
Copyright 2023. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 17, No. 4, December 2023, pp. 195-206

Performance Optimization of GraphQL API Through Advanced
Object Deduplication Techniques: A Comprehensive Study
Budi Santosa*, Awang Hendrianto Pratomo, and Riski Midi Wardana

Department of Informatics, Universitas Pembangunan Nasional Veteran, Yogyakarta, Indonesia

dissan@upnyk.ac.id, awang@upnyk.ac.id, 123170035@student.upnyk.ac.id

Shoffan Saifullah*

Faculty of Computer Science, AGH University, Krakow, Poland;

Department of Informatics, Universitas Pembangunan Nasional Veteran, Yogyakarta, Indonesia

saifulla@agh.edu.pl, shoffans@upnyk.ac.id

Novrido Charibaldi

Department of Informatics, Universitas Pembangunan Nasional Veteran, Yogyakarta, Indonesia

novrido@upnyk.ac.id

Abstract
This research paper presents a comprehensive analysis of the performance enhancement achieved in GraphQL applica-
tion programming interfaces (APIs) when using meticulous object deduplication implementation. By integrating
advanced techniques into the GraphQL response mechanism, the data size exchanged between servers and clients can be
significantly reduced. Rigorous testing against untreated and HTTP-compressed data validates the obtained results, high-
lighting the presence of substantial improvements across various performance metrics. The applied object deduplication
method demonstrates gains in throughput, with a 0.33% increase observed in a 100-page test. Notably, response time
analysis reveals enhancements of 11.04% (10 pages), 62.53% (20 pages), and an impressive 95.22% (100 pages). Mean-
while, parsing time evaluation showcases remarkable increases of 75.78% (10 pages), 276.38% (50 pages), and an even
more exceptional 309.35% (100 pages). Comparative analysis against HTTP compression further validates the superior-
ity of object deduplication in parsing time efficiency, demonstrating gains of 64.61% (10 pages), 193.76% (50 pages),
and 218.07% (100 pages). While the throughput performance remains comparable, slight differences can be observed in
response time, with a 0.66% increase (10 pages), a minor decrease of 0.12 (50 pages), and a modest decline of 1.45%
(100 pages). This study fills in existing research gaps and provides empirical evidence of the benefits of object dedupli-
cation in enhancing GraphQL API performance, thus enabling the effective optimization of GraphQL APIs.

Category: Smart and Intelligent Computing

Keywords: GraphQL API; Performance enhancement; Object deduplication; Benchmarking; Data transmission

Received 14 October 2023; Accepted 17 December 2023

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2023.17.4.195 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 17, No. 4, December 2023, pp. 195-206

http://dx.doi.org/10.5626/JCSE.2023.17.4.195 196 Budi Santosa et al.

I. INTRODUCTION

GraphQL has rapidly emerged as a prominent query
language and runtime for application programming interfaces
(APIs) [1, 2], thus revolutionizing how data is requested
and delivered in modern web and mobile applications [3].
Its flexible and intuitive nature allows clients to define
precisely the data they require, making it an attractive
choice for developers seeking efficient data retrieval [4].
However, as GraphQL APIs handle increasingly complex
data and face more extensive client requests [5, 6], it has
become paramount to ensure optimal performance.

Data duplication poses a common challenge when
attempting to retrieve and filter data using specific categories
from data sources, such as when searching and filtering
products using specific store categories on an e-commerce
website [7]. The presence of duplicate data increases the
overall data size transmitted over the network, and the
data transmission times that are consequently increased
impact application performance [8]. Web APIs must exhibit
good response times to ensure timely data presentation on
the client side [9]. According to Everts [10], websites
experiencing performance degradation (i.e., response times
exceeding 4.4 seconds) incur an average hourly revenue
loss of $4,100. Moreover, a case study on Akamai Company
revealed that poorly performing websites experienced a
permanent abandonment rate of 28% [10].

One of the advantages of GraphQL is its ability to define
the requested data, thereby replacing multiple API calls
in REST with a single GraphQL API call [11]. Due to the
absence of limitations on requested data size by GraphQL
clients, the flexibility that GraphQL offers to clients in
defining requested data also opens up possibilities of data
size inflation [12] and repetition of the same data [13],
which lead to data redundancies.

In research by Sakamoto et al. [14], HTTP compression
was shown to reduce network traffic size by more than
50%. HTTP compression effectively reduces the data size
transmitted over the network, thereby expediting the
transmission process. However, this method does not
address the parsing of raw data into objects on the client
side. According to a study by Li et al. [15], over 80% of
the time required to query JSON data is dominated by the
parsing process. The time-consuming nature of data
parsing shows the need to develop efficient techniques to
reduce parsing time.

According to Xia et al. [16], object deduplication offers
advantages over traditional compression by eliminating
redundant data at the chunk or file level, thus eliminating
the need for byte-by-byte data comparison, and making the
process more computationally efficient. Object deduplication
can also be leveraged to reduce the data size to be parsed
on the client side, as it manipulates data at the object level
after parsing the raw data [17]. Therefore, the current
research applies object deduplication to the GraphQL
response to enhance the performance of the GraphQL

API.
This study aims to comprehensively investigate the

impact of advanced object deduplication techniques on
the performance of GraphQL APIs. Object deduplication
involves identifying and removing redundant data within
the API response, resulting in a streamlined data transmission
process between the server and client. Object deduplication
optimizes both data transmission and parsing efficiency
by minimizing data duplication, improving response times,
and enhancing overall throughput.

To gauge the effectiveness of object deduplication,
rigorous testing is conducted, and the results are compared
against untreated data and data compressed using HTTP
compression, which is a widely employed optimization
method. The performance metrics analyzed are throughput,
response time, and parsing time. This study aims to obtain
invaluable insights into the benefits and implications of
integrating object deduplication methods into GraphQL
APIs through meticulous benchmarking and empirical
analysis.

