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Abstract
Few-shot image recognition represents a critical challenge in computer vision research. The scarcity of samples often

results in inaccurate classification, limited generalization capabilities, and overfitted model recognition. To address these

issues, the present study focuses on spider image recognition utilizing transfer learning and data augmentation tech-

niques in limited sample settings. First, the BasNet image segmentation model and background replacement algorithm

are used to extract species image data from the foreground; data augmentation is then applied to address the scarcity of

samples. Second, a layer-by-layer fine-tuned transfer learning strategy based on the ResNet-50 model is devised. Specif-

ically, to mitigate overfitting in the few-shot image classification task, the first two residual blocks are frozen so that only

the last two are trained. To enhance the model’s representation and generalization abilities, the SSC-ResNet-50 optimiza-

tion model is constructed by introducing symmetry techniques. This study aims to enhance the accuracy and perfor-

mance of spider image recognition. The experimental results demonstrate that the improved SSC-ResNet-50 model

achieves an average accuracy of 99.1% in recognizing five types of spiders, thereby surpassing the performance of tradi-

tional models. These findings offer valuable insights for the field of small-sample high-precision image recognition.

Category: Computer Graphics / Image Processing
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I. INTRODUCTION

Deep learning is a crucial technique for recognizing

and classifying species images. Conventional species

image classification methods use manually designed

features, which are both computationally complex and
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inefficient. By contrast, deep learning can automatically

extract features from the original image, thus leading to

efficient and error-free recognition and classification

while significantly shortening processing times. Deep

learning is currently used extensively in species image

classification. Nonetheless, it remains difficult to obtain

sufficient amounts of high-quality, live species image

data, particularly for species that are hard to catch and

tend to hunt at night. For instance, most species of spiders

exhibit characteristics such as a tendency to escape at the

slightest disturbance, a preference to hunt during nighttime,

etc. This makes it difficult to acquire data resulting in

reduced availability of high-quality spider species image

samples for deep learning model training. Small-sample

image datasets do not provide enough data patterns for

the model to adequately capture. Moreover, applying the

convolutional neural network (CNN) to deep learning

requires a large number of labelled training samples.

Therefore, it is imperative to focus on how technological

means can be effectively utilized to improve the quantity

and quality of spider species image data to better support

relevant research on image recognition and classification

based on CNNs. Progress has been made in spider

recognition research worldwide. For example, Ticay-Rivas

et al. [1] employed a least-squares vector support machine

with a radial basis function as a classifier to identify and

validate spiders. In other researches, Dolev and Nelson

[2] studied the recognition and classification of innate

patterns of jumping spiders, while Clark and Uetz [3]

researched video image recognition of jumping spiders.

However, these studies still could not resolve the issue of

the scarcity of high-quality spider image data. There are

several methods that can be used to rectify this problem.

For instance, common data augmentation techniques [4]

can generate additional pseudo-data by using a limited

amount of labelled data. Such a technique could be used

to supplement the under-labelled few-shot set. Fine-

tuning approaches [5] can be used in transfer learning to

address the lack of labelled data by training a model

ahead of time on a vast dataset. From this, the model can

gain a prior knowledge that can benefit the task at hand.

Meta-learning [6] can optimize the model initialization

parameters, thus leading to better performance on small-

sized samples. Meta-learning can also enhance the model’s

rapid learning ability on a few-shot set by optimizing the

model initialization parameters.

A. Main Contribution

Therefore, to address the above problems, the current

paper designs a fine-grained spider images recognition

method based on transfer learning. First, as a solution to

the problem of a small amount of spider data, the spider

foreground is extracted by using the BasNet image

segmentation model, and an image background replacement

scheme is designed to automatically replace the adaptive

background. This increases the amount of available data,

which we train based on the improved symmetric deep

residual network on the spider dataset we constructed.

The specific method involves using the parameters of the

pre-trained ResNet-50 model on ImageNet as initial

parameters, using the bottom layer of the frozen model to

extract the primary features of the two residual blocks of

the spider, and training only the last two residual blocks

to extract the intermediate features of the spider. Finally,

the original fully-connected layer of the model is removed

and a symmetric strong convolution module is added. To

extract the high-level features of the spider, the fully-

connected layer is rebuilt; the primary, intermediate and

high-level features of the spider are merged; global average

pooling is added; and the neurons in the fully-connected

layer are randomly discarded using dropout to reduce the

training parameters and alleviate the overfitting problem

that is often caused by few-shot learning.

The rest of this paper is organized as follows. Section

II provides an explanation of the dataset setup and data

enhancement. Section III focuses on the research methodology.

Section IV details the experimental environment and also

analyzes the experimental results. Section V describes

the work related to model training. Section VI concludes

this paper and suggests directions for future work.

II. DATA SOURCE AND PRE-PROCESSING

The aim here is to explore the effect of the fine-grained

recognition method on transfer learning. The objective is to

detect and identify five spider categories—namely Trichonephila

clavata, Thomisidae, Missulena, Araneidae, and Theraphosidae

—using spider images from the Yunnan Provincial Key

Laboratory of Entomological Biopharmaceutical R&D at

Dali University. These species are common in spider habitats,

but the available sample data is limited. To address this

issue, the study will employ data augmentation, pre-training,

and fine-tuning techniques in transfer learning. The data

will undergo three pre-processing steps: resizing, shuffling,

and normalization [7]. Resizing involves adjusting the

image size to suit different models. For the purposes of

this study, the images will be resized to the standard input

size of the ResNet-50 model, which is 224×224 pixels.

