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Abstract
Autism spectrum disorder profoundly affects early communication and physical skills, emphasizing the need for effec-

tive interventions. Approximately one in a hundred children worldwide is affected by autism. The convolutional neural

network (CNN), especially VGG19, is the most accurate tool for detecting autism using a facial image dataset. Notably,

there are many configurations that can be applied to produce the best accuracy. This study evaluated how facial images

can be used to classify autism using VGG19-based deep learning models with different configurations, such as long-

short term memory (LSTM) and Dropout layers; adaptive moment estimation (Adam), root mean square propagation

(RMSprop), and stochastic gradient descent (SGD) optimizers; and a cosine annealing learning rate scheduler. Results

highlighted substantial performance variations across the configurations, with RMSprop+LSTM+Dropout achieving the

highest accuracy (75.85%), average precision, non-autistic precision, and average F1-score. Notably, Adam showed the

best performance in non-autistic precision (83.09%) and autistic F1-score (76.74%), while Adam+LSTM+Dropout

demonstrated superior autistic precision (85.16%) and non-autistic recall (90.82%). Moreover, SGD+Dropout achieved

the highest autistic recall (91.84%). Selecting an appropriate configuration is crucial, and further research can help opti-

mize the architecture, activation functions, and preprocessing for enhanced accuracy. High-accuracy models hold prom-

ise for aiding autism detection and communication and physical skill development.
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I. INTRODUCTION

Autism spectrum disorder, or autism, is a neurological

disorder that has been shown to have a significant impact

on children’s communication and interaction abilities,

such as eye responsiveness and social interaction, at an

early age [1]. Individuals with 10-item Autism-Spectrum

Quotient (AQ10) show less participation in physical

activities compared to those with typical development

[2], which can result in serious consequences, such as

depression and suicidal thoughts [3]. Therefore, it is

crucial to provide effective therapy and assistance to

individuals who have autism.

Zeidan et al. [4] reported that around one in a hundred

children worldwide is affected by autism, with a male-to-

female ratio of 21:5. The prevalence of autism was

systematically examined and factors contributing to

variability in estimates were considered. Changes in

prevalence over time and variations within sociodemographic

groups were noted, reflecting the evolving definition of
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autism and differences in the methodology and contexts

of prevalence studies.

In the development of facial recognition methods using

images and convolutional neural networks (CNN),

especially those developed by the Keras library, such as

the Visual Geometry Group with nineteen layers (VGG19),

preprocessing stages such as resolution standardization,

color or feature extraction, and separation into training

and testing data are carried out. This approach has been

proven to have higher accuracy than other machine

learning methods [5, 6]. Researchers have also improved

the performance of this model by using transfer learning

methods. Ghazal et al. [7] reported a satisfactory accuracy

rate of 87.7% and Sadik et al. [8] demonstrated a 6%

improvement when employing transfer learning.

The long-short term memory (LSTM) neural network,

a type of recurrent neural network (RNN), is well-known

for its ability to analyze sequences of data in different

fields. It’s used to detect arrhythmias [9], transcribe

speech into text [10], and identify coronavirus disease

2019 from X-ray images [11]. However, its application to

directly identify autism through facial recognition has

been limited, as observed in recent research by Saranya

and Anandan [12].

In the context of deep learning, adding dropout layers

as a regularization technique has consistently been shown

to improve training and validation performance, especially

when working with difficult datasets such as that of the

Canadian Institute for Advanced Research with ten and

one hundred different classes (CIFAR-10 and CIFAR-

100). For example, Inoue [13] significantly reduced error

rates by implementing dropout layers in their research.

These findings were similar to those of Lee and Lee [14],

who found that using a dropout layer with a probability of

0.05 in the VGG19 architecture cut the error rate by

0.17% for CIFAR-10 and 0.24% for CIFAR-100.

Moreover, it’s crucial to note the plethora of algorithms

available in deep learning, such as adaptive moment esti-

mation (Adam), root mean square propagation (RMSprop),

and stochastic gradient descent (SGD) [15]. The choice

of learning rate scheduling, like the cosine annealing

approach, can significantly impact model performance.

Improper learning rates, whether too high or too low, can

hinder the convergence process [16].

In this study, the VGG19-based architecture for transfer

learning uses LSTM and dropout layers; Adam, RMSprop,

and SGD optimizer algorithms; and cosine annealing-

based learning rate scheduling. The main goal was to

explore the performance of this architecture using various

configurations in recognizing autism and non-autism

classes in facial image datasets.