The findings of this research show that the implementation
of object deduplication leads to noteworthy performance
enhancements. The devised methodology demonstrates
notable improvements in throughput, reduced response
times, and enhanced parsing efficiency across various test
scenarios. Further, a comparative analysis with HTTP
compression underscores the advantages of object dedupli-
cation in optimizing parsing time, thus solidifying its
standing as a promising performance optimization technique
for GraphQL APIs.

This study significantly contributes to the burgeoning
field of GraphQL API performance optimization by
addressing prevalent research gaps and substantiating its
conclusions with empirical evidence. The acquired insights
are expected to serve as a guiding resource for developers
and system architects, thus empowering them to make
informed decisions regarding object deduplication techniques
to augment the efficiency and responsiveness of their
GraphQL APIs. Ultimately, the outcomes of this study hold
immense potential to elevate the overall user experience
and scalability of GraphQL-based applications, ultimately
ensuring their continued prominence in the rapidly
evolving landscape of web and mobile technologies.

II. METHODS

This section presents a comprehensive and systematic
approach that can be used to assess the performance
optimization of GraphQL APIs by implementing advanced
object deduplication techniques. Object deduplication is
a promising method for enhancing the efficiency and
responsiveness of GraphQL APIs by eliminating redundant
data within the API response, thus reducing the data size
transmitted between the server and client [18]. The
research architecture consists of two main components:

Performance Optimization of GraphQL API Through Advanced Object Deduplication Techniques: A Comprehensive Study

Budi Santosa et al. 197 http://jcse.kiise.org

the GraphQL Client and the GraphQL Proxy. The GraphQL
Client is responsible for conducting performance evaluations
and measurements, while the GraphQL Proxy is the server
application, handling client requests and implementing
object deduplication and data compression as required.
This architecture provides a robust framework that allows
for the evaluation of the effectiveness of object dedupli-
cation in GraphQL APIs.

The current study is primarily focused on the imple-
mentation of object deduplication techniques within the
GraphQL response. After retrieving the data from the
source, the raw data is parsed into objects, and deduplication
is applied to remove duplicate objects before the response
is transmitted to the client. By manipulating the data at
the object level, this research aims to efficiently eliminate
duplicate data, thus reducing response size and improving
overall API performance.

To comprehensively evaluate the impact of object
deduplication, this study compares three distinct architectural
models: Architecture 1 (no treatment), Architecture 2 (HTTP
compression), and Architecture 3 (object deduplication).
Key performance metrics [19], such as throughput, response
time, and parsing time, are analyzed through rigorous testing.
This comparison between these different architectural
models provides valuable insights into the benefits and
implications of implementing object deduplication tech-
niques in GraphQL APIs.

In the subsequent sections, this study presents detailed
performance evaluations and statistical analysis to sub-
stantiate the effectiveness of object deduplication. Through
robust statistical methods and careful interpretation of the
results, this Methods section contributes to the validity
and reliability of the research findings, with the goal of
facilitating informed decision-making among developers
and system architects in terms of the optimization of
GraphQL API performance. This Methods section establishes
a solid foundation for assessing the impact of object
deduplication on GraphQL APIs, thus leading to valuable
conclusions about and potential directions for advancement
in GraphQL API optimization.

A. Data Collection

To ensure the validity and comprehensiveness of this
study, a systematic and meticulous data collection process
is used to gather relevant and diverse GraphQL API
responses. The data collection methodology is designed to
encompass various aspects of data retrieval and scenarios
that are commonly encountered in real-world GraphQL
API implementations [20]. The following steps outline
the data collection process [21]:

1) Identification of relevant API endpoints: The first
step involves carefully identifying and selecting
API endpoints that represent typical data retrieval
operations performed by GraphQL APIs. The endpoints

are chosen to cover various data types, queries, and
use cases, and they ultimately provide a representative
sample of the API’s functionality and performance
characteristics.

2) API request and response capture: Using appropriate
tools and techniques, API requests are sent to the
identified endpoints, and the corresponding responses
are captured. The data collection system records the
raw HTTP responses, including headers and
payloads, to ensure the existence of a sufficiently
comprehensive dataset for analysis.

3) Data diversity and sample size considerations: To
ensure data diversity, the data collection process
considers different GraphQL queries, including
queries with various complexities, nested fields, and
other data sizes. This approach is intended to
include responses that span a broad spectrum of
complexities and user scenarios, thus allowing for a
thorough evaluation of the object deduplication
methods’ performance. The sample size is also
carefully determined to provide adequate statistical
significance and minimize potential bias in the
analysis. A sufficiently large dataset is collected to
derive meaningful insights and robust conclusions
from the evaluation.

4) Data preprocessing and cleaning: The collected data
undergoes preprocessing and cleaning to ensure
data consistency and eliminate noise or irrelevant
information. Data preprocessing includes removing
duplicate entries, handling missing values, and
transforming data into a standardized format. This
step is a crucial aspect in preparing the data for
further analysis and facilitating accurate performance
evaluation.

5) Data validation and quality assurance: To maintain
the integrity and quality of the dataset, a comprehensive
validation process is conducted. In particular, the
data is cross-validated against GraphQL API responses
to ensure accuracy and consistency. Any inconsistencies
or discrepancies are carefully addressed and rectified
to ensure the reliability of the data for subsequent
analysis.

6) Ethical Considerations: During the data collection
process, ethical considerations and data privacy
protocols are strictly adhered to. In this process, our
research team has ensured that user privacy is
respected and that all collected data is anonymized
to protect user identities and sensitive information.
The data is used solely for research purposes and
handled in compliance with applicable data protection
regulations.