Shuffling the training image data is beneficial because it

prevents model overfitting and enhances its generalization

capability. It is necessary to use normalization to scale

the pixel values from the conventional range of [0, 255]

to a range between 0 and 1 to prevent gradient-related

issues, such as exploding or vanishing gradients. When

utilizing pre-training model parameters, the data should

be pre-processed according to the data pre-processing

method used in the pre-training phase [8].

In this study, as the ImageNet dataset serves as the pre-

training dataset, the RGB mean value of the ImageNet

dataset should also be subtracted from the target domain
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dataset, thus following the same data pre-processing

method that was used in the source domain. Fig. 1 shows

an example of the spider dataset.

A. Data Augmentation

1) Traditional Data Augmentation

Traditional data augmentation methods are typically

those used to solve the few-shot learning problem in

which there are insufficient training samples. These

methods encompass geometric and color transformations

to enhance the diversity and volume of the dataset.

Geometric transformations include flipping, rotation,

cropping, scale deformation, and reflection, while color

transformations involve techniques such as Gaussian

noise, random erasure, blur, and the super pixel method

[9]. In 2017, Zhong et al. [10] proposed an innovative

data augmentation technique called random erasure for

training CNNs. Random erasure selects a rectangular

area within an image and randomly replaces the pixels

within that area with random values. This process generates

training images with varying degrees of occlusion, which

helps reduce the risk of overfitting and improves the

model’s ability to handle occluded images. Random

erasure serves as a complement to commonly used data

augmentation methods like random cropping and flipping.

It consistently enhances performance across different

tasks such as image classification, object detection, and

person re-identification. The transformation involved in

random erasure is essentially an affine transformation

applied to the original image:

. (1)

In the formula, x represents the original image, y

represents the transformed image, w represents the multiple

by which the pixel value expands and contracts, and b

represents the addition and subtraction of the pixel value.

Color conversion refers to the conversion of HSV (hue,

saturation, value) parameters of the picture, or principal

component conversion (PCA) on the RGB of the picture.

The principal component transformation is performed on

the three vectors and eigenvalues in the RGB space. The

following transformations are generally performed on all

pixels of the picture:

(2)

HSV is composed of three components: hue, saturation,

and value. H represents hue, which is expressed in

degrees and where red is 0°, green is 120°, and blue is

240°. S stands for saturation, the proportion of pure color,

which expresses the degree of lightness (0%–100%). V

represents brightness (0%–100%). HSV color conversion

refers to the random conversion of HSV parameters.

2) Data Augmentation based on Outstanding Prospects

Traditional image segmentation techniques aim to

partition an image into distinct regions, often while

focusing on segmenting the most salient target. However,

further processing is typically needed to achieve accurate

segmentation. In this context, using an image segmentation

method based on salient object detection (SOD) can

better solve such problems. This approach enables the

rapid and precise identification of objects or regions of

interest within an image. When confronted with a large

number of images, SOD can be leveraged to effectively

segment the essential parts of an image; in the present

work, utilizing salient target detection for the spider dataset

allows for quick extraction of the spider foreground.

BasNet [11], which is a renowned model for boundary

augmentation, was introduced at the CVPR2019 conference

by the Xuebin Qin team at the University of Alberta. This

model comprises two modules, as depicted in Fig. 2. The

prediction module builds upon the densely supervised

encoding and decoding network of U-Net [12], which can

extract underlying features from the input image and

learns to generate a saliency map. The multi-scale residual

refinement module (RRM) learns the saliency map and

compares it with the real saliency map, and it optimizes

the output of the final saliency map of the model to have

a clearer boundary.

In this paper, the BasNet model is utilized as the image

segmentation model, and it is retrained using the spider

dataset to improve its ability to extract the foreground

target from spider images. Considering that many spiders

inhabit trees or leaves, images of which typically involve a

green background, a data enhancement method is proposed

to automatically replace the adaptive green background in

the extracted spider foreground using a pixel background

replacement algorithm.

B. Datasets Settings

The original datasets are acquired through field collection

and web crawling. After expert manual classification,

identification and annotation, and data expansion based

Fig. 1. Spider datasets.
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on foreground augmentation method and traditional

method, four different spider training datasets were

ultimately generated in this experiment. 

As can be seen in Table 1, dataset A is the original

dataset, which consists of 100 images for each category

and 500 images in total. Dataset B is a combined dataset

that includes the original images from dataset A and

applies the traditional data augmentation method to expand

the data. This dataset contains 600 images for each

category, resulting in a total of 3,000 images. Similar to

dataset B, dataset C combines the original images from

dataset A with a data augmentation method that highlights

the foreground to expand the data. Each category in this

dataset consists of 600 images, comprising 3,000 images

in total. Lastly, dataset D involves combining dataset C

and the application of traditional data augmentation

methods to expand the data further. The test set contains

25 images in each category, leading to a total of 125

additional images.