This paper is divided into several sections. The next

section will provide an overview of the Kaggle dataset,

introduce the proposed modeling framework, and explain

the evaluation criteria used. The third section presents

experimental results, performs analytical comparisons

against deep learning frameworks, and highlights the

advantages of this approach. The final section serves as a

conclusion and suggests future research directions.

II. METHODOLOGY

The dataset was clustered using the splitting technique.

The procedure for classifying autism using facial images

is illustrated in Fig. 1.

● Dataset preparation: The process begins with collecting

and organizing the dataset containing facial images.
● Split, resize, and extract the dataset: The dataset is

divided into training and testing data. The images are

resized to a standard format and are preprocessed.
● Training data and testing data: The split dataset is

divided into two sets: training the model and

evaluating its performance.
● Modifying layers, compilers, and learning rate:

Adjustments are made to the layers of the VGG19

model, compilation settings are defined, and a learning

rate schedule is established.
● VGG19 model preparation: The VGG19 model is

prepared for training, considering the modifications

and settings made in the previous step.

Fig. 1. Scenarios in autism classification with facial images.
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● Trained VGG19 model: The model is trained on the

training data to learn patterns and features of the

facial images.
● Classifying autism or non-autism: The trained model

is used to classify facial images into the autistic or

non-autistic category.
● Calculating performance metrics from the confusion

matrix: The model’s performance is assessed by

calculating various metrics, such as accuracy, precision,

recall, and F1-score, based on the confusion matrix.

A. Autism Image Dataset

According to Aldridge et al. [17], autistic patients have

unique facial expressions or characteristics. The charac-

teristics that distinguish autistic patients are the shape of

the forehead, eyes, philtrum (indentation between the

nose and lips), and a wider mouth. This makes the faces

of autistic patients shorter than those of other people.

Visual examples of autistic and normal patients are shown

in Fig. 2.

The dataset utilized in this study consisted of 2,940

facial images of children aged 2–14 years old, sourced

from various online platforms and available on Kaggle

(https://www.kaggle.com/datasets/cihan063/autism-image-

data). These images were categorized into autistic and

non-autistic facial images, each containing 1,470 images.

Subsequently, the dataset was divided into 80% training

and 20% testing data. Within the training data, one of

every five segments, referred to as “folds,” was utilized

as validation data, as demonstrated in Fig. 3. Following

this, all data segments underwent processing using the

OpenCV library to adjust their resolution to 224×224

pixels, resulting in color extraction in the red, green, and

blue channels. Each pixel was assigned a value ranging

from 0 to 255.

B. VGG19 Model and Its Configurations

In this study, the VGG19 model was used to predict

whether facial images belonged to autistic or non-autistic

people by using weights from ImageNet without changing

them to maintain accuracy and loss values [18, 19]. Com-

prehensive visualization of the fundamental architecture

can be seen in Fig. 4.

The model was modified by substitution after the fifth

MaxPooling2D layer, situated in the fifth green box, with

a Reshape and LSTM layer. The LSTM utilized a hyper-

bolic tangent activation function [20, 21], subsequently

undergoing normalization and flattening. After the LSTM

layer, a dense layer with a rectified linear unit (ReLU)

activation function was added. This activation function

has been shown to work well and consistently across

different neural networks [22].

A dropout layer, positioned after the dense layer,

randomly deactivated a specific number of neurons with a

designated probability to mitigate the risk of overfitting.

Finally, a single classification output was made using a

sigmoid activation function, which worked better than the

softmax function, usually used for multiclass classification

[23].

After the model architecture was built and trained on

the training data, the binary cross-entropy function was

used to determine the extent of loss [24]. Three optimizers,

for optimizing the model, namely Adam, RMSprop, and

SGD, were tested [15]. Additionally, a cosine annealing

learning rate scheduler was applied to all configurations.

The equation used for this scheduling was as follows:

Fig. 3. Representation of dataset division into training (blue),
validation (red), and testing (green) set across five-folds, with
numbers denoting the respective validation fold.

Fig. 2. Example facial images depicting autism (a) and non-
autism (b).

Fig. 4. VGG19’s full model architecture.
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, (1)

where  represents the current learning rate value since

the last restart,  denotes the minimum achievable

learning rate,  is initially set as the learning

rate value, t denotes the number of epochs elapsed since

the last restart, and T = 10 signifies the maximum number

of epochs for each fold. This learning rate was applied in

five cycles for all configurations, corresponding to the

number of folds, as illustrated in Fig. 5.

Twelve configurations were utilized in this study, each

representing a different combination of optimizers and

adding different layers. A comprehensive exploration of

how the VGG19 model could be employed to classify

autism was done through the following configurations: 

1. Adam optimizer with no layer addition. 

2. Adam optimizer with LSTM layer addition. 

3. Adam optimizer with Dropout layer addition.

4. Adam optimizer with LSTM and Dropout layer

addition.

