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Abstract
Interpretability has emerged as an obstacle to the adoption of deep neural networks (DNNs) in particular domains, which

has led to increasing interest in addressing transparency issues to ensure that DNNs can fulfill their impressive potential.

In the current paper, we demonstrate the efficiency of various attribution techniques to explain the diagnostic decision of

DNNs by visualizing the predicted suspicious region in the image. By utilizing the characteristics of objectness that

DNNs have learned, fully decomposing the network prediction enables precise visualization of the targeted lesion. To

verify our work, we conduct experiments on chest X-ray diagnosis using publicly accessible datasets. As an intuitive

assessment metric for explanations, we present the performance of the intersection of union between visual explanation

and the bounding box of lesions. The experimental results show that recently proposed attribution methods can visualize

more specific localizations for diagnostic decisions compared to the traditionally used class activation mapping. We also

analyze the inconsistency of intentions between humans and DNNs, which is easily obscured by high performance. Visu-

alizing the relevant factors makes it possible to confirm that the criterion for decision is consistent with the training strat-

egy. Our analysis of unmasking machine intelligence demonstrates the need for explainability in medical diagnostic

decision-making.
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I. INTRODUCTION

Deep neural networks (DNNs) currently play an important

role in improving empirical performance in various

computer vision tasks such as image classification [1, 2],

object detection [3], human action recognition [4–7], and

medical diagnosis [8, 9]. However, a lack of interpretability

hinders the applicability of many DNN models in

mission-critical systems including medical diagnosis,

military, and finance. Despite the remarkable successes

that have been achieved in computer-aided detection

(CADe) and computer-aided diagnosis (CADx) [10–12],

their adoption in the real world remains constrained due

to the ambiguity involved in understanding diagnostic

decisions. There have been many studies aiming to

overcome this limitation by addressing the lack of

transparency in DNNs.

In explaining the decisions made by DNNs as a process

of decomposition, the contributions of individual neurons

are propagated backward through the weights, thereby
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resulting in a redistribution of relevance in the pixel

space. The results of sensitivity analysis [13] imply the

factors that reduce or increase the evidence for the

predicted results. Layer-wise relevance propagation (LRP)

[14] is a method for decomposing the output prediction

by fully redistributing the relevance throughout the

layers. Deep Taylor decomposition [15] is a theoretical

extension of LRP that can help interpret the decision by

utilizing the Taylor expansion and root point concept.

DeepLIFT [16] propagates the differences in contribution

scores between the activated neurons and their reference

activation. The recently proposed relative attributing

propagation (RAP) [17] is a method for decomposing the

positive (relevant) and negative (irrelevant) relevance to

each neuron, according to its relative influence among

the neurons. Changing the perspective from value to

influence shows a clear distinction between relevant/

irrelevant attributions with a high objectness score. Relative

sectional propagation [18] aims to decompose the output

predictions of DNNs with class-discriminativeness by

setting the hostile activations of neurons with respect to

the target class.

The visualization of disease aids radiologists, such as

in the form of class activation mapping (CAM) [19],

which generates CAMs to highlight the discriminative

regions, and this is widely used in the medical domain to

localize diverse diseases. Despite its advantages of

simple implementation and class discriminations, this

method has a limitation in its ability to precisely localize

predictions due to the broad area of visualization that

results from expanding compressed feature maps. To

localize the lesion areas more clearly, image-to-image

translation methods based on the generative model have

been studied in the medical field [20–23] by visualizing

the different factors of inter-domains while maintaining

the original subject. Visual attribution generative adversarial

networks (VA-GAN) [24] and fixed-point GAN [21]

synthesize Alzheimer’s disease images using 3D brain

magnetic resonance imaging. However, the GAN network

also faces limitations in that it itself is not completely

explainable, and that it cannot guarantee generality in

fields without sufficient localization ground truths of

lesion areas. To resolve this problem, we address the

efficiency of recent attribution techniques to contribute to

the interpretation of diagnostic decisions. These algorithmic

approaches investigate the trained network itself without

the need for any additional supervision. Fig. 1 shows

intuitive examples of the visual explanations used in this

work. The main contributions of this work are as follows:

● We demonstrate the methods that can be efficiently

used to interpret the diagnostic decisions made by

DNNs by utilizing visual explaining techniques: LRP

and RAP, which are adaptable to any fully trained

networks. Without requiring any supervision of the

area of lesions, decomposing the predictions of

classification networks makes it possible to precisely

localize and illustrate the crucial factors for their

diagnosis. Our experiments using chest X-ray datasets

show that the recent attribution techniques provide a

more sufficient guarantee of performance compared

to the existing widely used CAM.
● We demonstrate the experiment of the inconsistency

between human intention and DNNs by training

binary classification tasks: normal or pneumonia. We

utilize general techniques in machine learning fields,

and the networks exhibit proper performance.