Since most spiders appear at night and will hide

quickly after being stimulated, spider images are difficult

to obtain, and training neural network models requires a

large amount of image data [13], which makes it difficult

to train neural network models for spider image recognition.

To solve this problem, in the data pre-processing before

training, traditional data enhancement techniques such as

rotation and scaling are used to expand the training

dataset [14], and transfer learning is employed to load the

pre-training parameters and fine-tune the model to

improve the recognition accuracy and generalization. The

division and settings of the datasets are presented in

Table 1.

III. RESEARCH METHODS

This paper mainly uses ResNet-50, a deep residual

network pre-trained on ImageNet, to fine-tune the spider

dataset. First, the BasNet saliency target detection model

is used to extract the spider foreground, green is selected

as the image background for data augmentation according

to the RGB channel of the image, and four different

Table 1. Datasets

Dataset Numbers Description Training Test Trainable

A 100 Original image 500 25 125

B 600 Original image + traditional data augmentation 3000 25 125

C 600 Original image + highlight the foreground 3000 25 125

D 600 Original image + highlight prospects + traditional data augmentation 3000 25 125

Fig. 2. BasNet model structure.
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datasets are designed in combination with traditional data

augmentation methods. Second, different fine-tuning

methods are tested, and different layers of the model are

frozen to find the model training structure that is most

suitable for the few-shot data in this experiment. At this

point, the original fully-connected layer of the model is

deleted, a symmetric strong convolution module is built

to extract the deep features of the spider, two fully-

connected layers are added, and the dropout method is

finally used to mitigate overfitting. The LeakyReLU

function is used in the experiment to replace the original

ReLU of ResNet-50.

A. Transfer Learning

Traditional machine learning tasks often require large

amounts of data to achieve good performance. The quality

and quantity of data both play crucial roles in determining

the effectiveness of a neural network model. However,

obtaining specific and relevant image data can often be

challenging. Such a lack of data makes it difficult to

effectively train neural networks. Transfer learning [15]

has emerged as a powerful technique that addresses these

challenges, and it has significantly improved the accuracy

of few-shot learning tasks. It helps overcome the overfitting

problem caused by limited data and accelerates the

convergence of neural networks. Transfer learning involves

transferring the knowledge or parameters learned from

one task or domain to another task or domain. There are

two important concepts in transfer learning: the Domain

and the Task [16]. A domain refers to a range of data that

exhibits different characteristics and spatial distributions.

The source domain (Ds) corresponds to a large dataset used

for pre-training, while the target domain (Dt) represents a

smaller dataset that is specific to the task at hand.

After training the neural network, the pre-training

model parameters are removed from the fully-connected

layer, thus leaving only the bottom convolutional layer

parameters to serve as a powerful feature extractor [17] to

extract features such as data edges, textures, and spatial

distribution to compensate for small samples overfitting

caused by training and insufficient model feature extraction

capabilities [18]. When using transfer learning, it is very

important to consider the difference in the probability

distributions between the source domain and the target

domain. According to the difference between the feature

space and the label space, transfer learning can be divided

into two categories: homogeneous transfer learning and

heterogeneous transfer learning [19]. When performing

transfer learning, it is necessary to select a situation

where the data distributions of the target domain and the

source domain are similar for migration. This type of

homogeneous transfer learning can achieve a multiplier

effect. If the source domain and target domain distributions

are too different from each other, they are considered to

be heterogeneous. It is important to ensure that the gap

between the datasets is narrowed for transfer learning;

otherwise it is very likely to cause negative transfer [20].

ImageNet contains a large amount of animal and insect

data and spider data, which is more suitable for the fine-

grained classification of spider species in this study.

Therefore, this article chooses ImageNet as the source

domain. To sum up, this article focuses on the few-shot

learning problem for the collection of spider datasets, and

it uses the large dataset ImageNet containing 1,000

categories as the source domain to collect five types of

spider sample datasets—Trichonephila clavata, Thomisidae,

Missulena, Araneidae, and Theraphosidae—as the target

domain, and ResNet-50 is used as the target model for

transfer learning.

1) Pre-training and Fine-Tuning

In the category of transfer learning, there is a transfer

based on shared parameters, the main methods involved

in which are pre-training and fine-tuning [15, 16]. In general

machine learning tasks, the parameters of the model are

randomly initialized, after which the network begins

being trained again. This allows the neural network to

fully learn the characteristics of the differences between

different categories for large datasets, but for small

datasets, collectively speaking, the neural network cannot

fully learn the underlying features. The law of neural

network extraction features is that the shallow neural

network extracts the primary features of the image, such

as edges, textures, corners, etc.; the middle network extracts

intermediate features such as color and shape, such as

extracting the eyes, nose, mouth, and other features of a

face in a face recognition task; and the deep neural network

extracts high-level features, such as spatial position,

relative direction, etc., and combines the local features

extracted earlier. For the spider datasets, the law of

extracting features during the training process of the

model is to first extract the edge contour of the spider,

after which the detailed information of the spider is

extracted. As the network level deepens, the extracted

features become increasingly more abstract, and the

corresponding feature matrix is more blurred.