By employing a rigorous and systematic data collection
methodology, this research aims to build a high-quality
dataset that reflects real-world scenarios and accurately
represents the performance characteristics of GraphQL

Journal of Computing Science and Engineering, Vol. 17, No. 4, December 2023, pp. 195-206

http://dx.doi.org/10.5626/JCSE.2023.17.4.195 198 Budi Santosa et al.

APIs. The resulting dataset provides a solid foundation
for evaluating the effectiveness of object deduplication
methods in optimizing GraphQL API performance, and it
is expected to help obtain valuable insights into enhancing
the efficiency and responsiveness of GraphQL-based
applications.

B. Architecture Design

The design of the architecture plays a crucial role in
the implementation of the object deduplication techniques
and the optimization of the performance of GraphQL
APIs.

This process involves carefully arranging components
and integrating object deduplication methods into the
existing GraphQL infrastructure. The architecture design
for this study (Fig. 1) comprises two main details: the
GraphQL Client and the GraphQL Proxy.

GraphQL Client: The GraphQL Client serves as the
application that is responsible for conducting tests and
measurements on the variables being examined [22]. It is
designed to send GraphQL queries and requests to the
GraphQL Proxy, thus simulating real-world scenarios and
interactions between clients and the GraphQL API [23].
The GraphQL Client can take various forms, including
mobile applications, web applications, or desktop appli-
cations, thus offering versatility in performance evaluations
across different platforms.

GraphQL Proxy: The GraphQL Proxy is the server
application, and it mediates between the GraphQL Client

and the actual Github GraphQL API [24]. It acts as an
intermediary that receives requests from the client, processes
them, and forwards them to the GitHub GraphQL API.
The primary objectives of the GraphQL Proxy are to
implement object deduplication techniques and data
compression before transmitting the data to the client.

Object deduplication implementation: The imple-
mentation of object deduplication occurs within the
GraphQL Proxy. Before the API response is sent to the
client, the GraphQL Proxy systematically identifies and
eliminates redundant data objects [25]. Object deduplication
significantly reduces the data size transmitted over the
network, thus improving data transmission efficiency and
response times.

Data deduplication: Data deduplication is a crucial
technique in modern data management systems that aim to
improve storage efficiency and optimize data transmission
over networks. It involves identifying and eliminating
duplicate data, reducing redundancy, and optimizing data
storage capacity [26]. Through the removal of duplicate
data, data deduplication saves storage space and minimizes
data transfer times, thereby improving performance and
reducing network bandwidth consumption. The present
research explicitly applies data deduplication to the
GraphQL API response with a focus on optimizing the
data transmitted from the server to the client. The
deduplication process is carried out at the object level
after parsing the raw data, which allows for efficient
manipulation of data objects and minimizes the data size
processed on the client side. The data deduplication
process [27] can be broadly outlined as follows:

● Chunking: The data is divided into smaller chunks or
segments. Each chunk typically contains a portion of
the overall data.

● Fingerprinting: Each chunk is transformed into a
unique fingerprint or hash value based on its content.
This fingerprinting process helps efficiently identify
chunks that are identical or similar to each other.

● Indexing: The generated fingerprints are used to
create an index or lookup table that facilitates the
identification and grouping of duplicate chunks. This
index allows for efficient detection of duplicate data
across the entire dataset.

● Compression (optional): While compression is not an
inherent part of the data deduplication process, it is
sometimes used to further reduce the data size.
Compression algorithms can eliminate additional
redundancies and compact the data, thereby leading
to even more efficient data transmission.

The effectiveness of data deduplication in reducing
data size depends on the level of data duplication present
in the dataset. As shown in the research findings obtained
by Xia et al. [16], data duplication levels vary across

Fig. 1. Proposed system architecture and comparison among
no-treatment, HTTP compression, and object deduplication.

Performance Optimization of GraphQL API Through Advanced Object Deduplication Techniques: A Comprehensive Study

Budi Santosa et al. 199 http://jcse.kiise.org

different workloads and environments (Fig. 2). For instance,
file-level deduplication on Microsoft’s internal users was
shown to achieve a reduction ratio of about 21%, meaning
that duplicate data accounted for only 21% of the original
data size. By contrast, chunk-level deduplication across
users at an 8-kB chunk size achieved a significantly
higher reduction ratio of about 68%.

The benefits of data deduplication extend beyond
storage optimization. By reducing the amount of data
transmitted over the network, data deduplication can lead to
faster retrieval and improved response times for GraphQL
API requests. Furthermore, data deduplication has a
crucial impact on parsing time, as it directly influences the
time required to process data on the client side. GraphQL
APIs can enhance performance by implementing data
deduplication techniques and providing a more responsive
and efficient user experience. The present research will
comprehensively evaluate the effectiveness of data
deduplication in enhancing the performance of GraphQL
APIs through a series of experiments and analyses. The
findings of this evaluation are expected to provide
valuable insights into the benefits of applying object
deduplication techniques to GraphQL API responses and
their implications for overall performance optimization.

Data compression: The GraphQL Proxy is also equipped
with data compression capabilities. Once the data is
successfully retrieved from the GitHub GraphQL API, it
is compressed using HTTP compression techniques. Data
compression further optimizes data transmission, thus
reducing network traffic and expediting data delivery to
the client [28].

Architecture models: This research considers three
distinct architectural models (Fig. 1) for evaluation:

● Architecture 1 (no treatment): This baseline architecture
represents the control scenario where the data undergoes
no treatment, i.e., neither object deduplication nor
HTTP compression. It serves as the reference point
for comparison against the other architectures while
providing insights into the raw GraphQL API
performance without the use of any optimization
techniques.