However, the visual explanation shows misalignment

between the direction of the training strategy and the

actual criteria of the classification. We analyze the

phenomenon of inconsistency and add another voice

raising the necessity of interpretability.

II. ATTRIBUTION METHODS

In this section, we introduce notations and attribution

methods: LRP and RAP, which are closely related to each

other but have different perspectives and algorithms.

Fig. 2 provides an overview of decomposition and

visualization. For input x, we denote the letter f(x) as the

value of the network output before it passes through the

classification layer, such as the sigmoid and softmax

layers. R represents the input relevance for the attributing

procedure, which is the same as the value of f(x) of the

prediction node. , , and a(·) denote the

weight, bias, and activation function between layer

, respectively.  is the value of the neuron after

wij
l,l 1+ 

bj
l,l 1+ 

l,l 1+ mj
l 1+ 

Fig. 1. Intuitive comparison of CAM, LRP, and RAP. For each method, the left and right images show the relevance heatmap and visual
explanation, respectively. Red: high relevance, Blue: low relevance.
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applying the activation function. The signs of positive

and negative values are respectively denoted by + and −.

A. Layer-wise Relevance Propagation

The principle of LRP [14] is to find the parts with high

relevance in the input by propagating the result from the

back (output) to the front (input). The algorithm is based

on the conservation principle, which maintains relevance

in all layers: from input to output.

. (1)

Among the various LRP versions introduced in [14],

we utilize LRP-αβ, which separates the positive and

negative activations during the relevance propagation

process while maintaining the conservation rule (1).

. (2)

In this rule,  and α − β = 1. The propagated

attributions are allocated to the pixels of the input image

in a manner that indicates their relevance to output

prediction. In this paper, the function parameters are set

as α = 1, β = 0.

B. Relative Attributing Propagation

RAP [17] decomposes the output predictions of DNNs

in terms of relative influence among the neurons,

resulting in the relevant and irrelevant attributions being

assigned with a bi-polar importance. By changing the

perspective from value to influence, the generated visual

explanations show the characteristics of strong objectness

along with a clear distinction between relevant and

irrelevant attributions. The algorithm has three main

steps: (i) absolute influence normalization, (ii) decisions

regarding the criterion of relevance and propagating in a

backward pass, and (iii) uniform shifting to change the

irrelevant neurons to negative.

Absolute influence normalization is the process that is

only applied in only the first backward propagation for

changing the perspective on the neuron from the value to

the influence. From the output prediction node j in layer

q, the relevance is allocated into the penultimate layer p

according to its actual contribution in a forward pass.

. (3)

For an approach from an influence perspective, the

positive or negative relevance values allocated in the

penultimate layer are normalized by the ratio of the

absolute positive and negative values .

. (4)

This process makes it so that the neurons are allocated

in terms of their relative importance to the output

prediction, from high influence to low influence. For the

next steps, i.e., the attributing procedure from the

penultimate layer to the input layer, Eqs. (5) and (6) are

repeated in each layer while changing low influence

neurons to have negative relevance.

, (5)

, (6)

Here, Γ is the number of activated neurons in each

zij
+

zij


+ zij=

Ri
p +

 : Ri
p 

Fig. 2. Overview of the visual explanation procedure. Attribution methods: LRP and RAP are the decomposing procedures in a backward
pass after the network is fully trained. Relevance, corresponding to output prediction, is propagated through trained weights and
activated neurons.
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layer, and  denotes the relevance propagated through

the negative weights, i.e., the latter parts of Eq. (5). This

procedure makes it possible to assign relatively irrelevant

units as negative while emphasizing the important factors

as highly positive. RAP also preserves the conservation

rule (1).

III. EXPERIMENTAL EVALUATION

A. Data

1) NIH ChestX-ray14

NIH ChestX-ray14 dataset [25] comprises 112,120

frontal-view chest X-ray images in PNG format that have

been collected from unique 30,805 patients with corres-

ponding to 14 disease labels (atelectasis, consolidation,

infiltration, pneumothorax, edema, emphysema, fibrosis,

effusion, pneumonia, pleural thickening, cardiomegaly,

nodule, mass, and hernia), each image can be labeled

with one or more of these classes. Images where none of

these diseases are detected are labeled as no finding. We

utilize CheXNet [26], which is based on DenseNet [27]

and widely used in radiologist-level chest X-ray analysis.

This trained model is publicly available with verified

performance. The average area under receiver operating

characteristic (AUROC) of this model for 14 classes is

0.843 whereas the AUROC of eight classes that are

annotated with bounding box labels, i.e., atelectasis,

cardiomegaly, effusion, infiltration, mass nodule, pneumonia,

pneumothorax, are presented in Table 1. We utilize 984

images, which are annotated with the bounding box, to

evaluate the visual explanations for the target lesions.