Pre-training plus fine-tuning is a simple and efficient

method used in many transfer learning tasks, and it plays

an important role in machine learning tasks. This method

is mainly used to pre-train a neural network model on a

source domain that has a similar feature distribution as

the target domain, and then transfer the source model

parameters to the new model.

In this paper, ResNet-50 [21] is used as the recognition

model. The ResNet-50 model pre-trained on ImageNet is

removed from three fully-connected layers, and only the

parameters of the convolutional layer are retained as the

initial parameters. During training using the spider datasets,

the bottom parameters of the frozen model do not

participate in training, and only the top parameters of the

model are trained. Because the bottom layer of the model
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extracts common features such as edge contours, the

problem of insufficient data extraction at the bottom of

the model caused by insufficient data can be solved using

pre-trained parameters on large datasets with similar feature

spaces in the source and target domains. The knowledge

(parameters) of the source model is transferred to the new

model for new classification tasks, thus improving the

generalization ability of the model.

B. SSC-ResNet-50 and its Training Process

1) ResNet-50 Network

The ResNet series network was proposed by He et al.

[21] in 2016 to solve the problem of model performance

degradation caused by the deepening of the network

layer, the disappearance of the gradient, or the explosion

of the gradient. The ResNet-50 residual network can be

considered as a stack of residual blocks, meaning the

network can be designed very deep. The difference

between the residual network and the general network is

that it first copies and accumulates part of the data and

then performs a nonlinear transformation. Ideally, as the

depth of the network increases, the training error should

gradually decrease, and ResNet can reduce the error

generated by training the deep network. For general CNNs,

gradient descent is a common optimization algorithm.

The formula for the remaining function of ResNet network

learning is shown in (3).

. (3)

The residual block is divided into two parts: the direct

mapping part and the residual part. The direct mapping

part is reflected in the curve structure on the right in

Fig. 3, while the residual part is generally composed of

two or three convolution operations; that is, the part on

the left that contains convolution in Fig. 3 represents the

characteristics of the residual block after processing. In

ResNet-50, this residual structure also becomes the

bottleneck residual structure, because the feature dimension

of the input image is compressed from 256 to 64, then

reduced to 256 by the 1×1 convolution kernel, thus forming

two sides. The resulting bottleneck structure is thick and

thin.

2) SSC-ResNet-50 Network

However, given the intricate architecture of ResNet, it

consists of numerous model parameters, thus making it

challenging to train with the limited spider dataset. Therefore,

transfer learning is used to train the ResNet model for

ImageNet. The initial parameters of the model are set by

loading the pre-trained ResNet-50 model, and the fully-

connected layer parameters are removed. Subsequently,

the fully-connected layer network is reconstructed while

incorporating techniques such as global average pooling

and dropout to mitigate overfitting.

In few-shot learning [22], the primary features of edges

and contours are considered to be less important. Hence,

we opt to load the parameters pre-trained on ImageNet

and freeze the two residual block parameters at the

model’s base, thereby preventing them from participating

in further training. This approach allows us to fully

utilize the pre-trained model’s ability to extract primary

features (common features) from a large dataset, thus

compensating for the limitations of the few-shot dataset.

Moreover, after unfreezing, the two residual blocks are

trained to increase the model’s familiarity with and

extraction of characteristic information specific to spiders.

To further enhance the model’s ability to extract advanced

spider characteristics and integrate the spider’s characteristic

information, a symmetrical and robust convolution module

is added to the model’s end. This module effectively

captures the intricate characteristics of spiders and

facilitates the fusion of their characteristic information.

The original ReLU activation function of the model is

also replaced with LeakyReLU.

The newly added symmetric strong convolution module

is designed to extract high-order features of spiders. It

comprises three convolutional layers: a 1×1 convolution

kernel with a size of 512 and a stride of 1, followed by a

3×3 convolution kernel with a dimension of 1024 and a

stride of 1, and finally followed by a 1×1 convolution

kernel with a dimension of 2048 and a stride of 1.

A batch normalization layer [7] is added after each

convolution kernel, with momentum set to 0.9 and epsilon

set to 1e-5. Batch normalization (BN) was proposed by

Ioffe and Szegedy [7] in 2015 to solve the problem of

internal covariate shift. Then, the BN becomes an important

part of a neural network, just like convolution, pooling,

and other layers. The function of the BN layer is to

normalize the input of each layer so that the input value

of the entire neural network can be controlled within aFig. 3. ResNet residual block structure.
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stable range that is easy to calculate. This solves the

internal covariate shift problem mentioned above. In the

transfer learning process, it is necessary to control the BN

layer that is not being trained. The realization formula of

the BN layer is as follows:

, (4)

, (5)

, (6)

, (7)

where xi represents the input of a batch of a certain layer

of the neural network as a sample in X = [x1, x2, ..., xn]; n

is the batch size, which is the mean value of the elements

of each batch input;  represents the variance of each

mini-batch;  represents the normalization process for

each element; and yi represents the final output of the

network upon completion of the normalization process.