● Architecture 2 (HTTP compression): In this model,
HTTP compression is applied to the data. After
successfully fetching data from the GitHub GraphQL

API, the GraphQL Proxy compresses the data before
sending it to the client over the network. This
architecture serves as a benchmark for comparing the
performance of object deduplication against a widely
used compression technique.

● Architecture 3 (object deduplication): In this architecture,
object deduplication is implemented on the data to be
studied. The GraphQL Proxy identifies and eliminates
redundant data objects before transmitting the data to
the client over the network. This architecture focuses
on assessing the performance improvements achieved
by the object deduplication techniques. The proposed
architecture design aims to comprehensively evaluate
object deduplication techniques and their impacts on
GraphQL API performance. By implementing object
deduplication within the GraphQL Proxy, this study
aims to optimize data transmission, reduce response
times, and enhance the overall efficiency of GraphQL-
based applications.

C. Performance Analysis

In this section, we present a detailed analysis of the
performance metrics used to evaluate the impact of object
deduplication on GraphQL API performance. The perfor-
mance analysis involves measuring key metrics [29, 30]
related to throughput, response time, and parsing time
under various test scenarios.

1) Throughput measurement: Throughput is a critical
performance metric that assesses the number of API
requests served per unit of time. It provides insights
into the system’s capability to handle concurrent
requests and its overall processing efficiency. To
measure throughput, load tests are conducted in
which the number of concurrent API requests is
gradually increased while monitoring the response
times and success rates. The throughput results are
recorded and compared across different scenarios,
including GraphQL APIs with and without object
deduplication.

2) Response time evaluation: Response time represents
the time taken by the GraphQL API to respond to a
client request, including the time spent on processing

Fig. 2. Data deduplication process.

Journal of Computing Science and Engineering, Vol. 17, No. 4, December 2023, pp. 195-206

http://dx.doi.org/10.5626/JCSE.2023.17.4.195 200 Budi Santosa et al.

the request and generating the response. Performance
testing involves executing predefined queries with
varying complexities and sizes. The response times
are measured for each query type and analyzed under
different workloads and data loads. The response
time data is statistically analyzed to identify the
performance improvements achieved through object
deduplication.

3) Parsing time assessment: Parsing time refers to the
duration taken by the client-side to parse the received
GraphQL response and convert it into usable objects.
Parsing performance is evaluated by executing
queries that return a substantial amount of data and
measuring the time taken to process and parse the
response. The obtained parsing times are compared
between GraphQL APIs with and without object
deduplication to gauge the impact that the deduplication
technique has on parsing efficiency.

D. Performance Evaluation

The performance evaluation aims to assess the impact
of the object deduplication method on the performance of
the GraphQL API. To provide a comprehensive analysis,
the following performance metrics are meticulously
measured for each test scenario:

1) Throughput: Throughput is a fundamental performance
metric that quantifies the number of successful
requests completed by the GraphQL API within a
specified time frame. It reflects the system’s
processing capacity and its ability to handle a high
volume of incoming requests. Throughput is
measured in requests per unit of time and typically
represented in the form of requests per second
(RPS). For each architecture model (untreated data,
HTTP compression, and object deduplication), the
throughput is calculated by tracking the number of
successfully processed API requests over a fixed
time duration. A higher throughput indicates that the
GraphQL API has an enhanced capability to efficiently
handle a greater number of client requests.

2) Response time: Response time measures the duration
taken by the GraphQL API to process a client request
and deliver the corresponding response back to the
client. It is a critical metric that reflects the system’s
responsiveness and directly impacts user experience.
Response time is typically expressed in milliseconds
(ms). To evaluate the response time, the GraphQL
Client sends multiple requests representing different
test scenarios to the GraphQL API. The response
time is recorded as the time taken from when each
request is sent until the complete response is
received. By analyzing the response times for each
test scenario and architecture model, we can gauge
the impact of object deduplication on improving

response time.
3) Parsing time: Parsing time refers to the time required

to parse the raw API response data into structured
objects on the client-side. As GraphQL API responses
are often in JSON format, parsing data can be a
time-consuming process, particularly for large and
complex responses. To measure parsing time, the
client-side application records the time taken to
convert the received JSON data into objects, thus
preparing it for further processing and rendering. By
comparing the parsing times across different
architecture models, including Untreated Data, HTTP
Compression, and Object Deduplication, the influence
that object deduplication has on parsing efficiency
can be determined.

III. RESULTS AND DISCUSSION

The performance evaluation aimed to compare the
effectiveness of three different architectures: Architecture 1
(no treatment), Architecture 2 (HTTP compression), and
Architecture 3 (object deduplication), in terms of their
abilities to improve GraphQL API performance. The
evaluation encompassed throughput, response size, response
time, and parsing time comparisons. Testing was conducted
while varying the page sizes among 10, 50, and 100 pages
and using a GraphQL client to send multiple requests to
the GraphQL server during a 5-minute testing period.
The performance evaluation results are presented in
Table 1, and the comparison of the response data from the
three architectures is illustrated in Fig. 3.

The response data reflects the impact of three distinct
architectural approaches—object deduplication, HTTP
compression, and no treatment—on response sizes across
varying page sizes. As can be seen in Fig. 3, object
deduplication leads to a notable reduction in response
sizes compared to no treatment, which is particularly
evident with smaller page sizes. For instance, at a page
size of 10, object deduplication results in a response size
of 1796 bytes whereas no treatment yields a considerably
larger response size of 8,978. This trend persists as the
page size increases, with object deduplication consistently
outperforming no treatment. Interestingly, HTTP compression
also significantly reduces response sizes, albeit not quite
to the extent of the reductions achieved by object
deduplication. For example, at a page size of 10, HTTP
compression results in a response size of 952 bytes. The
effectiveness of both object deduplication and HTTP
compression is particularly pronounced at smaller page
sizes, thus suggesting their potential utility in optimizing
data transfer efficiency. The results underscore the
efficiency gains achieved by employing data optimization
techniques. Object deduplication and HTTP compression
promise to reduce response sizes and enhance overall
system performance.