2) RSNA Pneumonia Detection

The RSNA Pneumonia Detection Challenge dataset

[28] is a subset of 30,000 images from the NIH ChestX-

ray14 dataset that is labeled with two classes: normal and

pneumonia. The original purpose of this challenge is to

detect pneumonia lesions. We exclude the test data that

does not have a label and separate the training dataset

into training and validation sets in a respective ratio of

9:1. We trained VGG-16 [29], ResNet-50 [2] and DenseNet-

121 networks, which have been successfully established

to have impressive performance in the machine learning

field. While this dataset is designed for localizing the

lesions, we train the classification network, which is a

much easier level than training the detection network.

The purpose of interpreting these models is to analyze

whether their criterion of classification is fair compared

to human intentions. Therefore, we also make a comparison

with the assessment of CheXNet in the same experimental

status to verify the analysis. A detailed discussion of this

is provided in Section IV.

3) Assessment of Explanation

It is difficult to judge the criterion of a better explanation

because each method is designed for slightly different

objectives, and because there is not always one commonly

accepted measure for evaluating the quality of visualization.

In analyzing radiologist-level chest X-ray images, the

interpretation of diagnosis could be altered to the

localization of lesions, which is crucial evidence for

deciding the patient’s status. Intersection of union (IOU)

is widely used in semantic segmentation or object

detection tasks as an evaluation metric by computing the

localization scores. The evaluation would be more

accurate in the case that the dataset is annotated with a

segmentation mask, but there is a limitation to annotating

it in the medical domain in practice. Therefore, we utilize

IOU to evaluate whether positive attributions are correctly

distributed in the area of lesions with a bounding box.

The result we report is the localization performance of

lesions without any supervision of the bounding box

during the training procedure.

B. Results

1) Quantitative Assessment

To validate the efficiency of the attribution methods in

visualizing target lesions, we compared them with CAM,

which is widely used in medical fields to guarantee

reliability. The heatmaps from each method are normalized

in {0~1} and the threshold T is applied. For a fair

comparison, negative attributions are cast as zero. Table 2

lists the results of the mean IOU per each class on

CheXNet. Pixels that have a lower relevance value than

the threshold are cast as zero. As can be seen in Table 2,

CAM shows low IOU performance compared to LRP and

RAP in the low threshold. Since the heatmaps from CAM

are generated through resizing from low-dimension

feature maps to the original input size, it is difficult to

visualize the delicate interpretations for the target lesions.

As the threshold value is increased, low attributions that

Ri N

l 

Table 1. The performance of AUROC for each model we used in our experiment

NIH ChestX-ray14 Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

CheXNet 0.829 0.916 0.887 0.714 0.859 0.787 0.774 0.872

RSNA pneumonia DenseNet-121 ResNet-50 VGG-16 CheXNet

AUROC 0.858 0.845 0.842 0.827
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are widely spread with irrelevant parts are deleted, thus

resulting in an improvement of the localization performance

of CAM. By contrast, the attribution methods of LRP and

RAP show a decrement in IOU when the threshold is too

high. After the output predictions are fully decomposed

and mapped pixel-by-pixel, attributions compose detailed

visual explanations with a degree of importance.

Fig. 3. Qualitative comparison of visual explanations. Each row illustrates, from top to bottom, an X-ray image, CAM, LRP, and RAP. The
red square indicates the bounding box for each disease.

Table 2. For each method, the mean IoU between the bounding box and heatmaps

T(IOU) Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

0.1 CAM 0.243 0.336 0.311 0.309 0.225 0.182 0.295 0.259

LRP 0.500 0.687 0.503 0.567 0.514 0.435 0.568 0.456

RAP 0.487 0.754 0.490 0.576 0.496 0.416 0.572 0.447

0.2 CAM 0.304 0.439 0.368 0.369 0.280 0.238 0.355 0.303

LRP 0.560 0.569 0.543 0.603 0.582 0.506 0.602 0.494

RAP 0.534 0.703 0.511 0.609 0.540 0.461 0.606 0.471

0.3 CAM 0.353 0.525 0.408 0.413 0.326 0.286 0.403 0.339

LRP 0.563 0.428 0.526 0.558 0.583 0.545 0.564 0.492

RAP 0.565 0.622 0.518 0.608 0.571 0.496 0.608 0.479

0.4 CAM 0.396 0.591 0.442 0.451 0.370 0.328 0.445 0.370

LRP 0.543 0.441 0.502 0.508 0.552 0.561 0.515 0.484

RAP 0.569 0.544 0.510 0.570 0.573 0.521 0.576 0.480

0.5 CAM 0.437 0.635 0.468 0.483 0.411 0.369 0.479 0.397

LRP 0.519 0.424 0.485 0.477 0.520 0.551 0.482 0.479

RAP 0.548 0.480 0.493 0.519 0.547 0.527 0.525 0.478

The threshold denotes the criterion for ignoring low relevance: {0 ~ T}. The performance is the localization result without any supervision of the

bounding box. The bold font indicates the best performance achieved for each disease at the specified threshold.



