16 rRW32 rRW64 rRW16

B rWR16 rWR16 rRW16 rRW32 rRW64 rRW128

C rWR16 rWR16 sRW16 sRW32 sRW64 sRW16

D rWR16 rWR16 sRW16 sRW32 sRW64 sRW128

E rWR16 rWR16 rRW16 rRW16 sRW64 sRW128

F rWR16 rWR16 rRW16 sRW32 sRW64 sRW128

r=random access, s=sequential access, RD=read-only, WR=write-only, RW=read-write.

Fig. 7. Bandwidth partitioning on Samsung 950 Pro with GC. (a)
w1:w2:w3:w4:w5:w6 = 1:1:1:1:1:1. (b) w1:w2:w3:w4:w5:w6 = 1:1:4:4:16:16.

Fig. 6. Bandwidth partitioning on Intel DC P3700 with no GC. (a)
w1:w2:w3:w4:w5:w6 = 1:1:1:1:1:1. (b) w1:w2:w3:w4:w5:w6 = 1:1:4:4:16:16.
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etric weights), and the other is w1:w2:w3:w4:w5:w6 =

1:1:4:4:16:16 (asymmetric weights). For each workload

configuration shown in Table 3, Fig. 6 shows the

throughput and bandwidth received by each core on Intel

DC P3700 SSD with no GC. As shown in Fig. 6(a), even

for such a composite workload, each core receives exactly

a  of the total SSD bandwidth in terms of the cost-

normalized throughput. as shown in Fig. 6(b), we can also

observe a good bandwidth partitioning proportional to the

asymmetric weights, noting that some extra bandwidth,

observable in the different total cost-normalized throughputs

ranging between 1156.7 and 1220.6 MB/s, is all shared

by the cores in proportion to their weights.

On the other hand, Fig. 7 shows the throughput and

bandwidth received by each core on Samsung 950 Pro

SSD with GC for the same workload configurations and

the same weight settings. On Samsung 950 Pro, we could

not predict when the GC would be triggered even after

we performed a pre-conditioning conditioning on the

SSD. Despite the unpredictable GC, we can see from Fig.

7 that the proposed scheduler and cost calibration method

still give a good bandwidth partitioning proportional to

the weights although some trivial deviations from the

expected partitioning are observed. In short, even if the

total SSD bandwidth varies, the proposed scheduler and

calibration method together give a fair bandwidth share

to each core.

D. Evaluation with real I/O Workloads

To evaluate the real I/O workloads, we execute four

VMware virtual machines (VMs), each running on a

dedicated core. In each VM, we execute the Linux OS as

the guest OS and ten kernel build jobs and eight FIO jobs

as guest applications on top of the guest OS. We executed

the FIO jobs in the VM because it is not possible to

saturate the allocated bandwidth to each core with only the

kernel build jobs because of the virtualization overheads.

The FIO jobs were configured to generate different I/O

types for different VMs, i.e., rWR16 for VM1, rRD32
for VM2, rWR64 for VM3, and rRD128 for VM4, with

the FIO’s I/O depth set to 128 for each job while the

kernel build jobs were configured with their own build

spaces. Regarding the scheduler parameters, we assigned

1

6
---

Fig. 8. Bandwidth partitioning between four virtual machines on Intel DC P3700. (a) Actual throughputs. (b)  Relative bandwidths. (c) Idle
times observed at SQi. (d) Response time distributions.
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the same weight value to the four cores and used the same

batch size used in the previous subsection. The guest

Linux OS uses the ext4 filesystem and the default I/O

scheduler, i.e., CFQ, which uses the single-queue structure

for storage devices, while the host Linux OS uses the

ext4 filesystem and our mqFlashFQ scheduler.

Fig. 8 shows the performance received by each core on

Intel DC P3700 SSD, which was obtained for a 20-

minute execution of the workload, accompanied by GC

activities within the SSD. As shown in Fig. 8(a), we can

see that the actual throughput received every second by

each core i changes as time elapses, which is defined as

the difference between the throughput labeled Core{1,…,

i} and that of Core{1,…, i–1}. Note, however, that from

Fig. 8(b) the relative bandwidth received by every core

converges to 25% as the idle times caused by VM1 and

VM2 almost disappear after about 300 seconds (see

Fig. 8(c)).

These idle times seem to result from a mixture of the

initial phase of the kernel build jobs and the small request

sizes of the FIO jobs. Consequently, this prevents cores 1

and 2 from saturating the allocated bandwidth shares for

the first 300 seconds but allows cores 3 and 4 to receive

more bandwidth shares than 25%, as the SFQ originally

intends. Finally, from Fig. 8(d), we can observe the

response time distributions of the requests generated by

each VM at the scheduler level and the FIO level,

respectively. The scheduler-level response time of a

request is the total time from arrival at SQi to completion,

and the FIO-level response time is the total time from

issue to notification of completion observed by the FIO.

We can see that the scheduler-level response times are

distributed between 10 μs and 50 ms while the FIO-level

response times are distributed between 2 ms and 2,000

ms due to the virtualization overheads. Larger requests

result in longer response times.

V. RELATED WORK

To provide quality service with flash storage, a lot of

research on flash I/O scheduling has been done. The

developed schedulers can be categorized into host-level

schedulers [5, 10-12, 25] and device-level schedulers [9,

14, 26].