Performance Optimization of GraphQL API Through Advanced Object Deduplication Techniques: A Comprehensive Study

Budi Santosa et al. 201 http://jcse.kiise.org

A. Throughput Testing Results

Throughput testing measures the number of successful

requests the server completes per unit of time. A higher
throughput indicates better performance, as it reflects that
the server successfully processed more client requests.
Based on the research results presented in Table 1, the
performance improvement or decline of Architecture 3
(object deduplication) was calculated and compared to
those of Architecture 1 (no treatment) and Architecture 2
(HTTP compression), with the results presented in
Table 2. The throughput testing results are visualized in
diagram form in Fig. 4, which displays a comparative
view of throughput performance among all architectures.

Throughput testing measured the number of successful
requests the server completed per unit of time, thus
reflecting the system’s processing capacity. The results
showed that all three architectures demonstrated similar
throughput performance during testing with 10 and 50
pages, achieving a throughput of 1 request per second for
each scenario. However, during testing with 100 pages,
Architecture 1 (no treatment) showed a slight decline in
throughput compared to Architecture 3 (object deduplication),
resulting in a throughput of approximately 0.997 RPS.

The slight decline in throughput for Architecture 1 (no
treatment) during testing with 100 pages can be attributed

Table 1. Comparative analysis of performance testing: throughput, response size, response time, and parsing time

Model
Page

size

Average

Response size

(byte)

Response time

(ms)

Parsing time

(ms)

Throughput

(req/s)

Architecture 1 (no treatment) 10 8,978 450.39 0.17 1

50 43,335 720.88 0.71 1

100 64,566 866.70 1.04 0.9967

Architecture 2 (HTTP compression) 10 952 408.29 0.16 1

50 1,232 442.98 0.55 1

100 1,400 437.53 0.81 1

Architecture 3 (object deduplication) 10 1,796 405.63 0.09 1

50 5,031 443.53 0.18 1

100 7,110 443.96 0.25 1

Fig. 3. Comprehensive comparison of response data among
three architectures: Architecture 1 (no treatment), Architecture 2
(HTTP compression), and Architecture 3 (object deduplication).

Table 2. Throughput performance comparison

Model Comparison architecture model Page size
Throughput (%)

Increase Decrease

Architecture 3 (object deduplication) Architecture 1 (no treatment) 10 0 0

50 0 0

100 0.33 0

Architecture 3 (object deduplication) Architecture 2 (HTTP compression) 10 0 0

50 0 0

100 0 0

Journal of Computing Science and Engineering, Vol. 17, No. 4, December 2023, pp. 195-206

http://dx.doi.org/10.5626/JCSE.2023.17.4.195 202 Budi Santosa et al.

to the increase in the size of the data that needed to be
sent by the server for 100 pages. This resulted in longer
processing times and reduced the number of successful
requests, ultimately affecting the throughput for Architecture
1. On the other hand, Architecture 3 (object deduplication)
showed no significant difference in throughput compared
to Architecture 2 (HTTP compression) in all three testing
scenarios. This similarity is attributed to the fact that the
data compression in Architecture 2 helped maintain a
similar data size to that of Architecture 3, thus ensuring
comparable performance. Based on the findings from Fig. 4,
the experimental results indicate that object deduplication
and HTTP compression exhibit similar outcomes. In the
graph displaying testing results, the data points for object
deduplication and HTTP compression, which are respectively
represented by red and blue lines, can be seen to overlap.

B. Response Time Testing Results

Response time testing measured the time taken for a
client request to be processed and the response to be
received from the server. A lower response time indicates
better performance, as it means that the client receives
the response faster. The results in Table 3 were used to
calculate the percentage increase or decrease in the
response time of Architecture 3 (object deduplication)
compared to those in Architecture 1 (no treatment) and
Architecture 2 (HTTP compression). The comparison results

are presented in Table 3, and a visual representation is
shown in Fig. 5.

The response time testing revealed that Architecture 1
(no treatment) exhibited the worst performance among all
three architectures for all three testing scenarios. This can
be attributed to the larger data size sent by the server to
the client in this architecture, thus resulting in a longer
time for the client to receive the response. On the other
hand, Architecture 2 (HTTP compression) showed a
comparable response time to Architecture 3 (object
deduplication) for testing with 10 and 50 pages, which
was again attributed to data compression reducing the
data size transmitted over the network in Architecture 2.
However, during testing with 100 HTTP compression
showed a slight increase in response time compared to
Architecture 3 (object deduplication).

C. Parsing Time Testing Results

Parsing time testing measured the time required to
parse the API response data into objects on the client
side. A lower parsing time indicates better performance,
as it means that the client can process the data more
efficiently. The results from Table 1 were used to calculate
the percentage increase or decrease in parsing time of
Architecture 3 (object deduplication), which were then
compared to those of Architecture 1 (no treatment) and
Architecture 2 (HTTP compression). The comparison

Fig. 4. Throughput testing results.

Table 3. Response time performance comparison

Model Comparison architecture model Page size
Response time (%)

Increase Decrease

Architecture 3 (object deduplication) Architecture 1 (no treatment) 10 11.04 0

50 62.53 0

100 95.22 0

Architecture 3 (object deduplication) Architecture 2 (HTTP compression) 10 0.66 0

50 0 0.12

100 0 1.45

Fig. 5. Response time testing results.