Journal of Computing Science and Engineering, Vol. 18, No. 1, March 2024, pp. 00-00

http://dx.doi.org/10.5626/JCSE.2024.18.1.00 24 Ho Kyung Shin and Woo-Jeoung Nam

2) Qualitative Assessment

For qualitative evaluation of the heatmaps from each

method, we compare the results by examining the

distribution of the high activated points are distributed in

the bounding box. The methods have the same purpose of

emphasizing the most important factors, which allows us

to assess whether each method is consistent in attributing

positive relevance. Fig. 3 presents the heatmaps from

each method: CAM, LRP, and RAP for the diagnostic

decisions by CheXNet. We qualitatively assessed all

images in the test set of the NIH chest X-ray 14 dataset,

and most of them appear to show similarly satisfactory

results in a human intentions. More qualitative comparisons

are included in Figs. 5 and 6.

IV. INCONSISTENCY OF INTENTION

It is not trivial to elucidate the decisions made by

DNNs because of the opacity associated with the myriad

of linear and nonlinear operations. Their impressive

performance makes it easy to believe that the criteria

used to make their decisions are the same as those of

human intentions. In [30], the authors point out this

problem and insists on the need to explain techniques and

their evaluation metrics. In the medical field in particular,

the identification of causes for diagnosis is a crucial

aspect of ensuring reliability.

As described in Section III-A-2, we trained DNN

models on RSNA Pneumonia Detection datasets for the

binary classification of pneumonia images. The perfor-

mance of each model based on general learning methods

shows fair performance. Figs. 5 and 6 provides visual

explanations of what DNNs mainly focus on. The input

X-ray images are correctly classified as target labels. For

the pneumonia X-ray, the relevance from trained

models—VGG, ResNet, and DenseNet—is distributed on

irrelevant areas of lesions (bounding box) without regular

patterns. However, CheXNet, which is pretrained on the

NIH dataset with the certain purpose of classifying

various diseases, shows clear visual explanations corres-

ponding to pneumonia. For the normal X-ray image,

relevance from the trained model appears in areas that

support the normal lung’s clear shape. The result of

additional normal images shows similar relevance

patterns as well. Here, the interesting phenomenon is that

DNN models tend to learn the status of normal lung

images rather than the characteristics of pneumonia

disease. Since we do not provide any supervision of the

lesion area, DNN focuses on the lungs in a normal state,

which the high performance is due to the lungs being

relatively large and prominent within the image. CheXNet

classified this input X-ray as Cardiomegaly, which is not

closely related to lung diseases, and the visual explanation

clearly supports the diagnostic decision by emphasizing

the lesion area of the heart.

V. CONCLUSION

In this paper, we demonstrate an efficient method for

unmasking the opacity of DNNs and provide an inter-

pretation of diagnostic decisions by utilizing explaining

techniques. The introduced methods of LRP and RAP

can visualize more accurate and clear parts of lesions

than the generally used CAM. Generated heatmaps

indicate the important factors affecting the target diseases

with intensity from high relevance to low relevance. We

Fig. 4. Depiction of investigation of the inconsistency between human intention and what DNN has learned (see Section IV for details).
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Fig. 5. First additional comparison of visual explanations generated from CheXNet. First, second, and third rows in each tuple denote
image, LRP, and RAP, respectively. The visualization is the result without applying threshold.
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Fig. 6. Second additional comparison of visual explanations generated from CheXNet. First, second, and third rows in each tuple denote
image, LRP, and RAP, respectively. The visualization is the result without applying threshold.
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utilize chest X-ray datasets: NIH ChestX-ray14 and

RSNA pneumonia datasets, to verify how attribution

methods could localize the target lesions without any

supervision of a bounding box. For the quantitative

evaluation, we use the mean Intersection of Union for the

three visualization methods: CAM, LRP, and RAP. The

results show that fully decomposing the network by

investigating the contributions of neurons makes it

possible to clearly localize the parts of lesions. We also

analyze the inconsistency of human intentions and DNNs

by utilizing explainable methods and emphasize the

necessity of interpretability for the adoption of machine

intelligence in the medical domain. In a future study, we

plan to describe a vision transformer-based model to

demonstrate its efficiency in the medical domain with

various XAI methods.
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