The host-level schedulers [5, 10-12, 25] schedule flash

I/O requests within the host OS, thus have no control

over their service times and the GC within the SSD. The

FIOS (Fair Flash I/O Scheduler) [10] is a budget-based

scheduler, which replenishes a predefined time budget to

each I/O stream under certain conditions and consumes

the budget by a pre-estimated cost whenever a request is

dispatched. The FlashFQ (Fair Queueing I/O Scheduler for

Flash-based SSDs) [11] is a fair queuing-based scheduler,

which manages the progress of each I/O stream according

to the SFQ(D) [13] by reflecting a pre-estimated cost for

every request dispatch and adopts a throttled dispatch

mechanism. According to [11], the FlashFQ gives better

request response times than the FIOS because the former

does not require the notion of a replenishment period as

the latter does. Both schedulers use a calibration method

in common to estimate the cost of each I/O request,

which treats the target SSD as a black box. The method

first estimates the storage response times of 4-KB request

and a 128-kB request for each I/O direction, i.e., read or

write, and takes the resulting values as their costs. In this

case, the storage response time is defined as the total time

from dispatch to completion assuming no interferences of

other concurrent requests and GC. Then, it linearly

interpolates the cost of an arbitrary-sized request between

the estimated costs of a 4-kB request and a 128-kB

request in the same direction as the considered request.

However, this method is inaccurate because the storage

response time does not take into account parallel service

times due to parallel flash chips within the SSD. Therefore,

the storage response time may change depending on I/O

workload types generated by the host system [14], even if

an alternative cost estimation is additionally presented in

[10] that divides the storage response time by the number

of outstanding requests in service in the SSD. Another

example of host-level scheduling is the Budget allocation

and Channel-based Queueing (BCQ) [12], which is

budget-based and uses a regression-based cost estimation

method. This method calculates the dynamic costs of a

read request and a write request for every K profiling

interval by solving K linear equations obtained, which

may consider the dynamically changing SSD bandwidth.

This scheduler, however, only considers such multi-channel

SSDs, not multi-queue SSDs, that a direct mapping is

possible with a simple hashing function between the

address of a request and the flash channel within the target

SSD that will service the request. As another example,

the opportunistic I/O scheduler (OIOS) [5] is proposed for

scheduling I/O streams from VMs, which uses weighted

round-robin scheduling and dynamically adjustment of

the time budget for each I/O stream using some feedback

control. This scheduler, however, uses the same cost

estimation as the FIOS. The vFair scheduler [25] is

another host-level scheduler for VMs, which covers

general storage devices including HDDs and SSDs. This

scheduler consists of offline cost calibration and online

feedback-based scheduling, which adjusts the offline

predicted throughput for each virtual machine with a

feedback control mechanism considering the run-time

storage utilization and mix of different I/O types. The

vFair’s cost estimation method is similar to ours in that it

models the I/O cost in terms of its direction, size and

access pattern, but differs because the cost is defined on a

VM basis while our cost is defined on a request basis.

The device-level schedulers schedule flash I/O requests

within the SSDs, thus having the advantage of control

over GC and accurate I/O cost estimation. One example
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is the FACO scheduler proposed in the VSSD framework

[14]. This scheduler is similar to the FIOS in that each I/

O stream has a budget of credits to be replenished under

certain conditions and to be consumed by a cost for each

request. The main difference is that the FACO scheduler

estimates the cost of each request as the sum of the actual

service times of the subrequests composing the request,

not the whole response time of the request, observed

within the target SSD. For each write request, the cost may

include that of the GC triggered by the request. Another

example is the workload-aware budget compensation

(WABC) scheduler [9], which is proposed for NVMe

SSDs. This scheduler is also budget-based and uses the

same regression-based cost estimation method as the

BCQ. Both the FACO and WABC schedulers are disting-

uished from the host-level schedulers in that they may

dedicate a group of flash blocks to each I/O stream and

charge the GC overheads resulting from the group only to

the associated I/O stream. The host interface I/O

scheduler (HIOS) [26] is another example of device-level

scheduling, which tries to provide uniform service times

for as many requests as possible by redistributing the GC

overheads over the requests with a positive slack time to

their deadline. This approach, however, does not distinguish

the I/O streams, thus providing no performance isolation

between them.

All the above schedulers; however, do not consider

host-level scheduling for multi-queue SSDs. The WABC

scheduler deals with multi-queue SSDs, but at the device

level. This study aims at the host-level scheduling on real

multi-queue SSDs. Moreover, this paper presents a

calibration method that accurately determines the cost of

each request at the host level. Our goal is to provide a fair

bandwidth share to each core while the overall performance

received by the cores is scalable in the number of cores.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a fair-share flash I/O scheduler

called mqFlashFQ for the multi-queue SSDs and an

accurate cost calibration method to determine the cost of

each request in terms of its direction and size. According

to our evaluations with real NVMe SSD products, the

proposed scheduler with the safe cost values determined

by our calibration method guarantees a fair bandwidth

share to each core despite the varying SSD bandwidth

due to different workload types and garbage collection in

the SSD. Moreover, it outperforms the FlashFQ in terms

of the total throughput received by all the cores because

the randomization technique significantly reduces the

inter-core synchronization overheads. In our future work,

we will consider integrating our scheduler into the block-

mq layer of the Linux OS [8] and tuning it with more

knowledge about the internals of the SSDs [27, 28].
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