Performance Optimization of GraphQL API Through Advanced Object Deduplication Techniques: A Comprehensive Study

Budi Santosa et al. 203 http://jcse.kiise.org

results are presented in Table 4 and visualized in Fig. 6.

D. Discussion of Findings

The research outlined in this paper has involved
conducting a meticulous analysis of the performance
enhancements in GraphQL APIs achieved through the
strategic implementation of object deduplication. Object
deduplication, which is an essential technique integrated
into the GraphQL response mechanism, significantly reduces
the exchanged data size between servers and clients.
Rigorous testing against untreated and HTTP-compressed
data validates the efficacy of object deduplication, as it is
shown to achieve marked improvements across multiple
performance metrics. The application of the object
deduplication method leads to noteworthy gains in
throughput, with a 0.33% increase observed in a 100-
page test, thus highlighting its efficiency in processing
client requests and enhancing overall system throughput.

Further, the analysis of response time reveals substantial
enhancements of 11.04% (10 pages), 62.53% (50 pages),
and an impressive 95.22% (100 pages), thus signifying
the effectiveness of object deduplication in expediting the
processing of client requests and improving API responsi-
veness. The results of the evaluation of parsing time
efficiency further underscore the benefits of object
deduplication, as they demonstrate significant increases
of 75.78% (10 pages), 276.38% (50 pages), and an even

more exceptional 309.35% (100 pages). Comparative analysis
against HTTP compression validates the superiority of
object deduplication in parsing time efficiency, as it
consistently outperforms HTTP compression by 64.61%
(10 pages), 193.76% (50 pages), and 218.07% (100 pages).
While the throughput performance remains comparable,
minor differences in response time indicate nuanced
considerations between object deduplication and HTTP
compression based on specific performance requirements.
Overall, this research contributes empirical evidence of the
pivotal role played by object deduplication in optimizing
GraphQL APIs, thus substantiating its practical significance
and filling in critical research gaps.

The results of parsing time testing demonstrated that
Architecture 3 (object deduplication) outperformed the
other architectures in all three testing scenarios. This can
be attributed to its deduplication technique, which resulted
in a smaller data size for parsing. By contrast, Architecture
1 (no treatment) required the client to parse the entire
response data, leading to a considerably longer parsing
time. While Architecture 2 (HTTP compression) compressed
the data before sending it to the client, the parsing time in
that architecture was not significantly different from that
of Architecture 3 (object deduplication), indicating that
the need to decompress the data before parsing did not
have a major effect in Architecture 2. The results of the
performance evaluation indicated that Architecture 3
(object deduplication) offers significant benefits in each
of response time and parsing time compared to both
Architecture 1 (no treatment) and Architecture 2 (HTTP
compression). By deduplicating data on the server side,
Architecture 3 reduces the response size, which consequently
reduces the time required for processing and parsing. As
a result, it outperforms the other architectures, particularly
in scenarios where data deduplication can be applied
effectively.

IV. CONCLUSION

This research aimed to explore avenues for enhancing
GraphQL API performance by investigating three distinct

Table 4. Parsing time performance comparison

Model Comparison architecture model Page size
Parsing time (%)

Increase Decrease

Architecture 3 (object deduplication) Architecture 1 (no treatment) 10 75.78 0

50 276.38 0

100 309.35 0

Architecture 3 (object deduplication) Architecture 2 (HTTP compression) 10 64.61 0

50 193.76 0

100 218.07 0

Fig. 6. Parsing time testing results.

Journal of Computing Science and Engineering, Vol. 17, No. 4, December 2023, pp. 195-206

http://dx.doi.org/10.5626/JCSE.2023.17.4.195 204 Budi Santosa et al.

architectural approaches: Architecture 1 (no treatment),
Architecture 2 (HTTP compression), and Architecture 3
(object deduplication). By evaluating key performance
metrics—including throughput, response size, response
time, and parsing time—across varying page sizes (10,
50, and 100 pages), this study provides valuable insights.
The findings underscore the significance of architectural
choices in influencing GraphQL API performance.
Among the architectures studied, Architecture 3 (object
deduplication) emerged as a standout performer, particularly
excelling in response time and parsing time. Leveraging
the benefits of object deduplication, it effectively mitigated
data redundancy, ultimately resulting in streamlined parsing
processes and quicker response times. Architecture 2
(HTTP compression) demonstrated competitive throughput
and response time metrics, although it incurred slightly
extended parsing times due to the need for data decompression
pre-parsing. Conversely, Architecture 1 (no treatment) yielded
the poorest results, particularly in terms of response time
and parsing time, which were attributed to its untreated
nature, leading to inflated data sizes and culminating in
slower responses as well as extended parsing times.

The study’s implications extend to future research
possibilities, including studies exploring combined architectural
techniques, analyses of diverse data structures and request
patterns, real-world scenario testing, and scalability
assessment. From a practical perspective, developers and
system architects can leverage these conclusions to make
informed decisions in attempting to optimize GraphQL
API performance. Through the judicious use of techniques
like object deduplication and HTTP compression, tailored
architectural choices, and comprehensive testing, GraphQL
APIs can be designed to deliver efficient responsiveness
and an enhanced user experience.

ACKNOWLEDGMENTS

The authors express their gratitude to UPN “Veteran”
Yogyakarta, especially the Department of Information
Engineering and LPPM, who assisted in preparing this
article for publication. We also thank the Faculty of
Computer Science, AGH University of Krakow, who
supported this publication.

Conflict of Interest(COI)

The authors have declared that no competing interests
exist.

REFERENCES

1. E. Wittern, A. Cha, J. C. Davis, G. Baudart, and L. Mandel,

“An empirical study of GraphQL schemas,” in Service-

Oriented Computing. Cham, Switzerland: Springer, 2019, pp.