Then, a pooling layer and a stack of globally averaged

pooling layers are added, dropout is to the fully-connected

layers (with the random discard rate parameter set to 0.5),

and LeakyReLU is used as the activation function throughout

the model and added behind the convolutional layer and

in front of the BN layer to form the model structure of

Conv + LeakyReLU + BN. Here, the bias parameter of

all convolution kernels is set to False, i.e., no bias is used,

because if the convolution layer is followed by a

normalization layer, then the normalization layer will

normalize the output of the convolution layer and add its

own bias. In other words, the bias (if any) of the

convolutional layer is redundant. Among them, the first 1×1

convolutional kernel is mainly used for dimensionality

reduction, while the second 3×3 convolutional kernel is

mainly used to down-sample the size of the feature map

of the input fully-connected layer in the original ResNet-

50 from 7×7 to 2×2, with the aim of further extracting

some tiny high-level detailed features of the spiders, and

to make the model achieve a better classification result.

The final 1×1 convolutional kernel restores the feature

map to the original 2048 feature dimensions. The dimensions

of the three convolutional kernels are gradually increased

to gradually deepen the dimensions of the features, i.e., the

depth of the model, to achieve the purpose of extracting

the spider features through powerful convolution; this is

shown in Fig. 4. 

The newly introduced symmetric strong convolution

module combines the convolution layer and the normalization

layer in the model. This integration has the ability to

address the irregularity in the original data, promote a

more regularized data distribution, and accelerate the

convergence speed of the network. The reasoning process

behind this combination is demonstrated in the following

formulas.

, (8)

, (9)

, (10)

, (11)

. (12)

Here, yconv represents the output of the convolutional

layer and w represents the weight of the convolution

kernel. Further, pre-training weights are used, and the

convolutional layer does not use bias. E[x] is the sliding

mean, Var[x] is the sliding variance, ybn is the output of

B

2

xi'

Fig. 4. Newly symmetric strong convolution module added to
the model.



Journal of Computing Science and Engineering, Vol. 17, No. 4, December 2023, pp. 145-160

http://dx.doi.org/10.5626/JCSE.2023.17.4.145 152 Jianming Wang et al.

the BN layer,  is the weight of the BN layer,  is the

bias of the BN layer, and  is the training parameter.

The ReLU [23] activation function is used to solve the

problem of the disappearance of the gradient. The ReLU

function activates the weight x of the feature matrix.

When x¡0, it is difficult to saturate, and the weight is reset

to 0. When x¿0, the derivative is 1. The gradient does not

decay, and the corresponding eigen matrix weight remains

unchanged, thus alleviating the problem of gradient

disappearance. The ReLU activation function formula

(13) is as follows:

. (13)

However, ReLU also has disadvantages. Despite its

simple and efficient structure, which improves network

convergence speed, it suffers from what is known as the

“dying ReLU” problem. This occurs when the input

value is negative, thus causing the gradient to be 0. As a

result, some neurons cannot perform gradient descent, so

their parameters remain unchanged, leading to an infinite

cycle. This renders the neurons ineffective for the remaining

training tasks, ultimately causing their “death.” To address

this issue, LeakyReLU was introduced as a solution.

LeakyReLU compensates for the deficiency of the ReLU

function by introducing a small negative value for any

input that is less than 0, typically with a slight gradient

slope of 0.01. Unlike ReLU, which sets the value to 0 for

all inputs less than 0, LeakyReLU preserves a non-zero

value for the negative input range.

This ensures that the gradient does not vanish entirely,

as a small gradient helps maintain a non-zero partial

derivative during gradient descent. This concept is illustrated

in Fig. 5. The overall structure and fine-tuning methods

of the SSC-ResNet-50 model are depicted in Fig. 6, while

Table 2 presents the parameter settings for each component

of the model.

. (14)

After pre-processing the data, it is fed into the model

for training. First, hyperparameters such as learning rate

[24] (the learning rate), batch size [25] (the sample size

used in one iteration), and epoch [26] (the number of

iterations) need to be set according to the dataset size and

the chosen optimizer [27]. Upon initiation of model

training, the ResNet-50 model consists of four bottleneck

ŵ b̂

Fig. 6. Fine-tuning of SSC-ResNet-50 model.

Fig. 5. Comparison of two activation functions’ ranges.
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residual structures and two fully-connected layers. In the

first four residual blocks, the input image undergoes

convolution using the stacked bottleneck residual structure

with three convolution kernels. This operation, combined

with down-sampling [28], reduces the image size while

simultaneously increasing the feature map’s dimensions

and extracting more channel information. Finally, the

local features are merged into global features through the

fully-connected layer, and the softmax [29] function is

applied for multi-classification, thereby obtaining the

predicted probability for each class [30]. The sum of

probabilities across all classes approximates to 1. During

the forward and backward propagation of model training,

the network nodes (convolution kernels) in the first layer

are represented by the convolution kernel corresponding

to the p channel of the first layer and the q channel of the

first layer. This symbolizes the weights of the first layer’s

fully-connected network and represents the forward input

of the l-th layer without the activation function. The

variables u and v represent the coordinate position of the

convolution operation. Eq. (16) represents the convolution

operation formula of the l-th layer, and the maximum

pooling formula is as expressed in Eq. (17):

,

(15)

, (16)

.