5. RMSprop optimizer with no layer addition. 

6. RMSprop optimizer with LSTM layer addition.

7. RMSprop optimizer with Dropout layer addition. 

8. RMSprop optimizer with LSTM and Dropout layer

addition. 

9. SGD optimizer with no layer addition. 

10. SGD optimizer with LSTM layer addition. 

11. SGD optimizer with Dropout layer addition. 

12. SGD optimizer with LSTM and Dropout layer

addition.

C. Performance Metrics

The calculation of performance metrics was done using

the confusion matrix and is shown in Fig. 6.

The confusion matrix is a tool used to assess the

performance of a model that classifies individuals as

either autistic or non-autistic based on certain criteria,

such as facial features and it relates to the context of

autism detection in the following ways:

● True positive (TP): This refers to the number of cases

where the model correctly predicts an individual as

autistic, and indeed, that person is autistic. In autism

detection, a TP represents a successful identification

of an autistic individual. 
● True negative (TN): This indicates the number of

cases where the model correctly predicts an individual

as autistic, and that person is indeed non-autistic. In

this context, a TN means the model accurately identifies

someone as not having autism. 
● False positive (FP): This describes the instances where

the model incorrectly predicts an individual as autistic,

but that person is non-autistic. In the context of

autism detection, an FP means the model mistakenly

identified a non-autistic individual as autistic. 
● False negative (FN): This refers to the cases where

the model incorrectly predicts an individual as non-

autistic, but that person is autistic. In the context of

autism detection, an FN means the model failed to

identify someone with autism.

After obtaining information about the confusion matrix

for each configuration, various evaluation metrics are

used to assess the performance of the VGG19 model.

These metrics include accuracy, precision, recall, and F1-

score [25]. These metrics were calculated using the

equation below:

, (2)

, (3)

t min

1

2
--- max min–  1 cos

t

T
--- 
 + 

 +=

t

min 10
5

=

max 10
3–

=

Accuracy
TP TN+

TP FP FN TN+ + +
--------------------------------------------=

Precision
TP

TP FP+
-------------------=

Fig. 5. Cosine annealing learning rate scheduler for all configurations. Fig. 6. Confusion matrix for classifying autistic and non-autistic
facial images.
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, (4)

. (5)

III. RESULTS AND DISCUSSION

A. Training and Validation

The training, validating, and testing of the VGG19 model

for all configurations on Kaggle’s graphics processing

unit (GPU) took approximately 30 minutes. Five-fold

cross-validation, with ten epochs per fold, was employed

for each configuration. The training and validation outcomes

are illustrated in Figs. 7 and 8.

Fig. 7 illustrates the accuracy distribution during training

and validation across all model configurations. The median

accuracy reflects the model’s predictive performance,

while the accuracy range indicates the consistency of

these predictions. Results reveal that the Adam+LSTM

configuration achieved the highest median training

accuracy, while SGD+LSTM had the lowest median.

During validation, most configurations exhibited higher

medians, wider ranges, and the presence of outliers below

the range threshold, indicating increased bias and

variability compared to the training phase. Significant

variation in the validation accuracy range was observed,

with RMSprop+LSTM+Dropout having the widest range

and SGD+LSTM+Dropout having the narrowest range.

Fig. 8 shows how the loss values changed during training

and validation across all the configurations, excluding

those that were outliers. This is especially true during the

first epoch when the model was still familiarizing with

the dataset so that it would be easier to analyze. The

Adam+LSTM configuration had the lowest median training

loss, while SGD+Dropout had the lowest median. In the

validation phase, median fluctuations and wider loss

ranges were observed across all configurations compared

to the training phase. This suggests that the relationship

between accuracy and loss can fluctuate, with high

accuracy not always corresponding to low loss. RMSprop

+LSTM+Dropout had the widest validation loss range,

SGD+LSTM+Dropout had the lowest median validation

loss range, and SGD+LSTM had the narrowest validation

loss range.

B. Testing

A rounding technique was used to discretize test data

results, requiring a consistent prediction from at least

three out of five folds, regardless of the original class. An

Recall
TP

TP FN+
-------------------=

F1 score–
2 Precision Recall

Precision Recall+
----------------------------------------------------=

Fig. 7. Boxplots illustrating statistical descriptions of training and validation performance based on accuracy for each configuration.
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example is shown in Fig. 9.