3-19. https://doi.org/10.1007/978-3-030-33702-5_1

2. A. Lawi, B. L. Panggabean, and T. Yoshida, “Evaluating GraphQL

and REST API services performance in a massive and intensive

accessible information system,” Computers, vol. 10, no. 11, article

no. 138, 2021. https://doi.org/10.3390/computers10110138

3. R. Khan and A. Noor Mian, “Sustainable IoT sensing

applications development through GraphQL-based abstraction

layer,” Electronics, vol. 9, no. 4, article no. 564, 2020.

https://doi.org/10.3390/electronics9040564

4. T. Diaz, F. Olmedo, and E. Tanter, “A mechanized

formalization of GraphQL,” in Proceedings of the 9th ACM

SIGPLAN International Conference on Certified Programs

and Proofs, New Orleans, LA, USA, 2020, pp. 201-214.

https://doi.org/10.1145/3372885.3373822

5. M. Obert and V. Buzek, “Industry trends impacting SAP UI

technologies,” in SAP UI Frameworks for Enterprise

Developers. Berkeley, CA: Apress, 2023, pp. 237-268.

https://doi.org/10.1007/978-1-4842-9535-9_6

6. G. Sagar and V. Syrovatskyi, “System design: architecting

robust, scalable, and modular applications,” in Technical

Building Blocks. Berkeley, CA: Apress, 2022, pp. 105-168.

https://doi.org/10.1007/978-1-4842-8658-6_3

7. W. Shin, J. Park, T. Woo, Y. Cho, K. Oh, and H. Song, “e-clip:

large-scale vision-language representation learning in e-commerce,”

in Proceedings of the 31st ACM International Conference on

Information & Knowledge Management, Atlanta, GA, USA,

2022, pp. 3484-3494. https://doi.org/10.1145/3511808.3557067

8. J. Ni, X. Lin, and X. S. Shen, “Toward edge-assisted

Internet of Things: from security and efficiency pers-

pectives,” IEEE Network, vol. 33, no. 2, pp. 50-57, 2019.

https://doi.org/10.1109/MNET.2019.1800229

9. A. R. Breje, R. Gyorodi, C. Gyorodi, D. Zmaranda, and G.

Pecherle, “Comparative study of data sending methods for

XML and JSON models,” International Journal of Advanced

Computer Science and Applications, vol. 9, no. 12, pp. 198-

204, 2018. https://doi.org/10.14569/ijacsa.2018.091229

10. T. Everts, Time Is Money: The Business Value of Web

Performance. Sebastopol, CA: O'Reilly Media Inc., 2016.

11. O. Hartig and J. Perez, “Semantics and complexity of

GraphQL,” in Proceedings of the 2018 World Wide

Web Conference, Lyon, France, 2018, pp. 1155-1164.

https://doi.org/10.1145/3178876.3186014

12. S. Cheng and O. Hartig, “LinGBM: a performance benchmark

for approaches to build GraphQL servers,” in Web Information

Systems Engineering – WISE 2022. Cham, Switzerland: Springer,

2022, pp. 209-224. https://doi.org/10.1007/978-3-031-20891-1_16

13. J. G. Ogboada, V. I. E. Anireh, and D. Matthias, “A model

for optimizing the runtime of GraphQL queries,” International

Journal of Innovative Information Systems & Technology

Research, vol. 9, no. 3, pp. 11-39, 2021.

14. Y. Sakamoto, S. Matsumoto, S. Tokunaga, S. Saiki, and M.

Nakamura, “Empirical study on effects of script minification and

HTTP compression for traffic reduction,” in Proceedings of 2015

3rd International Conference on Digital Information, Networking,

and Wireless Communications (DINWC), Moscow, Russia, 2015,

pp. 127-132. https://doi.org/10.1109/DINWC.2015.7054230

15. Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein, and

D. Kossmann, “Mison: a fast JSON parser for data analytics,”

Performance Optimization of GraphQL API Through Advanced Object Deduplication Techniques: A Comprehensive Study

Budi Santosa et al. 205 http://jcse.kiise.org

Proceedings of the VLDB Endowment, vol. 10, no. 10, pp.

1118-1129, 2017. https://doi.org/10.14778/3115404.3115416

16. W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua,

M. Fu, Y. Zhang, and Y. Zhou, “A comprehensive study of

the past, present, and future of data deduplication,”

Proceedings of the IEEE, vol. 104, no. 9, pp. 1681-1710,

2016. https://doi.org/10.1109/JPROC.2016.2571298

17. P. A. D. S. N. Wijesekara and S. Gunawardena, “A comprehensive

survey on knowledge-defined networking,” Telecom, vol. 4,

no. 3, pp. 477-596, 2023. https://doi.org/10.3390/telecom4030025

18. Z. Zhao, “Build a live news application with Next.js 13,”

M.S. thesis, Metropolia University of Applied Sciences, Helsinki,

Finland, 2023. https://www.theseus.fi/handle/10024/793229

19. E. Zeydan and J. Mangues-Bafalluy, “Recent advances in data

engineering for networking,” IEEE Access, vol. 10, pp. 34449-

34496, 2022. https://doi.org/10.1109/ACCESS.2022.3162863

20. C. Wang, L. Marini, C. L. Chin, N. Vance, C. Donelson,

P. Meunier, and J. T. Yun, “Social media intelligence

and learning environment: an open source framework for

social media data collection, analysis and curation,” in

Proceedings of 2019 15th International Conference on

eScience (eScience), San Diego, CA, USA, 2019, pp. 252-

261. https://doi.org/10.1109/eScience.2019.00035

21. J. Ohme, T. Araujo, L. Boeschoten, D. Freelon, N. Ram, B.

B. Reeves, and T. N. Robinson, “Digital trace data collection

for social media effects research: APIs, data donation, and

(screen) tracking,” Communication Methods and Measures,

2023. https://doi.org/10.1080/19312458.2023.2181319

22. G. Brito and M. T. Valente, “REST vs GraphQL: a controlled

experiment,” in Proceedings of 2020 IEEE International

Conference on Software Architecture (ICSA), Salvador, Brazil,

2020, pp. 81-91. https://doi.org/10.1109/ICSA47634.2020.00016

23. E. Frigard, “GraphQL vs. REST: a comparison of runtime

performance,” M.S. thesis, Linnaeus University, Vaxjo, Sweden,

2022.