(17)

The convolution and pooling operations of the model

can continuously reduce the dimensionality of the input

image while extracting image features. After passing

through the first four residual blocks of the model and the

newly-added symmetric strong convolution module, the

image dimension is reduced to (3×3×1024), where the

size of the image is reduced to 3×3 and the thickness of

the feature map is increased to 1024 layers; it is then

converted into a 2234112-dimensional vector as the input

of the fully-connected layer. The output after the layer is

Eq. (18), the formulas for forward propagation are shown

in Eqs. (19) and (20), and the output layer is activated by

the softmax function as expressed in Eq. (21). In calculating

back propagation, an intermediate variable is introduced

as the error of the first layer. The gradient of the forward

propagation of the first layer can be expressed as, and

formulas (22) and (23) are used to calculate the gradient.

, (18)

, (19)

Table 2. Model parameter settings

Model parameter settings Parameters Active Padding Output shape Trainable

Input_1(Layer) 0 - - (224, 224, 3) False

Conv_1(Conv2d) 9408 LeakyReLU Same (112, 112, 64) False

Conv1/BatchNorm 256 - - (112, 112, 64) False

LeakyReLU 0 - - (112, 112, 64) False

Max_Pooling 0 - Same (56, 56, 64) False

Block_1 218624 LeakyReLU Same (56, 56, 256) False

Block_2 1226752 LeakyReLU Same (28, 28, 512) False

Block_3 7118848 LeakyReLU Same (14, 14, 1024) True

Block_4 14987264 LeakyReLU Same (7, 7, 2048) True

SSC_Block 2234112 LeakyReLU Same (2, 2, 2048) True

Dropout 0 - - (None, 1024) True

Dense 1049600 LeakyReLU - (None, 1024) True

Dropout 0 - - (None, 1024) True

Dense 5125 - - (None, 5) True

Softmax 0 - - (None, 5) True
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, (20)

, (21)

, (22)

. (23)

When using pre-training and fine-tuning in transfer

learning for training, the pre-training weights should first

be downloaded on ImageNet corresponding to ResNet-50

from the TensorFlow official website, after which the

fully-connected layer parameters of the weights are

removed, and then the weights are loaded into the model.

Next, three different fine-tuning methods are used to train

the model. These three different fine-tuning methods are

described in Table 3. The entire model training and

recognition flow chart is shown in Fig. 7. To compare the

impacts of transfer learning and not using transfer learning,

different fine-tuning methods, and different datasets on

Table 3. Fine-tuning methods

Fine-tuning 

method label

Pre-training 

source domain
Description

I ImageNet Freeze all convolutional layer parameters and train only the fully-connected layer

II ImageNet Use pre-training parameters as initial parameters to train from scratch

III ImageNet Freeze the parameters of Block1 and Block2, only train Block3 and Block4

Fig. 7. Model training process of three different fine-tuning methods.



Research on Spider Fine-Grained Recognition Technology Based on Transfer Learning

Jianming Wang et al. 155 http://jcse.kiise.org

the accuracy of the model, this paper designs two sets of

comparative experiments. In the experiment that does not

use transfer learning, the number of training rounds is set

to 100 epochs, the learning rate is 0.002, and the batch size

is 16. Meanwhile, in the experiment that uses transfer

learning, the number of training rounds is set to 50

epochs, the learning rate is 0.0002, and the batch size is

16. The Adam optimization algorithm is used as an

optimizer, which integrates the advantages of AdaGrad

and RMSProp algorithms. Adam not only calculates the

adaptive parameter learning rate based on the mean value

of the first-order moments like the RMSProp algorithm,

but it also makes full use of the mean value of the

second-order moments of the gradient.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Lab Environment

The experimental hardware configuration has the

following specifications: RTX 2080Ti GPU×1, memory

32 GB×2, processor Intel E5-2603×2. The model is

implemented using Python 3.7 and TensorFlow 2.1 deep

learning framework under the Windows 10 operating

system.

B. Experimental Results

1) Without using Transfer Learning

First, the ResNet network and the SSC-ResNet network

are used in four different types of datasets: (i) Original

image, (ii) original image + traditional data augmentation,

(iii) original image + foreground data augmentation, and

(iv) original image + highlight the prospects + training

under traditional data augmentation. At this time, the pre-

training parameters are not used, and the training is

restarted. As can be seen in the results in Table 4, when

transfer learning is not used, on dataset D, after training,

the test accuracy of SSC-ResNet reaches 83.48%, which

is 3.68% higher than that of the original ResNet-50

network, and higher than those of datasets B, C, and A,

which were expanded with different data augmentation

methods. The accuracy is the highest in dataset D, and the

overall performance is in descending order of D>C>B>A.

It can be seen that SSC-ResNet reduces the dimension of

the feature map of the input fully-connected layer and

increases the trainable parameters. In the case of

insufficient data, the performance of dataset A (below the

original image) is not as good as that of the original

ResNet network.