As illustrated in Fig. 10, the RMSprop+LSTM+Dropout

configuration achieved the highest accuracy (75.85%)

among all the configurations. It accurately predicted 446

facial images in the two classes, with 57 FPs and 85 FNs.

In contrast, the SGD+LSTM+Dropout configuration

achieved a lower accuracy (54.08%), accurately predicting

318 facial images in the two classes with 18 FPs and 182

FNs (See Table 1 for comprehensive metric results across

all configurations). The accuracy in the RMSprop+

LSTM+Dropout configuration is shown consistent with

the result in [26].

As shown in Table 1, the RMSprop+LSTM+Dropout

configuration exhibited the best average precision, non-

autistic precision, and F1-score, at 76.09%, 76.95%, and

75.80%, respectively. Additionally, the Adam configuration

achieved the highest F1-scores for non-autistic and

autistic precision, at 83.09% and 76.74%, respectively.

Furthermore, the Adam+LSTM+Dropout configuration

demonstrated the best autistic precision (85.16%) and

non-autistic recall (90.82%). Lastly, the SGD+Dropout

configuration achieved the highest autistic recall (91.84%).

It is important to note that each configuration possesses

unique characteristics and capabilities that contributed to

these results. These findings emphasize the importance of

selecting the appropriate configuration based on specific

classification requirements and objectives.

Based on the results of this study, there are opportunities

for further research and development to improve model

performance. Some avenues for exploration include:

● Combining publicly available datasets with in-house

datasets;
● Extracting additional information from images, such

as color, facial landmarks, or attributes like gender,

age, race, and emotion, using OpenCV and DeepFace

libraries [27];
● Exploring modifications to CNN model architectures

and compilers, whether using the Keras library custom

Fig. 8. Boxplots demonstrating statistical descriptions of training and validation performance based on loss, excluding outliers.

Fig. 9. Instances where facial images of individuals with autism
were misclassified as non-autistic across five folds.
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designs or
● Searching for optimal parameters with GridSearchCV.

IV. CONCLUSION

This study evaluated VGG19-based deep learning models

for autism classification using facial images. Twelve

configurations were assessed, each combining LSTM and

Dropout layers with Adam, RMSprop, and SGD optimizers.

The RMSprop+LSTM+Dropout configuration was the

most successful, achieving an accuracy of 75.85%. The

Adam configuration showed the best performance in non-

autistic precision and autistic F1-score, while the

Adam+LSTM+Dropout configuration exhibited superior

autistic precision and recall. The SGD+Dropout con-

figuration achieved the highest autistic recall. These

findings emphasize the importance of selecting the

appropriate model configuration based on specific classi-

fication requirements and objectives. Future research

should focus on optimizing model architecture, compiler

parameters, activation functions, and techniques like

GridSearchCV to improve classification accuracy. Developing

high-accuracy models could support parents and educators

in facilitating effective communication and physical skill

development in autistic children.
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Table 1. Configurations based on confusion matrix

Accuracy 

(%)

Precision (%) Recall (%) F1-score (%)

Non-

autistic
Autistic Avg.

Non-

autistic
Autistic

Non-

autistic
Autistic Avg.

Adam only 73.30 83.09 67.98 75.54 58.50 88.10 68.66 76.74 72.70

Adam+LSTM 70.41 67.24 75.00 71.12 79.59 61.22 72.90 67.42 70.16

Adam+Dropout 72.96 82.93 67.62 75.28 57.82 88.10 68.14 76.51 72.33

Adam+LSTM+Dropout 71.77 65.76 85.16 75.46 90.82 52.72 76.29 65.13 70.71

RMSprop only 71.43 81.82 66.15 73.99 55.10 87.76 65.85 75.44 70.65

RMSprop+LSTM 72.62 67.64 81.52 74.58 86.73 58.50 76.01 68.12 72.06

RMSprop+Dropout 74.49 78.12 71.69 74.91 68.03 80.95 72.73 76.04 74.38

RMSprop+LSTM+Dropout 75.85 73.60 78.57 76.09 80.61 71.09 76.95 74.64 75.80

SGD only 65.31 66.19 64.52 65.35 62.59 68.03 64.34 66.23 65.28

SGD+LSTM 61.22 62.60 60.12 61.36 55.78 66.67 58.99 63.23 61.11

SGD+Dropout 59.86 77.36 56.02 66.69 27.89 91.84 41.00 69.59 55.29

SGD+LSTM+Dropout 54.08 53.09 56.00 54.55 70.07 38.10 60.41 45.34 52.88

The bold font indicates the best average performance in each test.

Fig. 10. Best (a) and worst (b) confusion matrix’s configuration.
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