24. M. V. De F. Borges, L. S. Rocha, and P. H. M. Maia,

“MicroGraphQL: a unified communication approach for

systems of systems using microservices and GraphQL,” in

Proceedings of the 10th IEEE/ACM International Workshop

on Software Engineering for Systems-of-Systems and

Software Ecosystems, Pittsburgh, PA, USA, 2022, pp. 33-40.

https://doi.org/10.1145/3528229.3529381

25. O. Debauche, S. Mahmoudi, P. Manneback, and F. Lebeau,

“Cloud and distributed architectures for data management in

Agriculture 4.0: review and future trends,” Journal of King Saud

University-Computer and Information Sciences, vol. 34, no. 9,

pp. 7494-7514, 2022. https://doi.org/10.1016/j.jksuci.2021.09.015

26. Q. He, Z. Li, and X. Zhang, “Data deduplication techniques,”

in Proceedings of 2010 International Conference on Future

Information Technology and Management Engineering,

Changzhou, China, 2010, pp. 430-433. https://doi.org/10.1109/

FITME.2010.5656539

27. S. Bansal and P. C. Sharma, “Classification criteria for

data deduplication methods,” in Data Deduplication

Approaches. London, UK: Academic Press, 2021, pp. 69-96.

https://doi.org/10.1016/B978-0-12-823395-5.00011-2

28. H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux, H.

W. Lie, and C. Lilley, “Network performance effects of HTTP/

1.1, CSS1, and PNG,” in Proceedings of the ACM SIGCOMM'97

conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, Cannes, France,

1997, pp. 155-166. https://doi.org/10.1145/263105.263157

29. D. Bermbach and E. Wittern, “Benchmarking web API quality-

revisited,” Journal of Web Engineering, vol. 19, no. 5-6, pp.

603-646, 2020. https://doi.org/10.13052/jwe1540-9589.19563

30. M. I. Ladan, “Web services metrics: a survey and a

classification,” Journal of Communication and Computer,

vol. 9, no. 7, pp. 824-829, 2012.

Journal of Computing Science and Engineering, Vol. 17, No. 4, December 2023, pp. 195-206

http://dx.doi.org/10.5626/JCSE.2023.17.4.195 206 Budi Santosa et al.

Budi Santosa

Budi Santosa received master’s degree in software engineering from Informatics Department, Institute of
Technology Bandung, Indonesia in 2001. He joined Department of Informatics, Faculty of Industrial
Engineering, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia in May 2003. His research
interests are in software engineering, geographic information system, and geo-informatics.

Awang Hendrianto Pratomo http://orcid.org/0000-0002-9760-0285

Awang Hendrianto Pratomo received bachelor program at Department Informatics Engineering (S.T),
Idonesian Islamic University, and master program at Information Technology (M.T), Department of Electrical
Engineering, Gadjah Mada University. He received Ph.D. in System Science and Management, Faculty of
Information Science and Technology, from Universiti Kebangsaan Malaysia. His research interests include
robotic, artificial intelligent systems, and software engineering. A lot of papers, articles, and tutorials have
been published in many conference proceedings, scientific journal, magazine, and newspaper, in national
and international level. Current research on development autonomous mobile robot specially on robotics
soccer, vision system in robotics soccer, firefighting robots, and industrial robotics systems.

Riski Midi Wardana

Riski Midi Wardana received a bachelor’s degree in Department of Informatics from Universitas Pembangunan
Nasional “Veteran” Yogyakarta, Indonesia, in 2023. He is currently working as a senior software engineer at
Grab. His research interests include algorithms, software engineering, and cloud computing.

Shoffan Saifullah https://orcid.org/0000-0001-6799-3834

Shoffan Saifullah received a bachelor’s degree in informatics engineering from Universitas Teknologi
Yogyakarta, Indonesia, in 2015 and a master’s degree in computer science from Universitas Ahmad Dahlan,
Yogyakarta, Indonesia, in 2018. He is a lecturer at Universitas Pembangunan Nasional "Veteran” Yogyakarta,
Indonesia. His research interests include image processing, computer vision, and artificial intelligence. He is
currently a Ph.D. student at AGH University of Krakow, Poland, with a concentration in the field of artificial
intelligence (bio-inspired algorithms), image processing, and medical image analysis.

Novrido Charibaldi https://orchid.org/0000-0002-7709-6181

Novrido Charibaldi was born in Palembang, Indonesia. He received his S.Kom. (Bachelor of Informatics
Engineering) from Sekolah Tinggi Sains dan Teknologi Indonesia (ST.INTEN), Bandung, Indonesia, in 1994,
and his M.Kom. (Master of Computer Science) from Universitas Gadjah Mada, Yogyakarta, Indonesia, in 2001.
He received doctoral degree in Computer Science from Universitas Gadjah Mada, Yogyakarta, Indonesia, in
2019. His main research interests are in feature extraction, machine learning, and pattern recognition for
odor detection.