2) Training based on Transfer Learning Method

To examine the impact of transfer learning on recognition

accuracy, this study conducts an experimental analysis

that combines transfer learning with data augmentation

techniques. Four different types of datasets are designed:

(i) original image, (ii) original image + traditional data

augmentation, (iii) original image + prominent foreground

data augmentation, and (iv) original image + prominent

foreground + traditional data augmentation. Three different

fine-tuning methods are used to train the few-shot spider

data: method I, all convolutional layer parameters are

frozen and only the fully-connected layer is trained;

method II, pre-trained parameters are used as initial

parameters to train from scratch; and method III, residual

blocks Block1 and Block2 are frozen, and only residual

blocks Block3 and Block4 are trained. To begin, in the

most conventional pre-training and fine-tuning method,

where all convolutional layer parameters are frozen and

only the fully-connected layer is trained, four models

(VGG-16, ResNet-50, Vision Transformer, and GoogleNet)

are trained using dataset A, which contains the original

images. The results, as shown in Table 5, indicate that the

ResNet-50 model achieves the highest accuracy rate of

98.2%, while the VGG-16 model performs the worst with

an accuracy rate of 91.6%. Previous reports have stated

that the performance of Vision Transformer surpasses

Table 4. Comparison of results between the two models

Model
Dataset

Trainable parameter Non-trainable parameter
A B C D

SSC-ResNet-50 0.7529 0.7614 0.8260 0.8348 33,486,405 60,288

ResNet-50 0.7614 0.7710 0.8073 0.7980 25,611,333 53,120

Table 5. Comparison of four models

Model Fine-tune Dataset Val accuracy Trainable parameter Non-trainable parameter

ResNet-50 I A 0.982 2,102,276 23,561,152

VGG-16 I A 0.916 55,588,869 14,714,688

Vison Transformer I A 0.964 3,845 85,798,656

GoogleNet I A 0.971 4,456,079 5,504,256
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that of CNN models on large datasets. However, due to its

extensive parameters, the Vision Transformer’s performance

on few-shot spider data falls short compared to that of the

classic CNN model, ResNet. Therefore, the ResNet-50

model is chosen for the classification task and further

optimized and enhanced specifically for the few-shot

spider dataset. This enables it to better adapt to fine-

grained spider recognition.

Further, the enhanced ResNet model, SSC-ResNet-50,

is trained on the four datasets (A, B, C, D) using a

combination of three different fine-tuning methods.

According to the data presented in Tables 6, 7, and Fig. 8,

it can be observed that the model achieves the highest

accuracy of 99.1% on the test set when using dataset D

and fine-tuning method III.

This accuracy is 0.9% higher than the average accuracy

of the original ResNet-50 network, thus indicating good

robustness. While many studies suggest that traditional

data augmentation methods enhance model generalizability,

it is important to note that the spider dataset differs from

other large animal datasets. Spider images possess

intricate edge contour features and complex shapes. In

fine-grained recognition tasks, the differences between

different types of spiders are often subtle, and there are

many common features shared among different species.

Thus, traditional data augmentation methods such as rotation,

cropping, and tone transformation do not significantly

benefit model training on the few-shot spider dataset;

they may even have negative effects. However, when

combined with data augmentation techniques that emphasize

the outstanding aspects of spider features, these methods

can effectively augment the dataset and contribute positively

to model training.

Finally, based on the experimental findings, it is observed

that, when using the same fine-tuning method, the different

data augmentation methods have varying effectiveness.

When training on a dataset B with traditional data

augmentation techniques and a dataset C with foreground

data augmentation techniques, with both datasets containing

six times the amount of data compared to the original

image, the results prove to be better than when training

with only the original image. Further, the traditional data

augmentation method yields slightly better results than

the foreground data augmentation method. Moreover, the

combination of the original image with both traditional

and foreground data augmentation techniques outperforms

the foreground enhancement method alone, with an average

improvement of 1.8% compared to the traditional data

augmentation method’s improvement of 1.9%. Moreover,

under the three fine-tuning methods, when the parameters

of Block1 and Block2 are frozen while only training

Block3 and Block4, and when training on dataset D, the

training effect surpasses that achieved by the traditional

Table 7. ResNet model results

Model
Dataset

Trainable parameter Non-trainable parameter
A B C D

ResNet-50-I 0.982 0.982 0.971 0.982 2102276 23561152

ResNet-50-II 0.973 0.945 0.963 0.954 25,611,333 53,120

ResNet-50-III 0.971 0.963 0.963 0.963 24,166,405 1,498,048

Table 6. SSC-ResNet model results

Model
Dataset

Trainable parameter Non-trainable parameter
A B C D

SSC-ResNet-50-I 0.982 0.972 0.954 0.973 9,978,373 23,568,320

SSC-ResNet-50-II 0.982 0.972 0.936 0.954 33,486,405 60,288

SSC-ResNet-50-III 0.971 0.972 0.954 0.991 32,041,477 1,505,216

Fig. 8. Comparison of accuracy between the two models.
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fine-tuning method.

From the above conclusions, it is evident that the model’s

new symmetrical strong convolution module, combined

with fine-tuning method III, has a positive impact on

extracting high-level features from spiders. The combination

of data augmentation techniques, which are specifically

based on prominent prospects and traditional methods,

contributes to enhancing the data diversity, thereby improving

the model’s generalization ability.

Freezing the model’s underlying pre-trained parameters

can make full use of its powerful primary feature (public

feature) extraction capabilities pre-trained on large networks,

and the spider datasets can then be used to train the

middle and top layers of the model to better extract the

unique features of the spider. Compared to the traditional

freezing of all layer parameters, aside from the fully-

connected layer, this method has more training parameters,

so the model has higher robustness and higher confidence

when predicting spider images. The method of pre-training

and fine-tuning can also greatly improve the training

speed of the model. Using the transfer learning method to

train, the model stands at a higher starting point, and the

initial accuracy rate on the test set can reach more than

80%. It can be seen that the source domain ImageNet is

well adapted to the spider datasets of the target domain,

and that fine-tuning the parameters of the pre-training model

substantially contributes to the spider species identification

task.

When using transfer learning, the model loads pre-

trained parameters from the ImageNet dataset. Compared

to the parameters of the same first convolution kernel and

batch normalization layer without using transfer learning,

the distribution of pre-training parameters is relatively

concentrated, and the parameter sizes are significantly

different from each other. When no transfer learning is

used and the parameters are randomly initialized, the

parameter distribution is relatively uniform.

Comparing the transfer learning method with the

retrained ResNet-50 and SSC-ResNet-50 in Fig. 9, it can

be seen that the transfer learning method achieves an

average improvement of 22.9% compared to retraining,

and that significant improvements can be observed across

the different datasets. This indicates that the various pre-

training and fine-tuning methods designed in this experiment

greatly contribute to improving the training accuracy of

the model.

The following discusses the test results of the SSC-

ResNet-50 model trained on dataset D using the fine-

tuning method III, while comparing the precision, recall,

and F1-scores for the manual recognition of five spider

categories (Thomisidae, Trichonephila clavata, Theraphosidae,

Missulena, and Araneidae). These test results are shown

in Table 8. Moreover, the classifier performance of the

SSC-ResNet-50 model trained on dataset D using fine-

tuning method III is well explained by the ROC curves

and AUC values in Fig. 10.

Accuracy: The ratio of the number of correctly classified

samples to the total number of samples, as shown in

formula (24):

. (24)

Precision: The ratio of the number of samples correctly

identified by the model to the total number of samples

retrieved, as shown in formula (25):

. (25)

Fig. 9. Comparison of two training methods.

Table 8. Results of the system (unit: %)

Spider categories
Transfer learning + data augmentation Data augmentation only

Precision Recall F1-score Precision Recall F1-score

Theraphosidae 92.3 100 95.9 91.55 88.34 89.92

Missulena 100 100 100 88.73 89.12 88.92

Thomisidae 100 100 100 92.79 92.10 92.44

Trichonephila clavata 100 99.10 99.6 92.30 96.10 91.16

Araneidae 100 100 100 86.74 95.90 91.09
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Recall: The ratio of the number of correctly identified

samples to the number of samples that should be retrieved,

as shown in formula (26):

. (26)

F1-score: The harmonic average of model precision

and recall rate, as shown in formula (27):

. (26)

Among them, TP represents the number of positive

samples correctly recognized by the model as positive

samples; FP represents the number of negative samples

incorrectly recognized by the model as positive samples;

FN represents the number of negative samples incorrectly

recognized by the model as positive samples; and TN

represents the number of negative samples correctly

recognized by the model as negative samples.

In summary, using the transfer learning method and the

ResNet-50 model to conduct fine-grained recognition of

spider images, the recognition accuracy of the above five

types of spider test sets has reached 99.1%, thus achieving

high recognition accuracy. It can be seen that the model

has high robustness and is set to be applied in actual

production practice.

V. CONCLUSION

With the aim of addressing the problem of spider few-

shot classification, this paper optimizes and improves

upon the ResNet-50 network model as a foundation, and

it builds an SSC-ResNet-50 model that is particularly

suitable for few-shot spider datasets. On the one hand, it

uses the method of pre-training and fine-tuning in

transfer learning. Through comparative experiments, the

best solution for selecting the residual blocks is found to

involve freezing Block1 and Block2 at the bottom of the

model and training only Block3, Block4, and the fully-

connected layer. While effectively using the powerful

public feature extraction capabilities of the pre-trained

network model, the model can fully extract high-level

features of spiders. On the other hand, a data augmentation

method that combines traditional methods and data

augmentation technology that highlights the foreground

is used to grow the amount of data and improve the

generalization performance of the model. Ultimately, the

following conclusions can be obtained through the

experimental results:
● The SSC-ResNet-50 network model has an accuracy

of 99.1% on the test set of five types of spiders, which

is 0.9% higher than that of the ResNet-50 network.
● Using outstanding prospects or traditional data

augmentation methods alone will cause disturbances

to the model, and may even reduce the accuracy of

the model, while combining the two to expand the

data is helpful to improve the accuracy of the model.
● Compared to the conventional transfer learning method

that freezes all convolutional layer parameters and

only trains the fully-connected layer, this paper freezes

the bottom residual blocks of the model Block1 and

Block2, and it only trains Block3, Block4, and the

fully-connected layer. The effect of this solution on

dataset A is the best among all groups of experiments.
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